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Abstract

Yield and maturity estimation of apples in orchards before harvest is essential for labor resource management. 
Current yield and maturity estimation are usually manually conducted, which is neither accurate nor efficient. 
In this paper, a 3-step deep learning–based approach for yield estimation and maturity classification is presented 
to address these issues. The proposed framework included an optimized detection network to count the visible 
fruits from both sides of a tree, a classification network to filter out mis-detected objects and perform maturity 
estimation, and a fruit load estimation algorithm to obtain the total fruit count of a tree. Images from three differ-
ent apple orchards were collected to evaluate the performance of the proposed method. According to a series of 
comparative experiments, the proposed method outperformed several detection networks regarding the counting 
accuracy, indicating that an optimized architecture of the detection network combined with a fine classification 
network is necessary for enhanced precision of yield estimation. The presented workflow can be readily extended 
to other fruit crops for automation yield and maturity estimation featuring high efficiency and accuracy.
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Introduction

In-filed yield and maturity estimation of fruits before 
harvest is essential for labor resource management. 
Commonly, growers need to estimate the yield of fruits 
in the orchard by sampling a few trees at random, and 
the maturity of fruits is extrapolated based on experi-
ence; however, these methods are neither accurate nor 
efficient. On the other hand, precision agriculture tech-
niques have attracted increasing attention in recent 
years, showing potential for a wide range of agricultural 
tasks in orchards including fruit diameter estimation 
(Costa et al., 2021), disease detection (Liu et al., 2018ab; 
Pan et al., 2021) maturity approximation (Mesa and 
Chiang, 2021), automated pruning (Long and Schupp, 
2018), and fruit picking (Kang and Chen, 2019, 2020); 
detection and classification of fruits on the trees is one 

of the precursors to these tasks. Therefore, we aim to 
develop automated fruit detection and classification tools 
for yield and maturity estimation in this study, which can 
also be further adopted for other precision agriculture 
tasks in future work.

Previous research to automate the yield estimation pro-
cess usually adopts thresholding techniques combined 
with color or shape characteristics, which can perform 
fruit detection in controlled environments (Otsu, 2007; 
Zemmour et al., 2019). One solution to operate this type 
of systems at night is to introduce artificial flashlights 
(Wang et al., 2013), and the resulting binary masks are 
characterized as fruits using static features predefined. 
However, the limitations of these systems are often asso-
ciated with additional sensors such as near-infrared 
(NIR) or thermal cameras, which complicate the setup. 
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In this work, we present a deep learning–based method 
to perform automatic in-field fruit yield and maturity esti-
mation. Particularly, we aim to achieve two improvements 
compared with those reported in the literature: (i) enhanced 
counting accuracy and (ii) yield and maturity estimation at 
the same time. The proposed method included two net-
work models, an optimized detection network and a refined 
classification network. The detection network detected and 
localized the fruits within the collected images, and  the 
classification network then filtered out mis-detected 
objects and classified those detected fruits into mature 
and immature ones. A fruit load estimation algorithm was 
also developed to estimate the number of fruits of each tree 
using the images from both sides. As a case demonstration, 
we collected images from three apple orchards to evaluate 
the performance of the proposed method, and the method 
is readily extensible to other fruit crops.

The rest of the paper is organized as follows. Section 2 
introduces the development of the dataset, including 
image data collection, augmentation, and labelling, and 
Section 3 includes the details of the proposed method 
consisting of a detection network, a classification net-
work, and a load estimation algorithm. Section 4 presents 
the experimental setup and results, and the conclusions 
are included in Section 5.

Materials

Image collection

As shown in Figure 1A, image collection was performed 
from three apple orchards located in Qingdao, Shandong 
province, China, from September to October in 2020. 
This time period started about 6 weeks prior to the har-
vesting season and ended when most of the apples were 
commercially mature, during which apples at different 
maturity levels could be observed. As shown in Figure 1B, 
the apples photographed 6 weeks before harvesting were 
generally pale, and they turned bright red 2 weeks later. 
To include different illumination conditions in the data-
set, image collection was performed with different light-
ing conditions, including cloudy, semi-cloudy, and sunny 
conditions, at three shifts of the morning, noon, and eve-
ning. For each tree, one image was taken at its front side 
and another image was taken at its backside, and the view 
angle was also randomly set to enhance the generaliza-
tion of the dataset. In-field imaging was performed using 
an Intel RealSense range sensor D-435i with the imaging 
resolution of 1920 × 1080 and an RGB camera with the 
same image resolution. To match the images from both 
sides to the corresponding tree, we numbered each tree 
first, and the images taken were then named according 
to the tree number. Overall, a total of 944 images of 472 
different trees from these orchards were obtained.

Moreover, it is challenging for these systems to obtain 
stable detection results in orchards due to the complex 
environments such as illumination changing (Wan and 
Goudos, 2019) and background variances (Tu et al., 2020).

The development of machine-learning algorithms 
provides the possibility to realize fruit detection and 
classification in orchards using only an RGB camera, sig-
nificantly improving the applicability and compactness of 
automated systems for yield estimation. Das et al. (2015) 
adopted a support vector machine for the classification 
between fruit and background on each image pixel, and 
they fitted a linear model to compensate for the mis-
counted fruits. In one study, a Gaussian mixture model 
(GMM) was used for both fruit detection and classifi-
cation, yielding high accuracy up to 91.98–94.81% (Roy 
et al., 2019). However, these techniques still rely on pre-
defined features such as color, morphological, and texture 
characteristics (Bandi et al., 2013). Since these features 
are hardly invariant to complex imaging conditions such 
as translation, rotation, and scale, and different lighting 
conditions in orchard environments, the generalization 
of these techniques is not satisfactory.

In more recent years, deep learning–based methods have 
become state of the art in computer vision tasks, proven 
to be effective for various domains including agricul-
ture (Chen et al., 2021). As the networks can learn fea-
tures from the huge amount of training data that might 
be generalized across environment variances, enhanced 
accuracy and robustness can be expected. Fruit detection 
can be realized using either semantic segmentation net-
works (Badrinarayanan et al., 2017) or object-detection 
networks (Nasiri et al., 2019). The former assigns each 
image pixel to a class (fruit/environment), which has been 
adopted to detect mangoes using Faster R-CNN (Bargoti 
and Underwood, 2017) and apples using U-Net (Hni et al., 
2020). The latter can localize and classify the targeted 
objects simultaneously in an input image, with relevant 
applications of yield estimation for kiwifruits (Fu, 2020), 
apples (Apolo-Apolo et al., 2020), and strawberries (Chen 
et al., 2019). The network outputs are then summed up 
as the fruit counts in each image, but accurate counting 
is still challenging due to mis-counts during detection. 
Alternatively, Chen et al. (2017) combined two networks 
for better counting accuracy. A fully convolutional net-
work was first adopted to generate the feature maps of 
possible targets, and a CNN network then performed 
fruit counting using a regression head. Fruit maturity esti-
mation has also been investigated as a classification task 
using deep learning–based methods (Garillos-Manliguez 
and Chiang, 2021; Nasiri et al., 2019), with the results 
usually outperforming those using traditional computer 
vision techniques (Faisal et al., 2020). However, research 
to perform yield and maturity estimation of fruits at the 
same time in orchards is limited.
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the network training (Zhao et al., 2018). Although we 
included images with different illumination conditions, 
weathers, and view angles in the collected dataset, they 
still could not completely replicate the complex environ-
ment in orchards. To further improve the robustness of 
the network models, multiple image augmentation oper-
ations were introduced during the training procedures of 
the network models.

Augmentation on detection images
The detection network was required to detect and count 
all the fruits on a tree from the input image. As for image 
augmentation operations, we applied image color adjust-
ment in the HSV color space to adjust the brightness, color 
saturation, and contrast of an image, which simulated the 
appearance variances of the apples in different illumina-
tion conditions. Moreover, to simulate the apple appear-
ance variances due to different distance and view angles, 
image crop, resize, rotation, and translation were used 
during data augmentation as well. Details of the image 
data augmentation operations adopted for the training of 
the detection network are summarized in Table 1.

Augmentation on classification images
After detection, a classification network was applied to 
filter out the mis-detected objects and classify the cor-
rectly detected fruits into mature or immature cases. 
We also applied several image augmentation operations 
in the color space, including adjustment in brightness, 
contrast, and color saturation. Image augmentation oper-
ations in the geometry space, such as shear, rotation, and 
translation, were also introduced, the details of which 
were the same as listed in Table 1. The only difference 
between the augmentation strategies was that crop was 
not applied in the classification network training.

Image data labelling

We labelled the image data sent to the detection network 
and classification network separately. Firstly, the images 
were sent to the detection network to detect the apples 
within the working scene, and the collected images were 
resized to 480 pixels × 414 pixels to match the input size 
of the detection network. For the ease of the comparison 
of our model with other state-of-the-art (SOTA) networks, 
we labelled these images in PASCAL VOC format that 
included the detection results and their bounding box loca-
tion using the LabelMe tool. To avoid training errors due to 
insufficient or unclear image features, we only labelled the 
apples with the size larger than 32 pixels × 32 pixels. Then, 
for the classification image data, we cropped the image 
region of each detected apple by using the location infor-
mation from the detection labels. Three human experts 
independently labeled each classification image into three 
classes, including mis-detected objects, mature apples, 
and immature apples, and the ultimate class of the image 
was identified as the one that all of them agreed with. All 
classification images were resized to 112 pixels × 112 pixels 
before they were fed into the classification network. As a 
result, there were 944 detection images and 2400 classifica-
tion images for network training. Among the classification 
training images, there were 1172 images that were imma-
ture apples while the rest of images were mature apples. 
We used 50% of the data as the training dataset, 25% as the 
validation dataset, and the rest 25% as the test dataset.

Image data augmentation

Image augmentation plays an important role in improv-
ing the accuracy, robustness, and generalization of 

Orchard A

3 weeks before harversting 1 week before harversting

(A)

(B)

Orchard B Orchard C

Figure 1.  (A) The images of apple trees from three different orchards. (B) The apples at different maturity stages.
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Table 1.  Image augmentation operations for data processing of 
the detection network.

Operation Description Strength

Brightness Adjusting image brightness [0.1, 0.9]

Translate-X Translate image along X-direction [–150, 150]

Translate-Y Translate image along Y-direction [–150, 150]

Color Adjusting the color saturation [0.1, 1.9]

Crop Cut out square regions of  the image [0.60]

Rotate Rotate the image [–30, 30]

Sharpness Adjusting image sharpness [0.1, 1.9]

Evaluation metrics

To evaluate the performance of a detection or classifica-
tion network model, precision (P) and recall (R) are often 
used. Precision measures the fraction of true objects in 
identified positive samples, while recall measures the 
fraction of true samples, with the formulations as

	 TPPr ecision (P)
TP FP

=
′+

	 (1)

	 TPRecall
TP FN

=
′+

	 (2)

To comprehensively evaluate a model based on both 
precision and recall, Accuracy (ACC) and F1-score are 
adopted in this work as well as

	 2PRF1
P R

=
′+

	 (3)

	 +
=

′+ + +
TP TNACC

TP FP TN FN
	 (4)

where TP, FP, and FN are the true positive, false positive, 
and false negative, respectively.

Methodologies

Network framework

The presented yield and maturity estimation algorithm 
mainly included two networks, a one-stage detection 
network “Deep-count” and a classification network, as 
shown in Figure 2. The detection network followed the 
network architecture of YOLO-V4 (Bochkovskiy et al., 
2020), which was used to detect and count the fruits on 
a tree from both the front view and back view. Then, a 
classification network was applied to classify the detected 
fruits into mature or immature ones. Although YOLO-V4 
can provide the classification of detected objects, our 

experimental results showed that a classification network 
could further improve the classification accuracy.

Detection network
As shown in Figure 3, the proposed Deep-count included 
three subnetworks, a backbone network, a Feature 
Pyramid Network (FPN) (Liu et al., 2018), and a detec-
tion output branch. The backbone network often includes 
a series of convolution and max-pooling layers to process 
images and preserve spatial feature distribution on fea-
ture maps. According to the feature visualization of the 
feature maps, shallow layers include more detailed fea-
tures while deep layers contain more semantic features. 
In this work, we used several ResNet networks (He et al., 
2016), including ResNet-34, ResNet-50, and ResNet-101, 
as the backbone of Deep-count, and a lightweight net-
work MobileNet-V2 was also implemented for compar-
ison. To extract multi-scale features from the backbone, 
we used feature maps from Level C3 with the size eight 
times shrunk, Level C4 with the size 16 times shrunk, 
and Level C5 with the size 32 times shrunk to perform 
detection.

Since objects were presented in different sizes in view, 
the FPN was applied to extract, process, and fuse image 
features from multi-scale feature maps. YOLO-V4 model 
applies Path Aggregation Network (PANet) as the FPN to 
process feature maps from Level C3, C4, and C5 of the 
backbone. Compared to YOLO-V3 that only applies a 
single-direction feature fusion path from deep levels to 
shallow levels, the PANet in YOLO-V4 applies bi-direc-
tion feature fusion, which fuses features not only from 
deep levels to shallow levels (C5→C4→C3) but also from 
shallow levels to deep levels (C5→C4→C3). As a result, 
feature maps in deep levels of PANet receive detailed 
features from shallow levels through the path C3→C5, 
which can improve the localization accuracy of the detec-
tion. Meanwhile, feature maps in shallow levels receive 
semantic features from deep levels following C5→C3, 
beneficial for increasing the precision of the detection.

In this work, an optimized PANet was adopted for our 
proposed network architecture (see Figure 3b). Instead 
of using the general convolutional operation module, 
our model applied the depth-wise convolution oper-
ations, which improves the computational efficiency 
without sacrificing detection performance in terms of 
recall and accuracy. Moreover, the FPN was also imple-
mented for comparison (see Figure 3a), and a series of 
ablation experiments were conducted. The experimen-
tal results were summarized in Table 2. It could be seen 
that the detection networks using the PANet outper-
formed that using the FPN regarding the precision and 
F1. Meanwhile, the detection network with our modified 
PANet achieved better computational speed compared 
to that with the FPN and original PANet model. Since 
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Input image

Front view Back view

C5 C5 prediction

C4 prediction

C3 prediction

C4
C3

PANet

Detection network

Fruit load estimation 
algorithm

Yield estimation

Maturity estimation

Classification network

Visualized results

Front view Back view

Figure 2.  The structure of the proposed yield and maturity estimation method.

ResNet-101 achieved the best detection performance, the 
PANet and ResNet-101 were therefore adopted for the 
optimized detection network.

Lastly, a dense prediction branch was used to process 
output feature maps from the PANet and encode objects’ 
confidence, bounding box location, and class informa-
tion into the feature tensor. Overall, three output tensors 
from Level C3, C4, and C5 were output and decoded into 
the detected objects’ list. Nonmaximum suppressing 
was  then used to filter out the objects with confidence 
beyond the threshold, which was set as 0.5 in this work.

Classification Network
The detected objects might include apples and mis-
detected objects. Therefore, a classification network 
was further applied to filter out the mis-detected results 
and perform maturity classification. To obtain the opti-
mal classification network model for our method, 

we comprehensively studied and compared ResNet, 
DenseNet (Zhu and Newsam, 2018), MobileNet (Sandler 
et al., 2018), and EfficientNet (Tan and Le, 2019) to 
obtain the network model with the highest classification 
accuracy. We trained each model with the same training 
and augmentation methods using the same image data, 
and the training parameters were optimized for different 
networks.

Network implementation and training
The detection network was programmed using 
TensorFlow 1.15 and the classification network was 
implemented using Pytorch. The backbone of the detec-
tion network used pretrained weights on ImageNet 
classification, while the PANet and output branch were 
trained with Adam-Optimizer with a learning rate of 
0.001 and a decay rate of 0.9 per epoch. We set the batch 
size as 32 and trained the network for 80 epochs. Early 
stopping of training was applied when over-fitting on 
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C3

Backbone

FPN

(a) Deep-count in FPN design

(b) Deep-count in PANet design

Detection head

C3 prediction

C4 prediction

C5 prediction

C3 prediction

C4 prediction

C5 prediction

PANet Detection head

C4 C5

Figure 3.  The architecture of the detection network, deep-count.

Table 2.  Comparison of detection performance on different network architectures.

Model Backbone Precision Recall F1 Time

YOLO-V4 DarkNet (53 layers) 0.92 0.93 0.92 78 ms

Deep-count (PANet) ResNet-34 0.84 0.88 0.85 35 ms

Deep-count (PANet) MobileNet-V2 (1.4) 0.87 0.84 0.86 32 ms

Deep-count (PANet) ResNet-50 0.92 0.91 0.91 44 ms

Deep-count (FPN) ResNet-101 0.88 0.92 0.89 67 ms

Deep-count (PANet) ResNet-101 0.92 0.95 0.94 53 ms

training data was observed during the training process. 
The classification network was also trained with Adam-
Optimizer with the same setup as that of the detection 
network. A total of 40 epochs were trained and the batch 
size was 64. All the network models were trained and 
evaluated on Ubuntu 18.04 with Nvidia GTX-1080Ti.

Yield estimation

A straight-forward yield estimation algorithm was imple-
mented to approximate the total yield of a tree. Although 
apples from both sides of the tree could be counted using 
the deep learning–based method, there were still some 
mis-detected ones since they were hidden by the leaves. 
Here, we first counted fruits of a tree from both sides 

that could be visually captured, and a correction factor 
was then adopted to include the hidden apples, with the 
equation formulated as

	 Ntotal = r(Nfront + Nback)	 (5)

where Nfront and Nback were, respectively, fruit counts of a 
tree from the front view and back view, and r is the cor-
rection factor. The correlation factor was calculated as a 
ratio of the sum of manually counted fruits per tree in the 
real environment to that from images of both sides, and 
we calculated the correlation ratio by randomly sampled 
15 trees from each orchard. To estimate the yield of the 
whole orchard, we first used the detection network and 
classification network to count the accurate number of 
visible apples from both sides of a tree, and this number 
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Experiments on the classification network

Since the detection network Deep-count had a high recall 
and relatively lower precision, the detected objects could 
be processed by the classification network to filter out 
the mis-detected objects, which would further improve 
the accuracy of the detection. Moreover, maturity esti-
mation was also conducted at the same time, which 
helped decide the time for harvest. We applied ResNet, 
DenseNet, MobileNet-V2, and EfficientNet in this step 
and comprehensively compared the performance of 
these models on this given task. As shown in Table 4, 
EfficientNet outperformed among these four models. 
EfficientNet could accurately classify the detected objects 
into three classes, including mis-detected objects, 
mature apples, and immature apples, and a high F1 of 
0.92 was obtained. The classification errors were mainly 
induced when distinguishing mature apples from imma-
ture apples, and this was caused by the illumination and 
color variances that significantly complicated the task.

was then multiplied by the correlation factor to obtain 
the total yield of the tree. We iteratively performed this 
operation for a certain number of trees, based on which 
the total fruit load of an orchard could be then predicted.

Results and Discussion

Experiments on the detection network

We compared our developed detection network, Deep-
count, which was a customized YOLO-V4 model, with 
YOLO-V3, the original YOLO-V4, and Faster-RCNN (Ren 
et al., 2017). These network models were trained using the 
same training data as that of Deep-count, while the train-
ing parameters were optimized for each model. As shown 
in Table 3, our Deep-count model achieved the best detec-
tion performance among these four models, of which the 
F1, recall, and precision were 0.92, 0.94, and 0.91, respec-
tively. YOLO-V4 achieved the best performance in the rest 
of the three models, of which the F1 was 0.907. YOLO-V3 
and Faster RCNN achieved similar performance, of which 
the F1 was 0.887 and 0.892, respectively.

Examples of using Deep-count on images are shown in 
Figure 4. Due to the illumination and camera view-an-
gle issues, the network might miss a small number of 
objects that were small in size or covered by collisions. 
However, the experimental results showed that our 
optimized network model could accurately and robustly 
detect most of the visible apples of a tree in orchard 
environments.

Table 3.  Comparison of the detection performance of different 
network models.

Model Precision Recall F1 Time (ms)

SSD 0.82 0.84 0.83 57

Faster-RCNN 0.87 0.86 0.87 154

YOLO-V3 0.87 0.90 0.88 64

Deep-count (FPN) 0.88 0.92 0.89 67

YOLO-V4 0.92 0.93 0.92 78

Deep-count (PANet) 0.92 0.95 0.94 53

(A) (B) (C)

(D) (E) (F)

Figure 4.  Examples of using Deep-count on images, with the detected apples bounded by blue boxes.
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Table 4.  Comparison of different classification network models 
regarding the classification performance.

Model Precision Recall Mean F1 ACC

VGG-19 0.76 0.71 0.73 0.82

MobileNet-V2(1.4) 0.86 0.72 0.78 0.86

ResNet-50 0.86 0.82 0.84 0.89

ResNet-101 0.88 0.86 0.87 0.91

DenseNet (k = 24) 0.89 0.91 0.90 0.93

EfficientNet-b4 0.91 0.92 0.92 0.96

Front side (Tree 1, Orchard B)

(A) (B)

(C) (D)

Back side (Tree 1, Orchard B)

Front side (Tree 2, Orchard C) Back side (Tree 2, Orchard C)

Figure 5.  Examples of detected apples from both sides of a tree.

Experimental on Yield Estimation

To estimate the fruit load of a tree, a correlation factor 
was estimated for each orchard. We applied the detection 
network to count the fruit number fruits of a tree from 
both sides, as shown in Figure 5. The fruit count of a tree 

could then be obtained by multiplying the fruit number 
with the correlation factor. We first calculated the cor-
relation factor of each orchard by comparing the number 
of fruits obtained using the proposed method and man-
ual counting of five to eight trees. As the results shown 
in Table 5, the correlation factors for three orchards were 
1.09 ± 0.08, 1.04 ± 0.127, and 0.954 ± 0.06, respectively.

The yield of a tree could then be obtained using the 
proposed method, and we compared its performance 
with that of several SOTA detection networks includ-
ing YOLO-V3, YOLO-V4, and Faster-RCNN. The cor-
relation factor used for each orchard was the same for 
all four network models. As shown in Table 6, the accu-
racy of yield estimation of YOLO-V4 outperformed 
that of YOLO-V3 and Faster-RCNN, indicating that 
the choice of the detection network significantly influ-
enced the counting precision. Moreover, our proposed 
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Table 5.  Correlation factors obtained for each orchard.

Orchard Image count 
(mean)

Manual count 
(mean)

Coefficient

A 23.7 25.6 1.090 ± 0.080

B 37.2 33.8 1.040 ± 0.127

C 28.4 26.4 0.954 ± 0.060

0
Orchard A

YOLO-V3

Error rate (%)

Orchard B Orchard C

1

2

3

4

5

6

7

8

9

Faster-RCNN YOLO-V4 Our method

Figure 6.  Yield estimation error rate in three different orchards.

YOLO-V4 network for better detection performance, 
and a classification network was then implemented to 
filter out mis-detected objects to further improve the 
accuracy for yield estimation.

Conclusions

In this paper, we presented a deep learning–based 
method to realize automated yield and maturity esti-
mation of apples in orchards. The proposed method 
included a detection network to count the visible apples 
from both sides of a tree, a classification network to filter 
out mis-detected objects and classify apples according 
to their maturity, and a fruit load estimation algorithm 
to obtain the total fruit count of a tree. As for our pro-
posed method, the detection network was the key to the 
accurate estimation of the yield. To improve the accu-
racy of the detection network, we chose ResNet-10 as 
the network backbone and adopted PANet to process 
multi-scale features. EfficientNet-64 was used as the 
classification network via a series of comparative tests. 
According to the comparison of the counting accuracy 
using the proposed method and several SOTA detection 
networks, the proposed method outperformed in these 
networks, indicating that an optimized architecture of 
the detection network combined with a fine classifica-
tion network is necessary for enhanced performance in 
image-based yield estimation. The proposed method can 
also be readily extended to other fruit crops for auto-
mated yield and maturity estimation featuring high effi-
ciency and accuracy.

Table 6.  Comparison of the performance of yield estimation using 
different network models.

Orchard Image count 
(mean)

Manual count 
(mean)

Error rate 
(%)

A (Proposed method) 24.5 25.6 4.3 ± 1.08

A (Faster-RCNN) 24.2 25.6 5.46 ± 1.77

A (YOLO-V3) 23.6 25.6 7.8 ± 2.24

A (YOLO-V4) 27.1 25.6 5.86 ± 1.12

B (Proposed method) 36.2 34.5 4.93 ± 0.83

B (Faster-RCNN) 32.4 34.5 6.08 ± 1.89

B (YOLO-V3) 32.1 34.5 7.26 ± 2.54

B (YOLO-V4) 36.6 34.5 5.21 ± 1.07

C (Proposed method) 29.4 28.2 4.25 ± 1.47

C (Faster-RCNN) 30.6 28.2 8.5 ± 1.95

C (YOLO-V3) 25.9 28.2 8.15 ± 2.56

C (YOLO-V4) 26.0 28.2 7.3 ± 1.22

method obtained even better accuracy than that of 
YOLO-V4, with the counting errors of only 4.3 ± 1.08%, 
4.93 ± 0.83%, and 4.25 ± 1.47% for Orchard A, B, and C, 
respectively. This was because we optimized the original 
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