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Abstract

Mycotoxins produced from Aspergillus, Penicillium, and Fusarium cause food spoilages during handling and
storage, owing to immense economic losses and serious human health concerns including immunosuppression
and carcinogenic effects. Furthermore, these species are also known to produce mycotoxins. Aflatoxin B1 (AFB),
zearalenone (ZEA), ochratoxin A (OTA), and deoxynivalenol (DON) are the most commonly occurring mycotox-
ins. The removal of mycotoxins from the contaminated food using lactic acid bacterias (LABs) has been proposed
as a green, inexpensive, safe, and promising mycotoxin decontamination strategy. LABs can control the mycotoxin
production following a series of steps, including, adsorption, metabolite interaction, and biodegradation. This
article provides systematic review of LABs as bio-green preservative with anti-mycotoxin potential for sustainable
food safety. This consolidated review may be of technical importance to understand detoxification mechanisms
and potential interaction of compounds originated with mycotoxin degradation for target food before incorpora-
tion by the food industry.
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Introduction

Fungal spoilage is a major challenge for food industries,
leading to food sensory defects, food waste, economic
losses, and public health concerns due to their toxins.
Plant-pathogenic fungi are responsible for up to 20% loss
of the global harvest yield, which is sufficient to take care
of about 600 million individuals every year. In addition,
fungal diseases of the five most cultivated food crops
worldwide were assessed to annihilate about 125 million
tons of produce annually (Almeida et al., 2019). Certain
fungal species secrete toxic secondary metabolites
(mycotoxins), such as aflatoxins, ochratoxins, fumonis-
ins, etc., which cause a major food safety issue for humans

and livestock. According to the Food and Agriculture
Organization report, 25% of the world’s food crops are
badly affected by mycotoxins during cultivation or stor-
age (USDA, 2016). Thus, fungal mycotoxins in food are
major concerns for producers, purchasers, researchers,
and regulatory agencies. Various food products such as
fruits, cereals, nuts, pulses, etc., have demonstrated the
prevalence of mycotoxins as shown in Table 1.

Owing to the grave concerns over mycotoxins, there is
an urgent need to establish alternative, eco-safe, and cost-
effective approaches to overcome food mycotoxin contam-
ination. As of late, the utilization of bio-preservatives,
microorganisms, or their antimicrobial components for
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Table 1. Mycotoxins found in foods.
Fungus Positive samples (%) Mycotoxins Detected foods References
Aspergillus flavus 14.06 Aflatoxins B1 Dry nuts Macri et al. (2021)
Aspergillus parasiticus 67.14 Aflatoxins B1 Vegetable oil Poormohammadi et al. (2021)
41.1 Aflatoxins M1 Bovine milk Pandey et al. (2021)
Aspergillus niger, 70 Aflatoxins B1 Dry fruits Awan et al. (2021)
Aspergillus flavus, and
Fusarium sp.
Aspergillus niger, 5.26 Ochratoxin A Palm dates Nikolchina and Rodrigues (2021)
Aspergillus tubingensis,
and Aspergillus flavus 0-100 Ochratoxin A Salami Tolosa et al. (2020)
7.61 Ochratoxin A Milk Turkoglu and Keyvan (2019)
Monascus spp. Raw = 69.0 Citrinin Fermented red rice  Twaruzek et al. (2021)
Dietary supplements = 35.1
Processed products = 5.7
Aspergillus spp. 0-62 Citrinin Supermarket food Meerpoel et al. (2021)
Penicillium spp. 0-69 Ochratoxin A samples
30.8 Aflatoxin B,, T-2 Dried shrimp, dried ~ Deng et al. (2020)
17.5 toxin, Ochratoxin A, fish, and dried
33.3 Deoxynivalenol mussel products
Not detected
Penicillum expansum 9.0 Patulin Dried fruits Przybylska et al. (2021)
Penicillum cyclopium
40 Patulin Strawberry A-Reda and Sahib (2021)
21.8 Patulin Mango Hussain et al. (2020)
Fusarium poae, Fusarium 8.2-12.3 Fumonisin B1 Cornmeal Massarolo et al. (2021)
equiseti,
Fusarium acuminatum, 63.0 Fumonisin B1 Whole wheat Igbal et al. (2020)
Fusarium sporotrichioides,
Fusarium graminearum, Wheat/wheat flour = 4 Deoxynivalenol Wheat, maize, Golge and Kabak (2020)
Fusarium cerealis, Maize = 20 paddy rice, wheat
Fusarium culmorum Paddy rice = 55 flour

food preservation, has received a flood of interest due to
increasing demands from consumers to embrace more
natural food preservation approaches instead of depend-
ing on manufactured synthetic compounds. Lactic acid
bacteria (LABs) are ideal probiotic candidates for food
as fungal antagonists (Nielsen et al., 2021). LABs are
utilized in traditional food fermentations and are con-
sidered as Generally Regarded as Safe (GRAS) and
Qualified Presumption of Safety (QPS) by the American
Food and Drug Agency (FDA) and the European Food
Safety Authority (EFSA), respectively (Mora-Villalobos et
al., 2020). LABs are considered as “green preservatives”
due to their potential to inhibit fungal growth in foods.
Organic acids, diacetyl, bioactive anti-mycotic pep-
tides, fatty acids, carboxylic acids, bacteriocins, hydro-
gen peroxide (H,0,), lactones, alcohols, and reuterin
are the reported antifungal compounds produced by
LABs (Sadiq et al., 2019). This review provides a concise

overview of the anti-mycotoxin potential of LABs as
green biopreservative, along with its application in vari-
ous food products.

LABs

In order to address the two consumer health concerns
caused by (1) fungal growth and mycotoxin release in
foods and (2) use of chemical preservative in foods, there
is a great demand to develop safe and effective antifungal
methods to improve or replace the current chemical and
physical treatments. Biological control is a strategy that
uses microorganisms or their metabolites to inhibit the
growth and proliferation of pathogens. Using LAB as a
green preservative is one of the most effective alternative
owing to their potential to release antifungal metabolites
against various fungal species.
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LABs is a term given to a group of gram-positive bacteria
that are characterized as catalase-negative, non-motile,
and non-spore forming. The main fermentation products
obtained from species LAB homofermentatives is lactic
acid, while LAB heterofermentatives produce lactic acid
along with carbon dioxide and ethanol/acetate. Various
studies have promoted the use of LAB as a natural pre-
servative that can effectively replace chemical preserva-
tives in foods, and can also provide health-promoting
and probiotic properties (Nasrollahzadeh et al., 2022a).
Owing to the GRAS and QPS status of LAB, further
exploring their potential as a biopreservative is now
greatly appealing researchers over any other microor-
ganism (Nasrollahzadeh et al., 2022b). Also, the LABs are
easy to culture and maintain, and since they are naturally
present in the gut they are more effective against myco-
toxins (Mubhialdin et al., 2020).

The LABs comprise genera, for example, Lactobacillus,
Lactococcus, Streptococcus, Leuconostoc, Pediococcus,
Enterococcus, QOenococcus, and Weissella. Different
LAB strains with antifungal activity can be obtained
from multiple sources, including Lactobacillus kefiri
M4 and Pediococcus acidilactici MRS-7 from Kkefir;
Pediococcus  acidilactici, Limosilactobacillus fermen-
tum, and Lactiplantibacillus plantarum from tradi-
tional fermented milk; Lactobacillus sucicola, Weissella
paramesenteroides, Pediococcus acidilactici from cit-
rus; and L. plantarum, Lacticaseibacillus paracasei, and
Lactiplantibacillus pentosus from fermented beverages.
These strains have been proved to be a promising tool
to enhance the shelf-life of cereals, fruits and vegetables,
nuts and seeds, bakery products, etc. An elaborate and
latest prior-art of several LABs well acknowledged for
their antifungal potential is given in Table 2.

Mycotoxin Detoxification Using LAB

Mycotoxin detoxification in foods by LABs can be
achieved either through viable cells and their metabo-
lites, or by particular enzymes obtained by certain LAB
strains. It has been hypothesized that the development of
fungal mycotoxins is encouraged under unfavorable envi-
ronmental conditions and can be arrested by observing
competition for available space and nutrients by the via-
ble cells of LABs (Sadiq et al., 2019). These viable cells of
LABs are capable of releasing acids and antifungal bioac-
tive metabolites, such as lactic acid, benzoic and propi-
onic acid, formic acid, butyric acid, hexanoic and caproic
acid, phenyllactic acid, hydrogen peroxide, monohydroxy
octadecenoic acid, carbon dioxide, cyclic dipeptides,
phenolic compounds, bacteriocins, fungicins, reuterine,
ethanol, diacetyl, and hydroxyl fatty acids (Ruggirello
et al., 2019), all of which are associated to arresting the
fungal activity. On the other hand, certain strains of LABs

Lactic acid bacteria

produce proteolytic enzymes that hydrolyze cell wall
proteinases into polypeptides, peptide transporters (that
carry peptides in the cell), and intracellular peptidases
(that degrade peptides into amino acids) (Muhialdin
et al., 2020). However, the mechanisms of reduction in
mycotoxins have certain uncertainties; for example, the
same phenomena of decrease in toxin concentration is
ambivalent, as the conventional analytical methods can-
not determine whether the mycotoxins have been adrift
or have been masked by being temporarily bound to
other elements in food (du Plessis et al., 2020). Therefore,
in order to understand the reduction in fungal growth
and mycotoxin levels, this section reviews the possible
mechanisms reported for various mycotoxins. As the lit-
erature suggests, the possible reduction in mycotoxins
is mainly due to a series of steps, including, adsorption,
metabolite interaction, and biodegradation (Figure 1).

Binding/adsorption, interaction, and degradation of

(1) Ochratoxin A (OTA): Some authors have reported the
adsorption of mycotoxins onto LAB cell walls as a prob-
able mechanism for their anti-mycotoxin potential. OTA
degradation was observed by binding OTA to LAB strains
cell wall components, owing to the surface hydrophobicity,
electron donor—acceptor association, and Lewis acid—base
interaction. This binding capacity can be further increased
through mutagenesis/genetic manipulation or supplemen-
tation with binding promoting compounds (Sadiq et al.,
2019). The most common LAB species known to adsorb
OTA are L. plantarum (Hashemi and Gholamhosseinpour,
2019) and Lactobacillus brevis. However, the effect of L.
plantarum against OTA produced from Aspergillus par-
asiticus depended on the medium pH, as the maximum
OTA reduction was observed at pH 3.0 compared to pH
6.5 (Mgller et al., 2021). Similar results were observed by
Taheur et al. (2021), where LAB species Lactobacillus kefiri
diminished the OTA content produced from Aspergillus
flavus and Aspergillus carbonarius in agar medium by
75% in bacteria supernatant (CES), which was significantly
affected and reduced to 17% when the pH was neutralized
to 7. The authors inferred that the residual OTA amount
in culture media was directly influenced by the pH, fun-
gal strain, and bacterial species. Taheur et al. (2021) also
examined the in vitro OTA degradation and absorption by
LAB. They demonstrated that the decrease in the myco-
toxins was mainly due to the inhibition of fungal growth,
followed by adsorption. Du et al. (2021) also suggested the
involvement of microbial catabolism and adsorption as
potential mechanisms for the anti-mycotoxigenic activity
of LABs, in Tibetian kefir grains, with the dominant LAB
species of Lactobacillus kefiranofaciens.

(2) Aflatoxins: Likewise, aflatoxins have also been
observed to have binding potential to LAB cell walls
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through a reversible noncovalent interaction, indepen-
dent of the cell activity (Liu et al., 2020). Peptidoglycans,
carbohydrates, teichoic acids or proteins, form an inher-
ent part of the LAB cell wall that interact with functional
groups and bind to the toxin through physical adsorp-
tion, ion exchange, and complexation (Asurmendi et al.,
2020; Chlebicz and Slizewska, 2020). Many authors have
studied and validated the involvement of adsorption and
degradation of aflatoxins under the influence of LAB
strains as decontaminating agents (Kademi et al., 2019).
Martinez et al. (2019) reported adsorption of AFM1 by
Lacticaseibacillus rhamnosus in Artemia salina.

Similar adsorption and degradation phenomena to
reduce aflatoxin AFB, were observed by Taheur et al.
(2020) in black tea. The authors revealed that the bind-
ing was attributed to the adsorption of the toxin. At the
same time, the degradation was carried out by processes
like hydroxylation, epoxidation, reduction, and dehy-
drogenation based on the degrading agent. Asurmendi
et al. (2020) stated that aflatoxin detoxification is more
of a bonding process and less of a metabolic degrada-
tion process (Asurmendi et al., 2020). The binding, how-
ever, is dependent on existing environmental conditions
(Mosallaie et al., 2019). As evidence to this statement, a
recent study found that the production ability of aflatox-
ins (AFB, AFB,, AFG,, and AFG,) by A. parasiticus was
significantly affected by the applied conditions like pH
(YES agar, YES broth, and MRS agar), time of treatment,
heat-killed LAB strains (four strains of L. plantarum, two
strains of L. brevis, four strains of Lactobacillus spp.),
and the matrix used (milk or buffer) (Mgller et al., 2021).
Danial et al. (2020) also stated that AFG, adsorption

Teichoic acid
binding

Hydrophobic
interaction
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+ interaction

Peptidoglycan
binding

} Cell membrane
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Reutericyclin Glycosidases
Fatty acids Proteases
Volatiles

Possible binding mechanisms of mycotoxins to LAB cell wall components.

distinctions by different LAB strains are mainly due to
varying cell divider components (comprising a peptido-
glycan framework and a proteinaceous layer; polysaccha-
rides) and cell envelope structures.

Another effect of environmental conditions was depicted
by Ye et al. (2020), where they emphasized the presence
of high salt stress in the environment that promoted
the synthesis of detoxification factors in LAB strains
Lactobacillus acidophilus, Lactobacillus bulgaricus, and
Lacticaseibacillus casei by increasing their metabolism
against aflatoxin B, and causing physical absorption.
Interestingly, heat-killed and acid-killed cells have been
shown to have the highest binding capacity with aflatox-
ins. For example, heat-killed and acid-killed LAB cells
from L. rhamnosus, Lactococcus lactis ssp. lactis, and
L. lactis ssp. cremoris in contaminated skim milk have
shown exceptionally high binding ability with AFM,
(Muaz et al., 2021). This was attributed to the denatur-
ation of membrane proteins, peptidoglycans, and deg-
radation of polysaccharides components of the cell wall,
thereby changing their hydrophobicity and respective
binding capacities. Muaz et al. (2021) also found that the
addition of an additive, sorbitan monostearate (SM), fur-
ther increased the binding capacity of heat-killed LAB
strains as the hydrophobic end of SM gets attached to
the hydrophobic sites of LAB cells, such as peptidoglycan
and teichoic acids, thus leaving the other hydrophilic end
of SM to bind to hydroxy groups of AFM,. Similar trends
have been observed for detoxifying yogurt that evidenced
enhanced binding of AFM1 to viable LAB strains by add-
ing inulin as an additive (Sevim et al., 2019). Inulin sup-
plementation promoted the growth and viability of mixed
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LAB inoculations (B. bifidum-Bifidobacterium animalis,
L. plantarum-B. bifidum, L. plantarum-Bifidobacterium
animalis) at extended storage periods.

(3) Fuminosins: Among various fumonisins, fumonisin B,
(FB,), and fumonisin B, (FB,) are the major feed contam-
inants that adversely affect livestock and human health.
The interaction and adsorption of FB, and FB, depend
on the cell wall components and functional groups, spe-
cifically peptidoglycan and similar compounds (Sadiq et
al., 2019). The decrease in fumonisin is mainly due to its
quick binding ability to the peptidoglycan layer, which is
considered to be the most credible binding site (Chlebicz
and Slizewska, 2020). Apart from this, reduction in pH
with lactic acid production also leads to the transforma-
tion of fumonisin, leading to less toxicity (Ademola et al.,
2021). Diaz et al. (2021) characteristically found that FB,
produced from a phytopathogenic fungus responsible for
maize gain contamination in the silo storage structure,
Fusarium verticillioides, could be inhibited with a hetero-
geneous mixture of volatile organic compounds (diace-
tyl, acetoin, acetic acid, etc.) produced from LAB strain
E. casseliflavus as a result of its metabolic activity. The
authors also revealed that acetoin has potential in myco-
toxin biosynthesis.

Dawlal et al. (2019) visualized and quantified the interac-
tion between fumonisins and LAB strains and found that
LAB metabolism was not required for interaction and
binding with fumonisins without biodegradation, as both
viable and nonviable LAB cells showed binding capacity,
nonviable cells having the higher binding ratio. This was
reasoned as the heat treatment promoted denaturation
or disintegration of LABs, which opened up the available
sites for higher fumonisin binding. Similarly, in viable
cells, electrostatic potential favored the binding interac-
tion between fumonisins and LABs. Apart from varying
cell structure and components of LAB strains, the vari-
ance in fumonisin molecules’ structural conformation
and charge also contributed to the binding and inter-
action. FB, and FB, carry different surface electrostatic
potentials, chemical structure (FB, has an additional
hydroxyl group in C10), and physical structure, making
them preferential binding. The authors reviewed that
LAB cells and fumonisin binding interaction were mainly
mediated by long-range (steric and electrostatic interac-
tions) and short-range (Van der Waals, Lewis acid—base,
hydrogen bonding, and biospecific interactions) forces.
However, the study failed to visualize this discrepancy as
both fumonisins had the same fluorescing.

(4) Patulin: Like other mycotoxins, patulin reduction
using LABs is also based on its adsorption in the cell
wall and degradation by intracellular or extracellu-
lar enzymes (Zheng et al, 2020). Patulin adsorption
is mainly observed as binding with the LAB cell wall

Lactic acid bacteria

protein, including thiol, esters, and alkaline amino acids.
The main functional groups involved are C-O, OH, C-
— O, COO-, C-N, and/or N-H (Wei et al., 2020). Ngea
et al. (2021) critiqued the ability of LAB cells to reduce
patulin in apple juice to be affected by critical environ-
mental factors, including cell density, cell viability, pat-
ulin initial concentration, pH, and incubation time. The
extent of patulin reduction is closely related to LAB cell
surface area’s physical and chemical properties, cell wall
volume, nitrogen—carbon (N/C) ratio, hydrophobicity,
and functional groups. Large surface area, adsorptive
selectivity, and large functional groups make nonvia-
ble cells more efficient in patulin reduction than viable
cells (Bahati et al., 2021; Sajid et al., 2019). Exposure of
LAB cells to conditions such as high temperature, acidic
environments, etc., brings about structural changes
to the cell walls that reduce the glycan layer crosslink-
ing and increase cell wall permeability. Interestingly, Li
et al. (2020) revealed that hydrochloric acid-treated LAB
strains had significantly higher patulin detoxification
ability and stability than heat-treated (121°C) LAB cells,
owing to the disruption of hydrophobic interaction. This
was speculated due to changes in cell wall structures
that attain different degrees of cross-linking, thereby
obstructing the toxin release. Additionally, additives like
fructooligosaccharides, ascorbic acid, and citric acid to
the apple juice demonstrated enhanced patulin binding
by L. plantarum by reducing pH that stimulated S-layer
proteins synthesis in the LAB cell wall (Zoghi et al,
2019).

(5) Zearalenone (ZEA): Last but not least, LAB-assisted
ZEA removal involves either interaction with LAB cell
wall components like peptidoglycans and surface pro-
teins or interaction with intracellular proteins followed
by absorption into the LAB cell wall (Sadiq et al., 2019).
According to Ztoch et al. (2020), ZEA neutralization
by Lactobacillus paracasei cells is a nonlinear two-step
process involving biosorption/binding techniques of
ZEA by L. paracasei cells, as well as metabolization and
biotransformation of ZEA to less toxic a-ZOL, $-ZOL
forms. ZEA removal depends on cell wall protein type
and structure, thus making it a strain-specific process.
Out of the 17 strains of plant-derived LAB, L. planta-
rum isolated from wild spider flower pickle possessed the
highest ZEA removal capability (Adunphatcharaphon
et al., 2021). As per the results obtained by the authors,
LAB cell wall polysaccharides did not affect ZEA removal
stating non-involvement of hydrogen bonds in the inter-
action between LAB strain and ZEA. As far as lipids
were concerned, lipase-treated LAB cells showed a sig-
nificant reduction in ZEA as lipase hydrolyzed the ester
bond lipid, causing a change in lipid structure. In addi-
tion, the presence of hydrophobic interactions was con-
firmed with a dominance of C-OH, C-C, and C-O-C
functional groups of polysaccharides and single form
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bending functional groups of bonds in CH, and CH,
present in teichoic acids, peptidoglycan, lipopolysac-
charides, and phospholipids (Adunphatcharaphon et
al., 2021). An adsorption—desorption study by Ragoubi
et al. (2021) exposed that the viable cells of LAB caused
ZEA biodegradation in PBS medium, with ZEA being
the only carbon source. However, no related metabolites
like, « and P-zearalenol, zearalenone, and its reduced
metabolites were detected in inoculated PBS at the end of
the incubation period, stating the absence of biodegrada-
tion. On the contrary, Adunphatcharaphon et al. (2021)
showed that heat-treated nonviable Lactobacillus planta-
rum cells had a higher capacity to reduce ZEA. Still, since
no ZEA degradation products were detected, the authors
suggested the properties of heat-inactivated LAB cells for
ZEA reduction and not biotransformation.

Mycotoxin Reduction in Foods Using LABs

LABs have been used for bio-preservation as an inno-
vative approach to foods, including dairy products,
bakery products, juices, meat, fruits and vegetables,
and feeds (Table 3), for thousands of years due to their
inhibitory properties. The contamination can occur at
various stages during the manufacturing process. In
cereal grains, mycotoxins can be formed by several spoil-
age-indicating molds, including, above all, Aspergillus
spp. and Penicillium spp. Even in dry grains, mycotoxins
can also be formed if either moisture migration due to

temperature changes creates condensation points with
a higher water content (hot spot theory) or moisture is
formed through the respiratory activity of grains wee-
vils or other grain pests (mites, larvae of flour moths)
and then secondary mold growth occurs, and often not
noticed. The stability of the silage (animal feed) cannot be
estimated in advance, and therefore can be contaminated
in similar proportions as grains (Liu et al., 2018).

For the food and feed industry, the production of com-
pounds derived from LAB metabolic activity is of high
importance; their antimicrobial spectrum has inhibitory
potential against spoilage organisms such as fungi (espe-
cially by mycotoxigenic fungi), yeasts, Gram-negative
and Gram-positive bacteria, protozoa, retarding micro-
bial growth y extending considerably shelf-life as shown in
Table 3 (Strack et al., 2020). LABs inhibit microbial decay
by generating antagonist metabolic products or establish-
ing antimicrobial compounds. Organic acids, mainly lac-
tic acid followed by acetic acid, are the main metabolites
of LAB, but depend on the LAB strains, their mechanism
of action, and carbohydrates as substrate, other kinds of
antimicrobial substances, namely low molecular weight
metabolites (reuterin, reutericyclin, diacetyl, fatty acids),
hydrogen peroxide, antifungal compounds (propionate,
phenyl-lactate, hydroxyphenyl-lactate, and 3-hydroxy
fatty acids) can be produced (compounds metabolized by
different LAB strains listed in Table 3) (Wang et al., 2021).
They have been used for food bio-preservation as an
innovative approach for dairy products, bakery products,

Adsorption/
absorption of mycotoxin
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Figure 2. Anti-mycotoxin effect of LAB fermentation in foods.
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juices, meat, fruits, and vegetables. Various mechanisms
that impart the anti-mycotoxin effect in foods by LAB
fermentation are presented in Figure 2. Table 3 shows a
consolidated overview of the selected recent applications
of LABs in various food products.

Conclusion and Future Perspectives

Bio-preservation, including the use of LABs and their
active metabolites, is a natural tool to prevent fungal
growth, prolong shelf-life, and increase the safety of
foods. LABs are GRAS and possess a large potential for
bio-preservation due to their production of antimicrobial
compounds. LABs effectively reduce mycotoxin produc-
tion by fungi via adsorption of mycotoxin with LABs cell
surface components, degradation of fungal mycotox-
ins, and inhibition of mycotoxin production. However,
the antifungal and anti-mycotoxin potential of LABs
depends on pH, initial viable count, growth medium and
condition, and incubation temperature and time. Due
to antifungal and anti-mycotoxin agents, LABs could be
an ideal bio-preservative candidate for sustainable food
systems, including dairy products, fruits and vegetables,
cereal grains, bakery goods, nuts and seeds, and meat
and meat products.

Mycotoxin detoxification capacity of LABs through
cell wall bindings is an effective way for the removal of
mycotoxins from food and feed. However, possible in
vivo release of bound toxins during the detoxification
process can be a matter of human health concern. Thus
regulating the environmental conditions that can lead
to this release is an important aspect. Further studies
on the effect of several factors, like pH, growth medium,
initial bacterial count, incubation time and tempera-
ture, growth condition (single or mixed), bacterial state
(viable or nonviable), on the detoxifcation mechanism
can help better understand the anti-mycotoxin activity
of LAB. Additionally, understanding the LAB’s detoxifi-
cation capacity and potential interaction of compounds
obtained with mycotoxin degradation for particular food
products may also serve as an important source of data,
that can be further industrialized for the food sector.
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