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Yield and maturity estimation of apples in orchards using a 3-step deep learning-based method
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Abstract

Yield and maturity estimation of apples in orchards before harvest is essential for labor resource management.
Current yield and maturity estimation are usually manually conducted, which is neither accurate nor efficient.
In this paper, a 3-step deep learning—based approach for yield estimation and maturity classification is presented
to address these issues. The proposed framework included an optimized detection network to count the visible
fruits from both sides of a tree, a classification network to filter out mis-detected objects and perform maturity
estimation, and a fruit load estimation algorithm to obtain the total fruit count of a tree. Images from three differ-
ent apple orchards were collected to evaluate the performance of the proposed method. According to a series of
comparative experiments, the proposed method outperformed several detection networks regarding the counting
accuracy, indicating that an optimized architecture of the detection network combined with a fine classification
network is necessary for enhanced precision of yield estimation. The presented workflow can be readily extended
to other fruit crops for automation yield and maturity estimation featuring high efficiency and accuracy.
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Introduction of the precursors to these tasks. Therefore, we aim to
develop automated fruit detection and classification tools
for yield and maturity estimation in this study, which can
also be further adopted for other precision agriculture

tasks in future work.

In-filed yield and maturity estimation of fruits before
harvest is essential for labor resource management.
Commonly, growers need to estimate the yield of fruits
in the orchard by sampling a few trees at random, and

the maturity of fruits is extrapolated based on experi-
ence; however, these methods are neither accurate nor
efficient. On the other hand, precision agriculture tech-
niques have attracted increasing attention in recent
years, showing potential for a wide range of agricultural
tasks in orchards including fruit diameter estimation
(Costa et al., 2021), disease detection (Liu et al., 2018ab;
Pan et al., 2021) maturity approximation (Mesa and
Chiang, 2021), automated pruning (Long and Schupp,
2018), and fruit picking (Kang and Chen, 2019, 2020);
detection and classification of fruits on the trees is one

Previous research to automate the yield estimation pro-
cess usually adopts thresholding techniques combined
with color or shape characteristics, which can perform
fruit detection in controlled environments (Otsu, 2007;
Zemmour et al., 2019). One solution to operate this type
of systems at night is to introduce artificial flashlights
(Wang et al., 2013), and the resulting binary masks are
characterized as fruits using static features predefined.
However, the limitations of these systems are often asso-
ciated with additional sensors such as near-infrared
(NIR) or thermal cameras, which complicate the setup.

ISSN 1757-837X online, DOI 10.15586/qas.v14i2.1008

101


mailto:gsm1049976177@outlook.com

Zhang X et al.

Moreover, it is challenging for these systems to obtain
stable detection results in orchards due to the complex
environments such as illumination changing (Wan and
Goudos, 2019) and background variances (Tu et al., 2020).

The development of machine-learning algorithms
provides the possibility to realize fruit detection and
classification in orchards using only an RGB camera, sig-
nificantly improving the applicability and compactness of
automated systems for yield estimation. Das et al. (2015)
adopted a support vector machine for the classification
between fruit and background on each image pixel, and
they fitted a linear model to compensate for the mis-
counted fruits. In one study, a Gaussian mixture model
(GMM) was used for both fruit detection and classifi-
cation, yielding high accuracy up to 91.98-94.81% (Roy
et al., 2019). However, these techniques still rely on pre-
defined features such as color, morphological, and texture
characteristics (Bandi et al., 2013). Since these features
are hardly invariant to complex imaging conditions such
as translation, rotation, and scale, and different lighting
conditions in orchard environments, the generalization
of these techniques is not satisfactory.

In more recent years, deep learning—based methods have
become state of the art in computer vision tasks, proven
to be effective for various domains including agricul-
ture (Chen et al., 2021). As the networks can learn fea-
tures from the huge amount of training data that might
be generalized across environment variances, enhanced
accuracy and robustness can be expected. Fruit detection
can be realized using either semantic segmentation net-
works (Badrinarayanan et al., 2017) or object-detection
networks (Nasiri et al., 2019). The former assigns each
image pixel to a class (fruit/environment), which has been
adopted to detect mangoes using Faster R-CNN (Bargoti
and Underwood, 2017) and apples using U-Net (Hni ez al.,
2020). The latter can localize and classify the targeted
objects simultaneously in an input image, with relevant
applications of yield estimation for kiwifruits (Fu, 2020),
apples (Apolo-Apolo et al., 2020), and strawberries (Chen
et al., 2019). The network outputs are then summed up
as the fruit counts in each image, but accurate counting
is still challenging due to mis-counts during detection.
Alternatively, Chen et al. (2017) combined two networks
for better counting accuracy. A fully convolutional net-
work was first adopted to generate the feature maps of
possible targets, and a CNN network then performed
fruit counting using a regression head. Fruit maturity esti-
mation has also been investigated as a classification task
using deep learning—based methods (Garillos-Manliguez
and Chiang, 2021; Nasiri et al., 2019), with the results
usually outperforming those using traditional computer
vision techniques (Faisal et al., 2020). However, research
to perform yield and maturity estimation of fruits at the
same time in orchards is limited.

In this work, we present a deep learning—based method
to perform automatic in-field fruit yield and maturity esti-
mation. Particularly, we aim to achieve two improvements
compared with those reported in the literature: (i) enhanced
counting accuracy and (ii) yield and maturity estimation at
the same time. The proposed method included two net-
work models, an optimized detection network and a refined
classification network. The detection network detected and
localized the fruits within the collected images, and the
classification network then filtered out mis-detected
objects and classified those detected fruits into mature
and immature ones. A fruit load estimation algorithm was
also developed to estimate the number of fruits of each tree
using the images from both sides. As a case demonstration,
we collected images from three apple orchards to evaluate
the performance of the proposed method, and the method
is readily extensible to other fruit crops.

The rest of the paper is organized as follows. Section 2
introduces the development of the dataset, including
image data collection, augmentation, and labelling, and
Section 3 includes the details of the proposed method
consisting of a detection network, a classification net-
work, and a load estimation algorithm. Section 4 presents
the experimental setup and results, and the conclusions
are included in Section 5.

Materials
Image collection

As shown in Figure 1A, image collection was performed
from three apple orchards located in Qingdao, Shandong
province, China, from September to October in 2020.
This time period started about 6 weeks prior to the har-
vesting season and ended when most of the apples were
commercially mature, during which apples at different
maturity levels could be observed. As shown in Figure 1B,
the apples photographed 6 weeks before harvesting were
generally pale, and they turned bright red 2 weeks later.
To include different illumination conditions in the data-
set, image collection was performed with different light-
ing conditions, including cloudy, semi-cloudy, and sunny
conditions, at three shifts of the morning, noon, and eve-
ning. For each tree, one image was taken at its front side
and another image was taken at its backside, and the view
angle was also randomly set to enhance the generaliza-
tion of the dataset. In-field imaging was performed using
an Intel RealSense range sensor D-435i with the imaging
resolution of 1920 x 1080 and an RGB camera with the
same image resolution. To match the images from both
sides to the corresponding tree, we numbered each tree
first, and the images taken were then named according
to the tree number. Overall, a total of 944 images of 472
different trees from these orchards were obtained.
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Figure 1.

Image data labelling

We labelled the image data sent to the detection network
and classification network separately. Firstly, the images
were sent to the detection network to detect the apples
within the working scene, and the collected images were
resized to 480 pixels x 414 pixels to match the input size
of the detection network. For the ease of the comparison
of our model with other state-of-the-art (SOTA) networks,
we labelled these images in PASCAL VOC format that
included the detection results and their bounding box loca-
tion using the LabelMe tool. To avoid training errors due to
insufficient or unclear image features, we only labelled the
apples with the size larger than 32 pixels x 32 pixels. Then,
for the classification image data, we cropped the image
region of each detected apple by using the location infor-
mation from the detection labels. Three human experts
independently labeled each classification image into three
classes, including mis-detected objects, mature apples,
and immature apples, and the ultimate class of the image
was identified as the one that all of them agreed with. All
classification images were resized to 112 pixels x 112 pixels
before they were fed into the classification network. As a
result, there were 944 detection images and 2400 classifica-
tion images for network training. Among the classification
training images, there were 1172 images that were imma-
ture apples while the rest of images were mature apples.
We used 50% of the data as the training dataset, 25% as the
validation dataset, and the rest 25% as the test dataset.

Image data augmentation

Image augmentation plays an important role in improv-
ing the accuracy, robustness, and generalization of

1 week before harversting

(A) The images of apple trees from three different orchards. (B) The apples at different maturity stages.

the network training (Zhao et al., 2018). Although we
included images with different illumination conditions,
weathers, and view angles in the collected dataset, they
still could not completely replicate the complex environ-
ment in orchards. To further improve the robustness of
the network models, multiple image augmentation oper-
ations were introduced during the training procedures of
the network models.

Augmentation on detection images

The detection network was required to detect and count
all the fruits on a tree from the input image. As for image
augmentation operations, we applied image color adjust-
ment in the HSV color space to adjust the brightness, color
saturation, and contrast of an image, which simulated the
appearance variances of the apples in different illumina-
tion conditions. Moreover, to simulate the apple appear-
ance variances due to different distance and view angles,
image crop, resize, rotation, and translation were used
during data augmentation as well. Details of the image
data augmentation operations adopted for the training of
the detection network are summarized in Table 1.

Augmentation on classification images

After detection, a classification network was applied to
filter out the mis-detected objects and classify the cor-
rectly detected fruits into mature or immature cases.
We also applied several image augmentation operations
in the color space, including adjustment in brightness,
contrast, and color saturation. Image augmentation oper-
ations in the geometry space, such as shear, rotation, and
translation, were also introduced, the details of which
were the same as listed in Table 1. The only difference
between the augmentation strategies was that crop was
not applied in the classification network training.
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Table 1. Image augmentation operations for data processing of
the detection network.

Operation Description Strength
Brightness Adjusting image brightness [0.1,0.9]
Translate-X  Translate image along X-direction [-150, 150]
Translate-Y ~ Translate image along Y-direction [-150, 150]
Color Adjusting the color saturation [0.1,1.9]
Crop Cut out square regions of the image [0.60]
Rotate Rotate the image [-30, 30]
Sharpness Adjusting image sharpness [0.1,1.9]

Evaluation metrics

To evaluate the performance of a detection or classifica-
tion network model, precision (P) and recall (R) are often
used. Precision measures the fraction of true objects in
identified positive samples, while recall measures the
fraction of true samples, with the formulations as

Precision (P) :L (1)
TP +FP’
Recall = _Tr (2)
TP+FN'

To comprehensively evaluate a model based on both
precision and recall, Accuracy (ACC) and Fl-score are
adopted in this work as well as

Fle 2PR 3)
P+R’
3 TP+TN )
TP+FP+TN+EN’

where TP, FP, and FN are the true positive, false positive,
and false negative, respectively.

Methodologies
Network framework

The presented yield and maturity estimation algorithm
mainly included two networks, a one-stage detection
network “Deep-count” and a classification network, as
shown in Figure 2. The detection network followed the
network architecture of YOLO-V4 (Bochkovskiy et al.,
2020), which was used to detect and count the fruits on
a tree from both the front view and back view. Then, a
classification network was applied to classify the detected
fruits into mature or immature ones. Although YOLO-V4
can provide the classification of detected objects, our

experimental results showed that a classification network
could further improve the classification accuracy.

Detection network

As shown in Figure 3, the proposed Deep-count included
three subnetworks, a backbone network, a Feature
Pyramid Network (FPN) (Liu et al., 2018), and a detec-
tion output branch. The backbone network often includes
a series of convolution and max-pooling layers to process
images and preserve spatial feature distribution on fea-
ture maps. According to the feature visualization of the
feature maps, shallow layers include more detailed fea-
tures while deep layers contain more semantic features.
In this work, we used several ResNet networks (He et al.,
2016), including ResNet-34, ResNet-50, and ResNet-101,
as the backbone of Deep-count, and a lightweight net-
work MobileNet-V2 was also implemented for compar-
ison. To extract multi-scale features from the backbone,
we used feature maps from Level C3 with the size eight
times shrunk, Level C4 with the size 16 times shrunk,
and Level C5 with the size 32 times shrunk to perform
detection.

Since objects were presented in different sizes in view,
the FPN was applied to extract, process, and fuse image
features from multi-scale feature maps. YOLO-V4 model
applies Path Aggregation Network (PANet) as the FPN to
process feature maps from Level C3, C4, and C5 of the
backbone. Compared to YOLO-V3 that only applies a
single-direction feature fusion path from deep levels to
shallow levels, the PANet in YOLO-V4 applies bi-direc-
tion feature fusion, which fuses features not only from
deep levels to shallow levels (C5—C4—C3) but also from
shallow levels to deep levels (C5—~C4—C3). As a result,
feature maps in deep levels of PANet receive detailed
features from shallow levels through the path C3—C5,
which can improve the localization accuracy of the detec-
tion. Meanwhile, feature maps in shallow levels receive
semantic features from deep levels following C5—C3,
beneficial for increasing the precision of the detection.

In this work, an optimized PANet was adopted for our
proposed network architecture (see Figure 3b). Instead
of using the general convolutional operation module,
our model applied the depth-wise convolution oper-
ations, which improves the computational efficiency
without sacrificing detection performance in terms of
recall and accuracy. Moreover, the FPN was also imple-
mented for comparison (see Figure 3a), and a series of
ablation experiments were conducted. The experimen-
tal results were summarized in Table 2. It could be seen
that the detection networks using the PANet outper-
formed that using the FPN regarding the precision and
F1. Meanwhile, the detection network with our modified
PANet achieved better computational speed compared
to that with the FPN and original PANet model. Since
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ResNet-101 achieved the best detection performance, the
PANet and ResNet-101 were therefore adopted for the
optimized detection network.

Lastly, a dense prediction branch was used to process
output feature maps from the PANet and encode objects’
confidence, bounding box location, and class informa-
tion into the feature tensor. Overall, three output tensors
from Level C3, C4, and C5 were output and decoded into
the detected objects’ list. Nonmaximum suppressing
was then used to filter out the objects with confidence
beyond the threshold, which was set as 0.5 in this work.

Classification Network

The detected objects might include apples and mis-
detected objects. Therefore, a classification network
was further applied to filter out the mis-detected results
and perform maturity classification. To obtain the opti-
mal classification network model for our method,

The structure of the proposed yield and maturity estimation method.

we comprehensively studied and compared ResNet,
DenseNet (Zhu and Newsam, 2018), MobileNet (Sandler
et al., 2018), and EfficientNet (Tan and Le, 2019) to
obtain the network model with the highest classification
accuracy. We trained each model with the same training
and augmentation methods using the same image data,
and the training parameters were optimized for different
networks.

Network implementation and training

The detection network was programmed using
TensorFlow 1.15 and the classification network was
implemented using Pytorch. The backbone of the detec-
tion network used pretrained weights on ImageNet
classification, while the PANet and output branch were
trained with Adam-Optimizer with a learning rate of
0.001 and a decay rate of 0.9 per epoch. We set the batch
size as 32 and trained the network for 80 epochs. Early
stopping of training was applied when over-fitting on

Quality Assurance and Safety of Crops & Foods 14 (2)
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Figure 3. The architecture of the detection network, deep-count.

Table 2. Comparison of detection performance on different network architectures.

Model Backbone Precision Recall F1 Time
YOLO-V4 DarkNet (53 layers) 0.92 0.93 0.92 78 ms
Deep-count (PANet) ResNet-34 0.84 0.88 0.85 35ms
Deep-count (PANet) MobileNet-V2 (1.4) 0.87 0.84 0.86 32 ms
Deep-count (PANet) ResNet-50 0.92 0.91 0.91 44 ms
Deep-count (FPN) ResNet-101 0.88 0.92 0.89 67 ms
Deep-count (PANet) ResNet-101 0.92 0.95 0.94 53 ms

training data was observed during the training process.
The classification network was also trained with Adam-
Optimizer with the same setup as that of the detection
network. A total of 40 epochs were trained and the batch
size was 64. All the network models were trained and
evaluated on Ubuntu 18.04 with Nvidia GTX-1080Ti.

Yield estimation

A straight-forward yield estimation algorithm was imple-
mented to approximate the total yield of a tree. Although
apples from both sides of the tree could be counted using
the deep learning—based method, there were still some
mis-detected ones since they were hidden by the leaves.
Here, we first counted fruits of a tree from both sides

that could be visually captured, and a correction factor
was then adopted to include the hidden apples, with the
equation formulated as

Ny = TNgop + Npp) (5)
where N, and N,_, were, respectively, fruit counts of a
tree from the front view and back view, and r is the cor-
rection factor. The correlation factor was calculated as a
ratio of the sum of manually counted fruits per tree in the
real environment to that from images of both sides, and
we calculated the correlation ratio by randomly sampled
15 trees from each orchard. To estimate the yield of the
whole orchard, we first used the detection network and
classification network to count the accurate number of
visible apples from both sides of a tree, and this number
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was then multiplied by the correlation factor to obtain
the total yield of the tree. We iteratively performed this
operation for a certain number of trees, based on which
the total fruit load of an orchard could be then predicted.

Results and Discussion
Experiments on the detection network

We compared our developed detection network, Deep-
count, which was a customized YOLO-V4 model, with
YOLO-V3, the original YOLO-V4, and Faster-RCNN (Ren
et al., 2017). These network models were trained using the
same training data as that of Deep-count, while the train-
ing parameters were optimized for each model. As shown
in Table 3, our Deep-count model achieved the best detec-
tion performance among these four models, of which the
F1, recall, and precision were 0.92, 0.94, and 0.91, respec-
tively. YOLO-V4 achieved the best performance in the rest
of the three models, of which the F1 was 0.907. YOLO-V3
and Faster RCNN achieved similar performance, of which
the F1 was 0.887 and 0.892, respectively.

Examples of using Deep-count on images are shown in
Figure 4. Due to the illumination and camera view-an-
gle issues, the network might miss a small number of
objects that were small in size or covered by collisions.
However, the experimental results showed that our
optimized network model could accurately and robustly
detect most of the visible apples of a tree in orchard
environments.

(B)

AT

L ¢

Figure 4.

Yield and maturity estimation of apples

Experiments on the classification network

Since the detection network Deep-count had a high recall
and relatively lower precision, the detected objects could
be processed by the classification network to filter out
the mis-detected objects, which would further improve
the accuracy of the detection. Moreover, maturity esti-
mation was also conducted at the same time, which
helped decide the time for harvest. We applied ResNet,
DenseNet, MobileNet-V2, and EfficientNet in this step
and comprehensively compared the performance of
these models on this given task. As shown in Table 4,
EfficientNet outperformed among these four models.
EfficientNet could accurately classify the detected objects
into three classes, including mis-detected objects,
mature apples, and immature apples, and a high F1 of
0.92 was obtained. The classification errors were mainly
induced when distinguishing mature apples from imma-
ture apples, and this was caused by the illumination and
color variances that significantly complicated the task.

Table 3. Comparison of the detection performance of different
network models.

Model Precision  Recall F1 Time (ms)
SSD 0.82 0.84 0.83 57
Faster-RCNN 0.87 0.86 0.87 154
YOLO-V3 0.87 0.90 0.88 64
Deep-count (FPN) 0.88 0.92 0.89 67
YOLO-V4 0.92 0.93 0.92 78
Deep-count (PANet) 0.92 0.95 0.94 53

Examples of using Deep-count on images, with the detected apples bounded by blue boxes.
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Experimental on Yield Estimation

To estimate the fruit load of a tree, a correlation factor
was estimated for each orchard. We applied the detection
network to count the fruit number fruits of a tree from
both sides, as shown in Figure 5. The fruit count of a tree

Table 4. Comparison of different classification network models
regarding the classification performance.

Model Precision  Recall MeanF1 ACC
VGG-19 0.76 0.71 0.73 0.82
MobileNet-V2(1.4) 0.86 0.72 0.78 0.86
ResNet-50 0.86 0.82 0.84 0.89
ResNet-101 0.88 0.86 0.87 0.91
DenseNet (k = 24) 0.89 0.91 0.90 0.93
EfficientNet-b4 0.91 0.92 0.92 0.96

could then be obtained by multiplying the fruit number
with the correlation factor. We first calculated the cor-
relation factor of each orchard by comparing the number
of fruits obtained using the proposed method and man-
ual counting of five to eight trees. As the results shown
in Table 5, the correlation factors for three orchards were
1.09 + 0.08, 1.04 + 0.127, and 0.954 + 0.06, respectively.

The yield of a tree could then be obtained using the
proposed method, and we compared its performance
with that of several SOTA detection networks includ-
ing YOLO-V3, YOLO-V4, and Faster-RCNN. The cor-
relation factor used for each orchard was the same for
all four network models. As shown in Table 6, the accu-
racy of yield estimation of YOLO-V4 outperformed
that of YOLO-V3 and Faster-RCNN, indicating that
the choice of the detection network significantly influ-
enced the counting precision. Moreover, our proposed

Front side (Tree 1, Orchard B)

Back side (Tree 1, Orchard B)

Front side (Tree 2, Orchard C)

Figure 5. Examples of detected apples from both sides of a tree.

Back side (Tree 2, Orchard C)
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method obtained even better accuracy than that of
YOLO-V4, with the counting errors of only 4.3 + 1.08%,
4.93 + 0.83%, and 4.25 + 1.47% for Orchard A, B, and C,
respectively. This was because we optimized the original

Table 5. Correlation factors obtained for each orchard.

Orchard Image count Manual count Coefficient
(mean) (mean)

A 23.7 25.6 1.090 + 0.080

B 37.2 33.8 1.040 + 0.127

(6 28.4 26.4 0.954 + 0.060

Table 6. Comparison of the performance of yield estimation using
different network models.

Orchard Image count Manual count  Error rate
(mean) (mean) (%)
A (Proposed method) 245 25.6 4.3+1.08
A (Faster-RCNN) 24.2 25.6 5.46 £ 1.77
A (YOLO-V3) 23.6 25.6 784224
A (YOLO-V4) 271 25.6 5.86 +1.12
B (Proposed method) 36.2 34.5 4.93+£0.83
B (Faster-RCNN) 324 345 6.08 £ 1.89
B (YOLO-V3) 32.1 34.5 7.26 +2.54
B (YOLO-V4) 36.6 34.5 521+1.07
C (Proposed method) 294 28.2 425+ 147
C (Faster-RCNN) 30.6 28.2 85+1.95
C (YOLO-V3) 25.9 28.2 8.15 £ 2.56
C (YOLO-V4) 26.0 28.2 73+1.22

Error rate (%)

9

-

Orchard A

M YOLO-V3 B Faster-RCNN

Figure 6. Yield estimation error rate in three different orchards.

Yield and maturity estimation of apples

YOLO-V4 network for better detection performance,
and a classification network was then implemented to
filter out mis-detected objects to further improve the
accuracy for yield estimation.

Conclusions

In this paper, we presented a deep learning—based
method to realize automated yield and maturity esti-
mation of apples in orchards. The proposed method
included a detection network to count the visible apples
from both sides of a tree, a classification network to filter
out mis-detected objects and classify apples according
to their maturity, and a fruit load estimation algorithm
to obtain the total fruit count of a tree. As for our pro-
posed method, the detection network was the key to the
accurate estimation of the yield. To improve the accu-
racy of the detection network, we chose ResNet-10 as
the network backbone and adopted PANet to process
multi-scale features. EfficientNet-64 was used as the
classification network via a series of comparative tests.
According to the comparison of the counting accuracy
using the proposed method and several SOTA detection
networks, the proposed method outperformed in these
networks, indicating that an optimized architecture of
the detection network combined with a fine classifica-
tion network is necessary for enhanced performance in
image-based yield estimation. The proposed method can
also be readily extended to other fruit crops for auto-
mated yield and maturity estimation featuring high effi-
ciency and accuracy.

Orchard B

Orchard C

M YoLo-v4 [ Our method
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