
Lactic acid bacteria: A bio-green preservative against mycotoxins for food safety and shelf-life extension

Sneh Punia Bangar^{1*}, Nitya Sharma², Aastha Bhardwaj³, Yuthana Phimolsiripol⁴

¹Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA; ²Food Customization Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India; ³Department of Food Technology, Jamia Hamdard, New Delhi, India; ⁴Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand

*Corresponding Author: Sneh Punia Bangar, Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, NC, USA. Email: snehpunia69@gmail.com

Received: 23 November 2021; Accepted: 14 March 2022; Published: 13 April 2022 © 2022 Codon Publications

REVIEW ARTICLE

Abstract

Mycotoxins produced from *Aspergillus, Penicillium,* and *Fusarium* cause food spoilages during handling and storage, owing to immense economic losses and serious human health concerns including immunosuppression and carcinogenic effects. Furthermore, these species are also known to produce mycotoxins. Aflatoxin B1 (AFB₁), zearalenone (ZEA), ochratoxin A (OTA), and deoxynivalenol (DON) are the most commonly occurring mycotoxins. The removal of mycotoxins from the contaminated food using lactic acid bacterias (LABs) has been proposed as a green, inexpensive, safe, and promising mycotoxin decontamination strategy. LABs can control the mycotoxin production following a series of steps, including, adsorption, metabolite interaction, and biodegradation. This article provides systematic review of LABs as bio-green preservative with anti-mycotoxin potential for sustainable food safety. This consolidated review may be of technical importance to understand detoxification mechanisms and potential interaction of compounds originated with mycotoxin degradation for target food before incorporation by the food industry.

Keywords: anti-mycotoxin; food safety; lactic acid bacteria; metabolite interaction; shelf-life

Introduction

Fungal spoilage is a *major challenge* for food industries, leading to food sensory defects, food waste, economic losses, and public health concerns due to their toxins. Plant-pathogenic fungi are responsible for up to 20% loss of the global harvest yield, which is sufficient to take care of about 600 million individuals every year. In addition, fungal diseases of the five most cultivated food crops worldwide were assessed to annihilate about 125 million tons of produce annually (Almeida *et al.*, 2019). Certain fungal species secrete toxic secondary metabolites (mycotoxins), such as aflatoxins, ochratoxins, fumonisins, etc., which cause a major food safety issue for humans

and livestock. According to the Food and Agriculture Organization report, 25% of the world's food crops are badly affected by mycotoxins during cultivation or storage (USDA, 2016). Thus, fungal mycotoxins in food are major concerns for producers, purchasers, researchers, and regulatory agencies. Various food products such as fruits, cereals, nuts, pulses, etc., have demonstrated the prevalence of mycotoxins as shown in Table 1.

Owing to the grave concerns over mycotoxins, there is an urgent need to establish alternative, eco-safe, and costeffective approaches to overcome food mycotoxin contamination. As of late, the utilization of bio-preservatives, microorganisms, or their antimicrobial components for

Table 1. Mycotoxins found in foods.

Fungus	Positive samples (%)	Mycotoxins	Detected foods	References
Aspergillus flavus Aspergillus parasiticus	14.06 67.14	Aflatoxins B1 Aflatoxins B1	Dry nuts Vegetable oil	Macri et al. (2021) Poormohammadi et al. (2021)
	41.1	Aflatoxins M1	Bovine milk	Pandey et al. (2021)
Aspergillus niger, Aspergillus flavus, and Fusarium sp.	70	Aflatoxins B1	Dry fruits	Awan et al. (2021)
Aspergillus niger, Aspergillus tubingensis,	5.26	Ochratoxin A	Palm dates	Nikolchina and Rodrigues (2021)
and Aspergillus flavus	0–100	Ochratoxin A	Salami	Tolosa et al. (2020)
	7.61	Ochratoxin A	Milk	Turkoglu and Keyvan (2019)
Monascus spp.	Raw = 69.0 Dietary supplements = 35.1 Processed products = 5.7	Citrinin	Fermented red rice	Twarużek et al. (2021)
Aspergillus spp. Penicillium spp.	0–62 0–69	Citrinin Ochratoxin A	Supermarket food samples	Meerpoel et al. (2021)
·'	30.8 17.5 33.3 Not detected	Aflatoxin B ₁ ,T-2 toxin, Ochratoxin A, Deoxynivalenol	Dried shrimp, dried fish, and dried mussel products	Deng <i>et al.</i> (2020)
Penicillum expansum	9.0	Patulin	Dried fruits	Przybylska et al. (2021)
Penicillum cyclopium	40	Patulin	Strawberry	A-Reda and Sahib (2021)
	21.8	Patulin	Mango	Hussain et al. (2020)
Fusarium poae, Fusarium equiseti,	8.2–12.3	Fumonisin B1	Cornmeal	Massarolo et al. (2021)
Fusarium acuminatum, Fusarium sporotrichioides,	63.0	Fumonisin B1	Whole wheat	lqbal et al. (2020)
Fusarium graminearum, Fusarium cerealis, Fusarium culmorum	Wheat/wheat flour = 4 Maize = 20 Paddy rice = 55	Deoxynivalenol	Wheat, maize, paddy rice, wheat flour	Golge and Kabak (2020)

food preservation, has received a flood of interest due to increasing demands from consumers to embrace more natural food preservation approaches instead of depending on manufactured synthetic compounds. Lactic acid bacteria (LABs) are ideal probiotic candidates for food as fungal antagonists (Nielsen et al., 2021). LABs are utilized in traditional food fermentations and are considered as Generally Regarded as Safe (GRAS) and Qualified Presumption of Safety (QPS) by the American Food and Drug Agency (FDA) and the European Food Safety Authority (EFSA), respectively (Mora-Villalobos et al., 2020). LABs are considered as "green preservatives" due to their potential to inhibit fungal growth in foods. Organic acids, diacetyl, bioactive anti-mycotic peptides, fatty acids, carboxylic acids, bacteriocins, hydrogen peroxide (H2O2), lactones, alcohols, and reuterin are the reported antifungal compounds produced by LABs (Sadiq et al., 2019). This review provides a concise

overview of the anti-mycotoxin potential of LABs as green biopreservative, along with its application in various food products.

LABs

In order to address the two consumer health concerns caused by (1) fungal growth and mycotoxin release in foods and (2) use of chemical preservative in foods, there is a great demand to develop safe and effective antifungal methods to improve or replace the current chemical and physical treatments. Biological control is a strategy that uses microorganisms or their metabolites to inhibit the growth and proliferation of pathogens. Using LAB as a green preservative is one of the most effective alternative owing to their potential to release antifungal metabolites against various fungal species.

LABs is a term given to a group of gram-positive bacteria that are characterized as catalase-negative, non-motile, and non-spore forming. The main fermentation products obtained from species LAB homofermentatives is lactic acid, while LAB heterofermentatives produce lactic acid along with carbon dioxide and ethanol/acetate. Various studies have promoted the use of LAB as a natural preservative that can effectively replace chemical preservatives in foods, and can also provide health-promoting and probiotic properties (Nasrollahzadeh et al., 2022a). Owing to the GRAS and QPS status of LAB, further exploring their potential as a biopreservative is now greatly appealing researchers over any other microorganism (Nasrollahzadeh et al., 2022b). Also, the LABs are easy to culture and maintain, and since they are naturally present in the gut they are more effective against mycotoxins (Muhialdin et al., 2020).

The LABs comprise genera, for example, Lactobacillus, Lactococcus, Streptococcus, Leuconostoc, Pediococcus, Enterococcus, Oenococcus, and Weissella. Different LAB strains with antifungal activity can be obtained from multiple sources, including Lactobacillus kefiri M4 and Pediococcus acidilactici MRS-7 from kefir; Pediococcus acidilactici, Limosilactobacillus fermentum, and Lactiplantibacillus plantarum from traditional fermented milk; Lactobacillus sucicola, Weissella paramesenteroides, Pediococcus acidilactici from citrus; and L. plantarum, Lacticaseibacillus paracasei, and Lactiplantibacillus pentosus from fermented beverages. These strains have been proved to be a promising tool to enhance the shelf-life of cereals, fruits and vegetables, nuts and seeds, bakery products, etc. An elaborate and latest prior-art of several LABs well acknowledged for their antifungal potential is given in Table 2.

Mycotoxin Detoxification Using LAB

Mycotoxin detoxification in foods by LABs can be achieved either through viable cells and their metabolites, or by particular enzymes obtained by certain LAB strains. It has been hypothesized that the development of fungal mycotoxins is encouraged under unfavorable environmental conditions and can be arrested by observing competition for available space and nutrients by the viable cells of LABs (Sadiq et al., 2019). These viable cells of LABs are capable of releasing acids and antifungal bioactive metabolites, such as lactic acid, benzoic and propionic acid, formic acid, butyric acid, hexanoic and caproic acid, phenyllactic acid, hydrogen peroxide, monohydroxy octadecenoic acid, carbon dioxide, cyclic dipeptides, phenolic compounds, bacteriocins, fungicins, reuterine, ethanol, diacetyl, and hydroxyl fatty acids (Ruggirello et al., 2019), all of which are associated to arresting the fungal activity. On the other hand, certain strains of LABs

produce proteolytic enzymes that hydrolyze cell wall proteinases into polypeptides, peptide transporters (that carry peptides in the cell), and intracellular peptidases (that degrade peptides into amino acids) (Muhialdin et al., 2020). However, the mechanisms of reduction in mycotoxins have certain uncertainties; for example, the same phenomena of decrease in toxin concentration is ambivalent, as the conventional analytical methods cannot determine whether the mycotoxins have been adrift or have been masked by being temporarily bound to other elements in food (du Plessis et al., 2020). Therefore, in order to understand the reduction in fungal growth and mycotoxin levels, this section reviews the possible mechanisms reported for various mycotoxins. As the literature suggests, the possible reduction in mycotoxins is mainly due to a series of steps, including, adsorption, metabolite interaction, and biodegradation (Figure 1).

Binding/adsorption, interaction, and degradation of

(1) Ochratoxin A (OTA): Some authors have reported the adsorption of mycotoxins onto LAB cell walls as a probable mechanism for their anti-mycotoxin potential. OTA degradation was observed by binding OTA to LAB strains cell wall components, owing to the surface hydrophobicity, electron donor-acceptor association, and Lewis acid-base interaction. This binding capacity can be further increased through mutagenesis/genetic manipulation or supplementation with binding promoting compounds (Sadiq et al., 2019). The most common LAB species known to adsorb OTA are L. plantarum (Hashemi and Gholamhosseinpour, 2019) and Lactobacillus brevis. However, the effect of L. plantarum against OTA produced from Aspergillus parasiticus depended on the medium pH, as the maximum OTA reduction was observed at pH 3.0 compared to pH 6.5 (Møller et al., 2021). Similar results were observed by Taheur et al. (2021), where LAB species Lactobacillus kefiri diminished the OTA content produced from Aspergillus flavus and Aspergillus carbonarius in agar medium by 75% in bacteria supernatant (CFS), which was significantly affected and reduced to 17% when the pH was neutralized to 7. The authors inferred that the residual OTA amount in culture media was directly influenced by the pH, fungal strain, and bacterial species. Taheur et al. (2021) also examined the in vitro OTA degradation and absorption by LAB. They demonstrated that the decrease in the mycotoxins was mainly due to the inhibition of fungal growth, followed by adsorption. Du et al. (2021) also suggested the involvement of microbial catabolism and adsorption as potential mechanisms for the anti-mycotoxigenic activity of LABs, in Tibetian kefir grains, with the dominant LAB species of Lactobacillus kefiranofaciens.

(2) Aflatoxins: Likewise, aflatoxins have also been observed to have binding potential to LAB cell walls

Table 2. Anti-mycotoxin potential of LABs.	tential of LABs.						
Fungal species	LAB species for mycotoxin removal	Substrate	Culture conditions	Detection and quantification technique	Percent mycotoxin reduction	Proposed mechanism	References
Ochratoxin A							
Aspergillus niger, Aspergillus carbonarius	Pediococcus pentosaceus	Grapes	Grape samples were diluted in sterile saline solution and then plated on MRS agar at 37°C for 48 h; ochratoxin removal potential assessed in both MRS and PBS	HPLC-FLD	84% in MRS and 25% in PBS	Biodegradation; Various metabolic compounds and metabolites of LAB contributed to the antifungal activity.	Taroub <i>et al.</i> (2019)
Aspergillus flavus, Aspergillus parasiticus, Aspergillus nidulans Aspergillus ochraceus	L. plantarum	Table cream	Inoculation at a 5.2 log CFU/mL in MRS broth and incubation at 37°C for 4 days anaerobically	HPLC-FLD	%89	Adsorption to bacterial cell wall components, especially to polysaccharides and peptidoglycans as well as teichoic and lipoteichoic acids	Hashemi and Gholamhosseinpour (2019)
Aspergillus parasiticus	L. plantarum, L. brevis, Levilactobacillus spp.	Brazilian artisanal cheese	LAB strains inoculated in MRS broth washed, resuspended culture was adjusted to 0.5 MCFarland (~ 108 CFU/mL) and diluted in 0.9% NaCl to obtain a final cell density of 5.0 log ₁₀ CFUxg ⁻¹ ; mycotoxin removal potential assessed in PPB	Liquid chromatography with fluorescence detector	≈ 50–90%	Adsorption to bacterial cell walls through ion exchange, complexation, and hydrophobic iterations	Møller e <i>t al.</i> (2021)
Aflatoxin							
Aspergillus flavus, Aspergillus parasiticus, and Aspergillus nomius	L. lactis ssp. cremoris, L. rhamnosus, L. ssp. lactis	Skimmed milk	Bacterial cells re-activated in MRS broth and isolated in MRS agar, bacterial cell wall isolates	Ultraperformance liquid chromatography	81.4, 56.8, and 50.8%, respectively.	Adsorption; Sequestering property of clays	Muaz et al. (2021)
Aspergillus flavus and Aspergillus carbonarius	L. kefiri	Kombucha beverage	LAB was isolated on MRS agar and incubated at 30°C under anaerobic conditions for 5 days.	HPLC-FLD	97.22 and 95.27% of AFB, and AFB,, respectively	Biodegradation and adsorption (mechanisms involving hydroxylation, epoxidation, reduction, and dehydrogenation)	Taheur <i>et al.</i> (2019)
Not known	L. rhamnosus, L. lactis	Frescal cheese	1.0 × 10 ¹⁰ cells/g of the starter culture as procured by the manufacturer	HPLC-FLD	≈ 100%	Adsorption: Physical binding of the toxin to bacterial cell wall components, mainly peptidoglycans and polysaccharides	Gonçalves <i>et al.</i> (2020)

	19))21)		2020)		6
Cruz <i>et al.</i> (2021)	Martínez <i>et al.</i> (2019)	Nazareth <i>et al.</i> (2021)	Ye <i>et al.</i> (2020)	Asurmendi <i>et al.</i> (2020)	Danial <i>et al.</i> (2020)	Zheng <i>et al.</i> (2020)
Cruz o	Martír	Nazar	Ye et	Asurn		Zhenç
Not known	Adsorption, degradation: All tested strains adsorbed 19 to 61% AFM1 in milk	Antifungal activity of LAB metabolites	Physical adsorption; high-salt stress promoted synthesis of detoxification factor in LAB.	Adsorption: bacterial peptidoglycans and polysaccharides act as mycotoxin binders	Adsorption: mycotoxin binding to bacterial cell walls	Absorption and irreversible biotransformation
%08≈	≈ 33 – 100%	39–63.1%	≈ 8–35%	37.6–70.7%	27.1–56.8%	95% by Lactobacillus casei
HPLC-FLD	HPLC-FLD	LC-MS/MS	LC-MS/MS	HPLC-FLD	TLC	HPLC
Cultures were maintained aerobically on MRS agar at 4°C and transferred to a new media monthly. Before use in assays, each isolate was cultivated anaerobically in MRS broth at 37°C for 20–24 h, harvested by centrifugation, washed twice, and resuspended in PBS.	Cryopreserved LABs were reactivated in MRS broth and incubated at 37°C and 5% CO ₂ for 24 h.	Incubated on MRS Broth for 12 h at 37 °C; anaerobic conditions for 72 h at 37 °C to allow for MRS fermentation.	Individually inoculated in 100 mL of MRS broth, cultured to the log phase at 37°C	Grown in MRS broth at 37°C in microaerobiosis for 24 h MRS	Incubated at 37°C for 24 hr in MRS broth	LAB strains were activated by growing on MRS liquid media at 37°C for 24 h
Fruit processing by-products	Milk	Corn kernels and corn ears	Salt fermented fish product	Brewer's grains	I	Fruit juice
L. fermentum, L. paracasai, L. plantarum	L.s rhamnosus, Pediococcus acidilactici, Pediococcus pentosaceus	L. plantarum spp.	L. acidophilus, bulgaricus, and L. casei	Pediococcus pentosaceus, L. plantarum, L. mesenteroides, L. mesenteroides, L. coryniformis ssp. coryniformis	L. rhamnosus, L. mesenteroides, L. lactis ssp., L. casei, Streptococcus thermophilus, Bifidobacterium animalis ssp.	L. casei, L. plantarum, L. fermentum, L. paracasei and L. rhamnosus
Aspergillus flavus, Aspergillus parasiticus, and Aspergillus nomius	Aspergillus, Penicillium, and Fusarium spp.	Aspergillus and Fusarium species	Not known	Aspergillus flavus and Aspergillus parasiticus	Aspergillus flavus	Patulin Aspergillus, Penicillium, and Byssochlamys species

Table 2. Continued							
Fungal species	LAB species for mycotoxin removal	Substrate	Culture conditions	Detection and quantification technique	Percent mycotoxin reduction	Proposed mechanism	References
Not known	L. mamnosus	Apple juice	PBS	ı	72.73 and 70.51% for HCL-treated and heat- treated LAB	Adsorption: binding rates increased in the presence of acid (21.37%) and heat treatments (19.15%)	Li <i>et al.</i> (2020)
Penicillium expansum	L. plantarum, L. fermentum	Kefir grains	Water kefir grains (10% w/v) inoculated and kept at room temperature for 2 days; ground, suspended in sterile saline; inoculated on MRS agar for 3 days at 37°C.	HPLC	∞ 93%	Adsorption: smoother the bacterial cell wall exterior, and the bigger the cell wall volume and the surface area is, the higher the adsorption ability.	Bahati <i>et al.</i> (2021)
Penicillium expansum	L. plantarum and L. acidophilus	Synbiotic apple juice	Strain was inoculated into 10 mL MRS broth (pH 6.2) and incubated at 37°C for 48 h.	HPLC-UV	52.36 and 59.7%, respectively	Adsorption: noncovalent interaction between patulin and carbohydrates and surface layer proteins of the bacterial cell walls	Zoghi <i>et al.</i> (2021)
ZEA Aspergillus parasiticus	L. plantarum, L. brevis, and Levilactobacillus spp.	Brazilian artisanal cheeses	Inoculation into MRS broth and incubation at 30°C for 24 h. Grown culture was centrifuged, and the cell pellet was resuspended in 10 mL 0.9% NaCl and centrifuged. The washed, resuspended culture was adjusted to 0.5 MCFarland (~ 10° CFU/mL) and diluted in 0.9% NaCl in order to obtain a final cell density of 5.0 log ₁₀ CFU or ⁻¹ .	HPLC-FLD	≈ 50–90%	Adsorption: exposure of binding sites and production of exopolysachharides by LAB.	Møller et al. (2021)
Fusarium spp.	L. acidophilusand L. delbrueckii subsp. bulgaricus	Animal liquid feed	Strains were grown overnight on MRS at 37°C under microaerophilic conditions and shaken with 125 strokes/min	UHPLC-FLD/DAD	%25	Adsorption and biodegradation	Ragoubi et al. (2021)

2021)	2020)		021)	al. (2021)	(2020)	(2019)
Gallo <i>et al.</i> (2021)	Zloch et al. (2020)		Diaz et al. (2021)	Ademola <i>et al.</i> (2021)	Ezdini et al. (2020)	Dawlal <i>et al.</i> (2019)
Adsorption: LAB inoculation interacted with the fungal population to change the mycotoxin profile relative to untreated silage.	Biotransformation and biosorption: physical binding of ZEA to surface components of the cell, transport of ZEA inside the cell and its accumulation, metabolization of ZEA to a less toxic form		1	Lactic acid fermentation reduces the levels of toxins.	Degradation; mitigation of FB, toxicities by reduction of its bioavailability in the gastrointestinal tract	Adsorption; deactivation of the mycotoxins by LAB was due to binding rather than metabolism
40–60%	84.93%		88.75%	47.45– 84.88%	Not known	%08≈
HPLC-MS/MS	HPLC-ESI-MS/ MS		HPLC	LC-MS/MS	1	HPLC-FLD
LAB strains were grown at 37°C in MRS broth; cultures were then centrifuged for 5 min at 4600 × g at room temperature; supernatant was discarded. The pellet was washed three times with a saline solution (0.89 g/100 mL NaCl), diluted in the same solution.	Bacteria were cultured in MRS broth sterile medium 24 h at 37°C; culture at 3.83 McFarland (1.149 ' 10° CFU/mL) was transferred to a sterile conical flask with ZEA in DMSO was added; Incubation at 37°C.		For LAB isolation, 25 g of maize grain were placed in MRS broth and incubated at 37°C for 24 h.	Maize grains were soaked in water and allowed to ferment (steeping) for 2–4 days (48–96 h). The softened grains were then washed, wet-milled, and sieved using a muslin cloth. The sieved paste was diluted with water in a container and left to ferment (souring) for 1–2 days (24–48 h).	The inoculated cultures were incubated for 3 h at 37°C in MRS in a chamber with 95% air: 5% CO ₂	LAB strains were cultivated and stored on MRS agar slants at 4°C for 3 months and for long-term conservation, cryopreserved at -80°C in 12.5% glycerol
Com silage	Dairy products		Maize grains	Ogi (fermented maize-based food)	Artisanal butter of Tunisia	Maize based fermented cereals
L. buchneri, L. lactis, L. plantarum, L. lactis	L. paracasei		Enterococcus casseliflavus Enterococcus faecium	Not known	L. paracasei	L. plantarum. L. delbrueckii subsp. Delbrueckii, Pediococcus pentosaceus
Fusarium spp.	Fusarium genus such as F. cerealis, F. graminearum	Fumonisins	F. verticillioides	Fusarium species	E verticillioides and F. proliferatum	Not known

ESI, Electrospray ionization; FB1, fumonisin B1; FLD, Fluorescence detector; HPLC, High performance liquid chromatography; LC, Liquid chromatography; MS, Mass spectroscopy; MRS, de Man, Rogosa, and Sharpe agar; PBS, Phosphate-buffered saline buffer solution; TLC, Thin layer chromatography; UV, Ultraviolet detection; ZEA, Zearalenone.

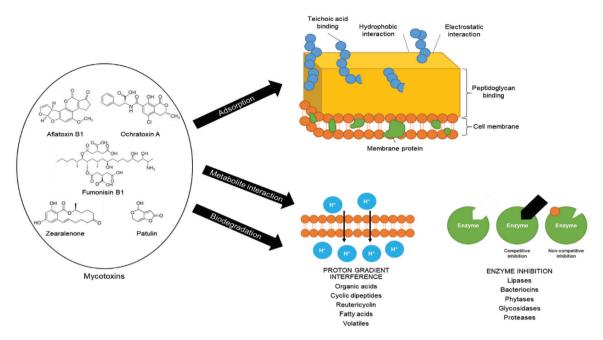


Figure 1. Possible binding mechanisms of mycotoxins to LAB cell wall components.

through a reversible noncovalent interaction, independent of the cell activity (Liu *et al.*, 2020). Peptidoglycans, carbohydrates, teichoic acids or proteins, form an inherent part of the LAB cell wall that interact with functional groups and bind to the toxin through physical adsorption, ion exchange, and complexation (Asurmendi *et al.*, 2020; Chlebicz and Śliżewska, 2020). Many authors have studied and validated the involvement of adsorption and degradation of aflatoxins under the influence of LAB strains as decontaminating agents (Kademi *et al.*, 2019). Martínez *et al.* (2019) reported adsorption of AFM1 by *Lacticaseibacillus rhamnosus* in *Artemia salina*.

Similar adsorption and degradation phenomena to reduce aflatoxin AFB, were observed by Taheur et al. (2020) in black tea. The authors revealed that the binding was attributed to the adsorption of the toxin. At the same time, the degradation was carried out by processes like hydroxylation, epoxidation, reduction, and dehydrogenation based on the degrading agent. Asurmendi et al. (2020) stated that aflatoxin detoxification is more of a bonding process and less of a metabolic degradation process (Asurmendi et al., 2020). The binding, however, is dependent on existing environmental conditions (Mosallaie et al., 2019). As evidence to this statement, a recent study found that the production ability of aflatoxins (AFB₁, AFB₂, AFG₁, and AFG₂) by A. parasiticus was significantly affected by the applied conditions like pH (YES agar, YES broth, and MRS agar), time of treatment, heat-killed LAB strains (four strains of *L. plantarum*, two strains of L. brevis, four strains of Lactobacillus spp.), and the matrix used (milk or buffer) (Møller et al., 2021). Danial et al. (2020) also stated that AFG, adsorption

distinctions by different LAB strains are mainly due to varying cell divider components (comprising a peptidoglycan framework and a proteinaceous layer; polysaccharides) and cell envelope structures.

Another effect of environmental conditions was depicted by Ye et al. (2020), where they emphasized the presence of high salt stress in the environment that promoted the synthesis of detoxification factors in LAB strains Lactobacillus acidophilus, Lactobacillus bulgaricus, and Lacticaseibacillus casei by increasing their metabolism against aflatoxin B, and causing physical absorption. Interestingly, heat-killed and acid-killed cells have been shown to have the highest binding capacity with aflatoxins. For example, heat-killed and acid-killed LAB cells from L. rhamnosus, Lactococcus lactis ssp. lactis, and L. lactis ssp. cremoris in contaminated skim milk have shown exceptionally high binding ability with AFM, (Muaz et al., 2021). This was attributed to the denaturation of membrane proteins, peptidoglycans, and degradation of polysaccharides components of the cell wall, thereby changing their hydrophobicity and respective binding capacities. Muaz et al. (2021) also found that the addition of an additive, sorbitan monostearate (SM), further increased the binding capacity of heat-killed LAB strains as the hydrophobic end of SM gets attached to the hydrophobic sites of LAB cells, such as peptidoglycan and teichoic acids, thus leaving the other hydrophilic end of SM to bind to hydroxy groups of AFM₁. Similar trends have been observed for detoxifying yogurt that evidenced enhanced binding of AFM1 to viable LAB strains by adding inulin as an additive (Sevim et al., 2019). Inulin supplementation promoted the growth and viability of mixed LAB inoculations (*B. bifidum-Bifidobacterium animalis*, *L. plantarum-B. bifidum*, *L. plantarum-Bifidobacterium animalis*) at extended storage periods.

(3) Fuminosins: Among various fumonisins, fumonisin B₁ (FB₁), and fumonisin B₂ (FB₂) are the major feed contaminants that adversely affect livestock and human health. The interaction and adsorption of FB, and FB, depend on the cell wall components and functional groups, specifically peptidoglycan and similar compounds (Sadig et al., 2019). The decrease in fumonisin is mainly due to its quick binding ability to the peptidoglycan layer, which is considered to be the most credible binding site (Chlebicz and Śliżewska, 2020). Apart from this, reduction in pH with lactic acid production also leads to the transformation of fumonisin, leading to less toxicity (Ademola et al., 2021). Diaz et al. (2021) characteristically found that FB, produced from a phytopathogenic fungus responsible for maize gain contamination in the silo storage structure, Fusarium verticillioides, could be inhibited with a heterogeneous mixture of volatile organic compounds (diacetyl, acetoin, acetic acid, etc.) produced from LAB strain E. casseliflavus as a result of its metabolic activity. The authors also revealed that acetoin has potential in mycotoxin biosynthesis.

Dawlal et al. (2019) visualized and quantified the interaction between fumonisins and LAB strains and found that LAB metabolism was not required for interaction and binding with fumonisins without biodegradation, as both viable and nonviable LAB cells showed binding capacity, nonviable cells having the higher binding ratio. This was reasoned as the heat treatment promoted denaturation or disintegration of LABs, which opened up the available sites for higher fumonisin binding. Similarly, in viable cells, electrostatic potential favored the binding interaction between fumonisins and LABs. Apart from varying cell structure and components of LAB strains, the variance in fumonisin molecules' structural conformation and charge also contributed to the binding and interaction. FB, and FB, carry different surface electrostatic potentials, chemical structure (FB, has an additional hydroxyl group in C10), and physical structure, making them preferential binding. The authors reviewed that LAB cells and fumonisin binding interaction were mainly mediated by long-range (steric and electrostatic interactions) and short-range (Van der Waals, Lewis acid-base, hydrogen bonding, and biospecific interactions) forces. However, the study failed to visualize this discrepancy as both fumonisins had the same fluorescing.

(4) Patulin: Like other mycotoxins, patulin reduction using LABs is also based on its adsorption in the cell wall and degradation by intracellular or extracellular enzymes (Zheng et al., 2020). Patulin adsorption is mainly observed as binding with the LAB cell wall

protein, including thiol, esters, and alkaline amino acids. The main functional groups involved are C-O, OH, C-- O, COO-, C-N, and/or N-H (Wei et al., 2020). Ngea et al. (2021) critiqued the ability of LAB cells to reduce patulin in apple juice to be affected by critical environmental factors, including cell density, cell viability, patulin initial concentration, pH, and incubation time. The extent of patulin reduction is closely related to LAB cell surface area's physical and chemical properties, cell wall volume, nitrogen-carbon (N/C) ratio, hydrophobicity, and functional groups. Large surface area, adsorptive selectivity, and large functional groups make nonviable cells more efficient in patulin reduction than viable cells (Bahati et al., 2021; Sajid et al., 2019). Exposure of LAB cells to conditions such as high temperature, acidic environments, etc., brings about structural changes to the cell walls that reduce the glycan layer crosslinking and increase cell wall permeability. Interestingly, Li et al. (2020) revealed that hydrochloric acid-treated LAB strains had significantly higher patulin detoxification ability and stability than heat-treated (121°C) LAB cells, owing to the disruption of hydrophobic interaction. This was speculated due to changes in cell wall structures that attain different degrees of cross-linking, thereby obstructing the toxin release. Additionally, additives like fructooligosaccharides, ascorbic acid, and citric acid to the apple juice demonstrated enhanced patulin binding by L. plantarum by reducing pH that stimulated S-layer proteins synthesis in the LAB cell wall (Zoghi et al., 2019).

(5) Zearalenone (ZEA): Last but not least, LAB-assisted ZEA removal involves either interaction with LAB cell wall components like peptidoglycans and surface proteins or interaction with intracellular proteins followed by absorption into the LAB cell wall (Sadiq et al., 2019). According to Złoch et al. (2020), ZEA neutralization by Lactobacillus paracasei cells is a nonlinear two-step process involving biosorption/binding techniques of ZEA by L. paracasei cells, as well as metabolization and biotransformation of ZEA to less toxic α -ZOL, β -ZOL forms. ZEA removal depends on cell wall protein type and structure, thus making it a strain-specific process. Out of the 17 strains of plant-derived LAB, L. plantarum isolated from wild spider flower pickle possessed the highest ZEA removal capability (Adunphatcharaphon et al., 2021). As per the results obtained by the authors, LAB cell wall polysaccharides did not affect ZEA removal stating non-involvement of hydrogen bonds in the interaction between LAB strain and ZEA. As far as lipids were concerned, lipase-treated LAB cells showed a significant reduction in ZEA as lipase hydrolyzed the ester bond lipid, causing a change in lipid structure. In addition, the presence of hydrophobic interactions was confirmed with a dominance of C-OH, C-C, and C-O-C functional groups of polysaccharides and single form bending functional groups of bonds in CH2 and CH3 present in teichoic acids, peptidoglycan, lipopolysaccharides, and phospholipids (Adunphatcharaphon et al., 2021). An adsorption-desorption study by Ragoubi et al. (2021) exposed that the viable cells of LAB caused ZEA biodegradation in PBS medium, with ZEA being the only carbon source. However, no related metabolites like, α and β -zearalenol, zearalenone, and its reduced metabolites were detected in inoculated PBS at the end of the incubation period, stating the absence of biodegradation. On the contrary, Adunphatcharaphon et al. (2021) showed that heat-treated nonviable Lactobacillus plantarum cells had a higher capacity to reduce ZEA. Still, since no ZEA degradation products were detected, the authors suggested the properties of heat-inactivated LAB cells for ZEA reduction and not biotransformation.

Mycotoxin Reduction in Foods Using LABs

LABs have been used for bio-preservation as an innovative approach to foods, including dairy products, bakery products, juices, meat, fruits and vegetables, and feeds (Table 3), for thousands of years due to their inhibitory properties. The contamination can occur at various stages during the manufacturing process. In cereal grains, mycotoxins can be formed by several spoilage-indicating molds, including, above all, *Aspergillus* spp. and *Penicillium* spp. Even in dry grains, mycotoxins can also be formed if either moisture migration due to

temperature changes creates condensation points with a higher water content (hot spot theory) or moisture is formed through the respiratory activity of grains weevils or other grain pests (mites, larvae of flour moths) and then secondary mold growth occurs, and often not noticed. The stability of the silage (animal feed) cannot be estimated in advance, and therefore can be contaminated in similar proportions as grains (Liu *et al.*, 2018).

For the food and feed industry, the production of compounds derived from LAB metabolic activity is of high importance; their antimicrobial spectrum has inhibitory potential against spoilage organisms such as fungi (especially by mycotoxigenic fungi), yeasts, Gram-negative and Gram-positive bacteria, protozoa, retarding microbial growth v extending considerably shelf-life as shown in Table 3 (Strack et al., 2020). LABs inhibit microbial decay by generating antagonist metabolic products or establishing antimicrobial compounds. Organic acids, mainly lactic acid followed by acetic acid, are the main metabolites of LAB, but depend on the LAB strains, their mechanism of action, and carbohydrates as substrate, other kinds of antimicrobial substances, namely low molecular weight metabolites (reuterin, reutericyclin, diacetyl, fatty acids), hydrogen peroxide, antifungal compounds (propionate, phenyl-lactate, hydroxyphenyl-lactate, and 3-hydroxy fatty acids) can be produced (compounds metabolized by different LAB strains listed in Table 3) (Wang et al., 2021). They have been used for food bio-preservation as an innovative approach for dairy products, bakery products,

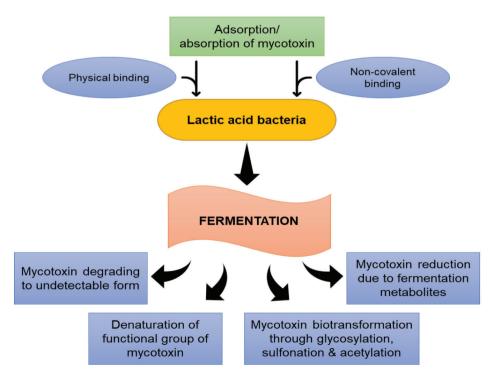


Figure 2. Anti-mycotoxin effect of LAB fermentation in foods.

Table 3. Practical food applications	of LABs to the ex	Practical food applications of LABs to the extended shelf life of food products.	ucts.			
Lactic acid bacteria	Strain	Possible compounds derived from metabolic activity	Food/Feed product	Targeted fungi/mycotoxins	Extended shelf-life/Inhibition percentage	References
Limosilactobacillus reuteri	1	p-Coumaric acid Azelaic acid	Bread	Fusarium culmorum	Compared to control < 4 days extra	Schmidt <i>et al.</i> (2018)
		Reuterin/Acrolein Reutericyclin Hydrogen peroxide	Whole wheat sourdough	Aspergillus niger	<7 days	Sadeghi <i>et al.</i> (2019)
Limosilactobacillus reuteri and Levilactobacillus brevis	R29R2A	(mentioned above)	Quinoa and rice bread	Mold growth	2–4 days	Axel et al. (2016)
		4-Hydroxyphenyllactic acid Hydrogen peroxide				
Lactobacillus hammesii	R29	I	Bread	Mold growth	2–6 days	Black et al. (2013)
	1	1	Flaxseed sourdough bread	Aspergillus niger and Penicillium roqueforti	Compared to control < 2 days extra	Quattrini <i>et al.</i> (2018)
Lactiplantibacillus plantarum	UFG 121	Benzoic acid p-Coumaric acid	Bread	Fusarium culmorum	No growth of the targeted fungus up to 7 days	Russo <i>et al.</i> (2017)
	ı	Cyclic dipeptides		Aspergillus parasiticus	<3-4 days extra	Saladino et al. (2016)
	CCFM259	3-Prienyllactic acid 2-Hydroxy-4-methypentanoic acid	Chinese steamed bread	Penicillium roqueforti	Up to 7 days no growth	Yan et al. (2017)
	CRL 778	Methylhydantoin Mevalonolactone	Quinoa flour-based bread	Mold growth	Significant increased compared to control	Dallagnol <i>et al.</i> (2015)
	C10	<i>∂</i> -Dodecalactone	Muskmelon fruit	Trichothecium roseum	Inhibited pink rot	Lv et al. (2018)
	I	nydiogen peroxide	Grape berries	Aspergillus carbonarius	1	Lappa <i>et al.</i> (2018)
	E3			B. cinerea and A. ochraceus	reduced the growth	Dopazo et al. (2021)
	I		Cottage cheese	Penicillium commune	> 25 days	Cheong et al. (2014)
	5BG		Spanish-style table olives	Fungal growth	≥ 5 months	Lavermicocca et al. (2018)
	ТК9		Citrus and apple juice	Old-growth	<3-4 days extra	Zhang et al. (2016)
	UFG 121		Oat-based beverage	Fusarium culmorum	≥ 21 days	Russo et al. (2017)
	LR/14		Grains	Mucor racemosus, Rhizopus, stolonifer, Penicillium chrysogenum, and Aspergillus niger	2.5 years	Gupta and Srivastava (2014)
	YML007		Animal feed	Mold growth	30 days	Rather et al. (2014)

Table 3. Continued						
Lactic acid bacteria	Strain	Possible compounds derived from metabolic activity	Food/Feed product	Targeted fungi/mycotoxins	Extended shelf-life/Inhibition percentage	References
Lactiplantibacillus plantarum	1	ı	Fermented milk: Doogh (Iranian traditional)	AFM1	%66	Sokoutifar e <i>t al.</i> (2018)
1 - 17 - 18 - 18 - 1 - 1	1	ı	Skim milk	AFM1	X	Panwar <i>et al.</i> (2018)
Lactiplantibacillus plantarum Lactobacillus acidophilus	1	I	Apple juice	<u>L</u> d	%06	Zoghi <i>et al.</i> (2019)
Lactiplantibacillus plantarum in combination with Lacticaseibacillus rhamnosus and/or Lactobacillus harbinensis	L244CIRM- BIA1113 L172	3-Phenyllactic acid Hydrogen peroxide	Sour cream	Rhodotorula mucilaginosa, Penicillium commune, and Mucor racemosus	Inhibition of targeted fungi from 2 to 24 h	Salas <i>et al.</i> (2018)
Lactiplantibacillus plantarum in combination with other lactobacilli	1	Hydrogen peroxide Vanillic acid	Caciotta cheese	Penicillium chrysogenum ATCC 9179 and Aspergillus flavus ATCC 46283	≥ 30 days	Cosentino et al. (2018)
Limosilactobacillus fermentum	C14		Bread	Mucor sp.	Up to 25 days	Barman et al. (2017)
	GA715		Banana	Fungal growth	Increased three times	Wayah and Philip (2018)
	YML014		Tomato puree	Aspergillus niger, Aspergillus flavus, and Penicillium expansum	Increased by nine days at 25°C	Adedokun <i>et al.</i> (2016)
Lactobacillus citreum and Levilactobacillus brevis	L123 Lu35		Pain au lait or plain cakes	Penicillium corylophilum	Significant increase	Le Lay <i>et al.</i> (2016)
Lactobacillus amylovorus	DSM19280	Cinnamic acid derivatives Salicylic acid	Gluten-free quinoa sourdough bread	Mold growth	compared to control < 2 days extra	Axel <i>et al.</i> (2016) Ryan <i>et al.</i> (2011)
Lacticaseibacillus rhamnosus	99	3-Phenyllactic acid	Whole pears	Fungal growth	Up to 9 days	Zudaire <i>et al.</i> (2018)
	ı	1	Apple juice	Mycotoxin PT	%08	Hatab <i>et al.</i> (2012)
Lactobacillus delbrueckii spp. Bulgaricus Lacticaseibacillus rhamnosus, and Bifidobacterium lactis – in combination			Miik	AFM1	12%	Corassin et al. (2013)
Lacticaseibacillus rhamnosus alone or in combination with Bifidobacterium animalis subsp. lactis	A238		Cottage cheese	Penicillium chrysogenum	Up to 21 days	Fernandez et al. (2017)
	A026					

Lacticaseibacillus casei	AST18	2-hydroxy-4-methypentanoic Yogurt acid	Yogurt	Penicillium sp.	compared to control < 4 days extra	Li <i>et al.</i> (2013)
Lactobacillus harbinensis	K.V9.3.1Np			Mold growth	Up to 6 weeks	Delavenne et al. (2013)
Lactobacillus parafarraginis	I		Silage	Yeast	Stability up to 144 h	Liu <i>et al.</i> (2018) Broberg <i>et al.</i> (2007)
Lactobacillus helveticus	KLDS 1.8701		Soybean milk	Penicillium sp.	Up to 21 days	Bian et al. (2016)
Lactococcus piscium			Food matrixes	Brochothrix thermosfacta		Fall et al. (2012); Saraoui et al. (2016); Leroi et al. (2015)
	CNCM1-4031		Shrimps	L. monocytogenes		Saraoui et al. (2016)
	All strains	1	Salmon and cod juices	Photobacterium phosphoreum, B. thermosphacta, S. baltica, and L. monocytogenes	Strongly inhibited	Wiernasz <i>et al.</i> (2017)
				Shewanella baltica, Serratia proteamaculans, H. Alvei, and L. sakei	Broadly inhibited	
Leuconostoc gelidum	All strains		Salmon juice	Shewanella baltica	Strongly inhibited	
			Fish juices	L. monocytogenes	Highly inhibited	
			Fish juice	P. phosphoreum	Slightly inhibited	
			Cooked peeled shrimps	P. phosphoreum, B. thermosphacta, S. proteamaculans	Slightly inhibited	Leroi et al. (2015)
genus Lactobacillus			Ready-to-eat (RTE) seafood	pathogenic bacteria commonly reported in RTE	High antimicrobial activity	Sahnouni <i>et al.</i> (2016)
L. sakei	cocktail (3 strains/ genomic diversity)		Ground beef	E. coli/Salmonella		Chaillou et al. (2014)
Lactococcus garviae		H2O ₂	Milk Cheese	S. aureus	Higher inhibition	Delbes Paus <i>et al.</i> (2010); Delpech <i>et al.</i> (2015); Delpech <i>et al.</i> (2017)
Lacticaseibacillus paracasei subsp. paracasei	KU517839	Bacteriocin	Cheese Cheese made from pasteurized milk	S. aureus		Heredia-Castro <i>et al.</i> (2015); Yoon <i>et al.</i> (2016); Madi and Boushaba (2017)
Carnobacterium divergens	V41	Bacteriocin: divercin	Smoked salmon	L. monocytogenes		Richard et al. (2003)

Aflatoxin M1: AFM1; Aflatoxin B1: AFB1; Ochratoxin A: OTA; Patulin.Conclusion and Future Perspectives

juices, meat, fruits, and vegetables. Various mechanisms that impart the anti-mycotoxin effect in foods by LAB fermentation are presented in Figure 2. Table 3 shows a consolidated overview of the selected recent applications of LABs in various food products.

Conclusion and Future Perspectives

Bio-preservation, including the use of LABs and their active metabolites, is a natural tool to prevent fungal growth, prolong shelf-life, and increase the safety of foods. LABs are GRAS and possess a large potential for bio-preservation due to their production of antimicrobial compounds. LABs effectively reduce mycotoxin production by fungi via adsorption of mycotoxin with LABs cell surface components, degradation of fungal mycotoxins, and inhibition of mycotoxin production. However, the antifungal and anti-mycotoxin potential of LABs depends on pH, initial viable count, growth medium and condition, and incubation temperature and time. Due to antifungal and anti-mycotoxin agents, LABs could be an ideal bio-preservative candidate for sustainable food systems, including dairy products, fruits and vegetables, cereal grains, bakery goods, nuts and seeds, and meat and meat products.

Mycotoxin detoxification capacity of LABs through cell wall bindings is an effective way for the removal of mycotoxins from food and feed. However, possible in vivo release of bound toxins during the detoxification process can be a matter of human health concern. Thus regulating the environmental conditions that can lead to this release is an important aspect. Further studies on the effect of several factors, like pH, growth medium, initial bacterial count, incubation time and temperature, growth condition (single or mixed), bacterial state (viable or nonviable), on the detoxifcation mechanism can help better understand the anti-mycotoxin activity of LAB. Additionally, understanding the LAB's detoxification capacity and potential interaction of compounds obtained with mycotoxin degradation for particular food products may also serve as an important source of data, that can be further industrialized for the food sector.

Conflict of Interest

There are no conflicts of interest to declare.

Funding

This research was partially supported by Chiang Mai University, Thailand, under the Cluster of Agro Bio-Circular-Green Industry (Agro-BCG).

Ethical Approval

Ethics approval was not required for this research.

References

- Ademola, O., Turna, N.S., Liverpool-Tasie, L.S.O., Obadina, A. and Wu, F., 2021. Mycotoxin reduction through lactic acid fermentation: evidence from commercial ogi processors in southwest Nigeria. Food Control 121: 107620. https://doi.org/10.1016/j. foodcont.2020.107620
- Adedokun, E.O., Rather, I.A., Bajpai, V.K. and Park, Y.H., 2016. Biocontrol efficacy of Lactobacillus fermentum YML014 against food spoilage moulds using the tomato puree model. Frontiers in Life Science 9: 64–68. https://doi.org/10.1080/21553769.2015 .1084951
- Adunphatcharaphon, S., Petchkongkaew, A. and Visessanguan, W., 2021. In vitro mechanism assessment of zearalenone removal by plant-derived Lactobacillus plantarum BCC 47723. Toxins 13: 286. https://doi.org/10.3390/toxins13040286
- Almeida, F., Rodrigues, M.L. and Coelho, C., 2019. The still underestimated problem of fungal diseases worldwide. Frontiers in Microbiology 10: 214. https://doi.org/10.3389/fmicb.2019.00214
- A-Reda, T.M. and Sahib, R.A., 2021. Isolation and characterization of Patulin Mycotoxin from strawberry fruits. Annals of the Romanian Society for Cell Biology 25: 7394–7405.
- Asurmendi, P., Gerbaldo, G., Pascual, L. and Barberis, L., 2020. Lactic acid bacteria with promising AFB1 binding properties as an alternative strategy to mitigate contamination on brewers' grains. Journal of Environmental Science and Health, Part B 55: 1002–1008. https://doi.org/10.1080/03601234.2020.1807834
- Awan, H.S., Ahmad, K.S., Iram, S., Hanif, N.Q. and Gul, M.M., 2021.

 Analysis and quantification of naturally occurring aflatoxin B1 in dry fruits with subsequent physical and biological detoxification.

 Natural Product Research 1–5. https://doi.org/10.1080/1478641
 9.2021.1935930
- Axel, C., Brosnan, B., Zannini, E., Peyer, L.C., Furey, A., Coffey, A. and Arendt, E.K., 2016. Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough. Applied Microbiology and Biotechnology 100:1701–1711. https://doi.org/10.1007/s00253-015-7051-x
- Bahati, P., Zeng, X., Uzizerimana, F., Tsoggerel, A., Awais, M., Qi, G., Cai, R., Yue, T. and Yuan, Y., 2021. Adsorption mechanism of patulin from apple juice by inactivated lactic acid bacteria isolated from kefir grains. Toxins 13: 434. https://doi.org/10.3390/ toxins13070434
- Barman, S., Ghosh, R., Sengupta, S. and Mandal, N.C., 2017. Longterm storage of post-packaged bread by controlling spoilage pathogens using Lactobacillus fermentum C14 isolated from homemade curd. PloS one 12:e0184020. https://doi.org/10.1371/journal.pone.0184020
- Bian, X., Muhammad, Z., Evivie, S.E., Luo, G.W., Xu, M. and Huo, G.C., 2016. Screening of antifungal potentials of Lactobacillus helveticus KLDS 1.8701 against spoilage microorganism and their effects on physicochemical properties and shelf life of fermented

- soybean milk during preservation. Food Control 66: 183–189. https://doi.org/10.1016/j.foodcont.2016.02.004
- Black, B.A., Zannini, E., Curtis, J.M. and Gänzle, M.G., 2013. Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread. Applied and Environmental Microbiology 79: 1866–1873. https://doi.org/10.1128/AEM.03784-12
- Broberg, A., Jacobsson, K., Ström, K. and Schnürer, J., 2007. Metabolite profiles of lactic acid bacteria in grass silage. Applied and Environmental Microbiology 73: 5547–5552. https://doi. org/10.1128/AEM.02939-06
- Chaillou, S., Christieans, S., Rivollier, M., Lucquin, I., Champomier-Vergès, M.C. and Zagorec, M., 2014. Quantification and efficiency of Lactobacillus sakei strain mixtures used as protective cultures in ground beef. Meat Science 97:332–338. https://doi.org/10.1016/j.meatsci.2013.08.009
- Cheong, E.Y., Sandhu, A., Jayabalan, J., Le, T.T.K., Nhiep, N.T., Ho, H.T.M. and Turner, M.S., 2014. Isolation of lactic acid bacteria with antifungal activity against the common cheese spoilage mould Penicillium commune and their potential as biopreservatives in cheese. Food Control 46:91–97. https://doi.org/10.1016/j.foodcont 2014.05.011
- Chlebicz, A. and Śliżewska, K., 2020. In vitro detoxification of aflatoxin B 1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast. Probiotics and Antimicrobial Proteins 12: 289–301. https://doi.org/10.1007/s12602-018-9512-x
- Corassin, C.H., Bovo, F., Rosim, R.E. and Oliveira, C.A.F., 2013. Efficiency of *Saccharomyces cerevisiae* and lactic acid bacteria strains to bind aflatoxin M₁ in UHT skim milk. Food Control 31: 80–83. https://doi.org/10.1016/j.foodcont.2012.09.033
- Cosentino, S., Viale, S., Deplano, M., Fadda, M.E. and Pisano, M.B., 2018. Application of autochthonous Lactobacillus strains as biopreservatives to control fungal spoilage in Caciotta cheese. BioMed Research International 3915615. https://doi.org/10.1155/2018/3915615
- Cruz, P.O.D., Matos, C.J.D., Nascimento, Y.M., Tavares, J.F., Souza, E.L.D. and Magalhães, H.I.F., 2021. Efficacy of potentially probiotic fruit-derived Lactobacillus fermentum, L. paracasei and L. plantarum to remove aflatoxin M1 in vitro. Toxins 13(1): 4. https://doi.org/10.3390/toxins13010004
- Dallagnol, A.M., Pescuma, M., Rollán, G., Torino, M.I. and de Valdez, G.F., 2015. Optimization of lactic ferment with quinoa flour as bio-preservative alternative for packed bread. Applied Microbiology and Biotechnology 99: 3839–3849. https://doi.org/10.1007/s00253-015-6473-9
- Danial, E.N., Lamfon, M.Y., Alghamdi, L.A., Alamri, A.M., Alghamdi, M.S. and Alghamdi, S.A., 2021. Removal of aflatoxin G1 using lactic acid bacteria. Journal of Food Processing and Preservation 45(1): e15090. https://doi.org/10.1111/jfpp.15090
- Dawlal, P., Brabet, C., Thantsha, M.S. and Buys, E.M., 2019.
 Visualisation and quantification of fumonisins bound by lactic acid bacteria isolates from traditional African maize-based fermented cereals, ogi and mahewu. Food Additives and Contaminants: Part A 36: 296–307. https://doi.org/10.1080/19440049.2018.1562234

- Delavenne, E., Ismail, R., Pawtowski, A., Mounier, J., Barbier, G. and Le Blay, G., 2013. Assessment of lactobacilli strains as yogurt bioprotective cultures. Food Control 30:206–213. https://doi.org/10.1016/j.foodcont.2012.06.043
- Delbes-Paus, C., Dorchies, G., Chaabna, Z., Callon, C. and Montel, M.C., 2010. Contribution of hydrogen peroxide to the inhibition of Staphylococcus aureus by Lactococcus garvieae in interaction with raw milk microbial community. Food Microbiology 27:924–932. https://doi.org/10.1016/j.fm.2010.05.031
- Delpech, P., Bornes, S., Alaterre, E., Bonnet, M., Gagne, G., Montel, M.C. and Delbès, C., 2015. Staphylococcus aureus transcriptomic response to inhibition by H2O2-producing Lactococcus garvieae. Food Microbiology 51:163–170. https://doi.org/10.1016/j.fm.2015.05.014
- Delpech, P., Rifa, E., Ball, G., Nidelet, S., Dubois, E., Gagne, G. and Bornes, S., 2017. New insights into the anti-pathogenic potential of Lactococcus garvieae against Staphylococcus aureus based on RNA sequencing profiling. Frontiers in Microbiology 8:359. https://doi.org/10.3389/fmicb.2017.00359
- Deng, Y., Wang, Y., Deng, Q., Sun, L., Wang, R., Wang, X., Liao, J. and Gooneratne, R., 2020. Simultaneous quantification of aflatoxin B1, T-2 toxin, ochratoxin A and deoxynivalenol in dried seafood products by LC-MS/MS. Toxins 12(8): 488. https://doi.org/10.3390/toxins12080488
- Diaz, D.G.G., Pizzolitto, R.P., Vázquez, C., Usseglio, V.L., Zunino, M.P., Dambolena, J.S., Zygadlo, J.A. and Merlo, C., 2021. Effects of the volatile organic compounds produced by Enterococcus spp. strains isolated from maize grain silos on Fusarium verticillioides growth and fumonisin B1 production. Journal of Stored Products Research 93: 101825. https://doi.org/10.1016/j.jspr.2021.101825
- Dopazo, V., Luz, C., Quiles, J.M., Calpe, J., Romano, R., Mañes, J. and Meca, G., 2021. Potential application of lactic acid bacteria in the biopreservation of red grape from mycotoxigenic fungi. Journal of the Science of Food and Agriculture, 102: 898–907. https://doi.org/10.1002/jsfa.11422
- Du, G., Liu, L., Guo, Q., Cui, Y., Chen, H., Yuan, Y., Wang, Z., Gao, Z., Sheng, Q. and Yue, T., 2021. Microbial community diversity associated with Tibetan kefir grains and its detoxification of Ochratoxin A during fermentation. Food Microbiology 99: 103803. https://doi.org/10.1016/j.fm.2021.103803
- du Plessis, B., Regnier, T., Combrinck, S., Steenkamp, P. and Meyer, H., 2020. Investigation of fumonisin interaction with maize macrocomponents and its bioaccessibility from porridge using the dynamic tiny-TIM gastrointestinal model. Food Control 113: 107165. https://doi.org/10.1016/j.foodcont.2020.107165
- Ezdini, K., Salah-Abbès, J.B., Belgacem, H., Mannai, M. and Abbès, S., 2020. Lactobacillus paracasei alleviates genotoxicity, oxidative stress status and histopathological damage induced by Fumonisin B1 in BALB/c mice. Toxicon 185: 46–56. https://doi.org/10.1016/j. toxicon.2020.06.024
- Fall, P.A., Pilet, M.F., Leduc, F., Cardinal, M., Duflos, G., Guérin, C. and Leroi, F., 2012. Sensory and physicochemical evolution of tropical cooked peeled shrimp inoculated by Brochothrix thermosphacta and Lactococcus piscium CNCM I-4031 during storage at 8 C. International Journal of Food Microbiology 152(3): 82–90. https://doi.org/10.1016/j.ijfoodmicro.2011.07.015

- Fernandes, T.H., Ferrão, J., Bell, V. and Chabite, I.T., 2017. Mycotoxins, Food and Health. *Journal of Nutritional Health* and *Food Science* 5(7): 1–10
- Gallo, A., Fancello, F., Ghilardelli, F., Zara, S., Froldi, F. and Spanghero, M., 2021. Effects of several lactic acid bacteria inoculants on fermentation and mycotoxins in corn silage. Animal Feed Science and Technology 277: 114962. https://doi. org/10.1016/j.anifeedsci.2021.114962
- Golge, O. and Kabak, B., 2020. Occurrence of deoxynivalenol and zearalenone in cereals and cereal products from Turkey. Food Control 110: 106982. https://doi.org/10.1016/j.foodcont.2019.106982
- Gonçalves, B.L., Muaz, K., Coppa, C.F.S.C., Rosim, R.E., Kamimura, E.S., Oliveira, C.A.F. and Corassin, C.H., 2020. Aflatoxin M1 absorption by non-viable cells of lactic acid bacteria and Saccharomyces cerevisiae strains in Frescal cheese. Food Research International 136: 109604. https://doi.org/10.1016/j.foodres.2020.109604
- Gupta, R. and Srivastava, S., 2014. Antifungal effect of antimicrobial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage. Food Microbiology 42: 1–7. https://doi.org/10.1016/j. fm.2014.02.005
- Hashemi, S.M.B. and Gholamhosseinpour, A., 2019. Fermentation of table cream by Lactobacillus plantarum strains: effect on fungal growth, aflatoxin M1 and ochratoxin A. International Journal of Food Science and Technology 54: 347–353. https://doi. org/10.1111/jifs.13943
- Hatab, S., Yue, T. and Mohamad, O., 2012. Reduction of patulin in aqueous solution by lactic acid bacteria. Journal of Food Science 77(4): M238–M241. https://doi.org/10.1111/j.1750-3841.2011.02615.x
- Heredia-Castro, P.Y., Méndez-Romero, J.I., Hernández-Mendoza, A., Acedo-Félix, E., González-Córdova, A.F. and Vallejo-Cordoba, B., 2015. Antimicrobial activity and partial characterization of bacteriocin-like inhibitory substances produced by Lactobacillus spp. isolated from artisanal Mexican cheese. Journal of Dairy Science 98(12): 8285–8293. https://doi.org/10.3168/jds.2015-10104
- Hussain, S., Asi, M.R., Iqbal, M., Khalid, N., Wajih-ul-Hassan, S. and Ariño, A., 2020. Patulin mycotoxin in mango and orange fruits, juices, pulps, and jams marketed in Pakistan. Toxins 12: 52. https://doi.org/10.3390/toxins12010052
- Iqbal, S.Z., Rehman, B., Selamat, J., Akram, N., Ahmad, M.N., Sanny, M., Sukor, R. and Samsudin, N.I., 2020. Assessment of fumonisin B1 concentrations in wheat and barley products in the Punjab region of Pakistan. Journal of Food Protection 83: 1284–1288. https://doi.org/10.4315/0362-028X.JFP-19-361
- Kademi, H.I., Saad, F.T., Ulusoy, B.H., Baba, I.A. and Hecer, C., 2019.
 Mathematical model for aflatoxins risk mitigation in food.
 Journal of Food Engineering 263: 25–29. https://doi.org/10.1016/j.jfoodeng.2019.05.030
- Lappa, I.K., Mparampouti, S., Lanza, B. and Panagou, E.Z., 2018.
 Control of Aspergillus carbonarius in grape berries by Lactobacillus plantarum: A phenotypic and gene transcription study. International Journal of Food Microbiology 275: 56–65. https://doi.org/10.1016/j.ijfoodmicro.2018.04.001
- Lavermicocca, P., Angiolillo, L., Lonigro, S.L., Valerio, F., Bevilacqua, A., Perricone, M. and Conte, A., 2018. Lactobacillus plantarum 5BG survives during refrigerated storage bio-preserving packaged

- Spanish-style table olives (cv.Bella di Cerignola). Frontiers in Microbiology 9:889. https://doi.org/10.3389/fmicb.2018.00889
- Le Lay, C., Coton, E., Le Blay, G., Chobert, J.M., Haertlé, T., Choiset, Y. and Mounier, J., 2016. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria. International Journal of Food Microbiology 239: 79–85. https://doi.org/10.1016/j.ijfoodmicro.2016.06.020
- Leroi, F., Cornet, J., Chevalier, F., Cardinal, M., Coeuret, G., Chaillou, S. and Joffraud, J.J., 2015. Selection of bioprotective cultures for preventing cold-smoked salmon spoilage. International Journal of Food Microbiology 213:79–87. https://doi.org/10.1016/j.ijfoodmicro.2015.05.005
- Li, H., Liu, L., Zhang, S., Uluko, H., Cui, W. and Lv, J., 2013. Potential use of Lactobacillus casei AST18 as a bioprotective culture in yogurt. Food Control 34(2):675–680. https://doi.org/10.1016/j. foodcont.2013.06.023
- Li, J., Liu, L., Li, C., Liu, L., Tan, Y. and Meng, Y., 2020. The ability of Lactobacillus rhamnosus to bind patulin and its application in apple juice. Acta Alimentaria 49: 93–102. https://doi.org/10.1556/066.2020.49.1.12
- Liu, Q., Lindow, S.E. and Zhang, J., 2018. Lactobacillus parafarraginis ZH 1 producing anti-yeast substances to improve the aerobic stability of silage. Animal Science Journal 89:1302–1309. https:// doi.org/10.1111/asj.13063
- Liu, A., Zheng, Y., Liu, L., Chen, S., He, L., Ao, X., Yang, Y. and Liu, S., 2020. Decontamination of aflatoxins by lactic acid bacteria. Current Microbiology 77: 3821–3830. https://doi.org/10.1007/ s00284-020-02220-y
- Lv, X., Ma, H., Lin, Y., Bai, F., Ge, Y., Zhang, D. and Li, J., 2018. Antifungal activity of Lactobacillus plantarum C10 against Trichothecium roseum and its application in promotion of defense responses in muskmelon (*Cucumis melo* L.) fruit. Journal of Food Science and Technology 55(9):3703–3711. https://doi.org/10.1007/s13197-018-3300-1
- Macri, A.M., Pop, I., Simeanu, D., Toma, D., Sandu, I., Pavel, L.L. and Mintas, O.S., 2021. The occurrence of aflatoxins in nuts and dry nuts packed in four different plastic packaging from the Romanian market. Microorganisms 9: 61. https://doi.org/10.3390/microorganisms9010061
- Madi, N. and Boushaba, R., 2017. Identification of Potential Biopreservative Lactic Acid Bacteria Strains Isolated from Algerian Cow's Milk and Demonstration of Antagonism Against S. aureus in Cheese. Food Science and Technology Research 23:679–688. https://doi.org/10.3136/fstr.23.679
- Martinez, M.P., Magnoli, A.P., Pereyra, M.G. and Cavaglieri, L., 2019. Probiotic bacteria and yeasts adsorb aflatoxin M1 in milk and degrade it to less toxic AFM1-metabolites. Toxicon 172: 1–7. https://doi.org/10.1016/j.toxicon.2019.10.001
- Massarolo, K.C., Mendoza, J.R., Verma, T., Kupski, L., Badiale-Furlong, E. and Bianchini, A., 2021. Stability of fumonisin B1 and its bioaccessibility in extruded corn-based products. Mycotoxin Research 37: 161–168. https://doi.org/10.1007/s12550-021-00426-y
- Meerpoel, C., Vidal, A., Andjelkovic, M., De Boevre, M., Tangni, E.K., Huybrechts, B., Devreese, M., Croubels, S. and De Saeger, S., 2021. Dietary exposure assessment and risk characterization of

- citrinin and ochratoxin A in Belgium. Food and Chemical Toxicology 147: 111914. https://doi.org/10.1016/j.fct.2020.111914
- Møller, C.O.D.A., Freire, L., Rosim, R.E., Margalho, L.P., Balthazar, C.F., Franco, L.T., Sant'Ana, A.D.S., Corassin, C.H., Rattray, F.P. and Oliveira, C.A.F.D., 2021. Effect of lactic acid bacteria strains on the growth and aflatoxin production potential of Aspergillus parasiticus, and their ability to bind aflatoxin B1, ochratoxin A, and zearalenone in vitro. Frontiers in Microbiology 12: 899. https://doi.org/10.3389/fmicb.2021.655386
- Mora-Villalobos, J.A., Montero-Zamora, J., Barboza, N., Rojas-Garbanzo, C., Usaga, J., Redondo-Solano, M., Schroedter, L., Olszewska-Widdrat, A. and López-Gómez, J.P., 2020. Multiproduct lactic acid bacteria fermentations: a review. Fermentation 23: 1–21. https://doi.org/10.3390/fermentation6010023
- Mosallaie, F., Jooyandeh, H., Hojjati, M. and Fazlara, A., 2019. Biological reduction of aflatoxin B1 in yogurt by probiotic strains of Lactobacillus acidophilus and Lactobacillus rhamnosus. Food Science and Biotechnology 29: 793–803. https://doi.org/10.1007/s10068-019-00722-5
- Muaz, K., Riaz, M., Rosim, R.E., Akhtar, S., Corassin, C.H., Gonçalves, B.L. and Oliveira, C.A.F., 2021. In vitro ability of nonviable cells of lactic acid bacteria strains in combination with sorbitan monostearate to bind to aflatoxin M1 in skimmed milk. LWT-Food Science and Technology 147: 111666. https://doi. org/10.1016/j.lwt.2021.111666
- Muhialdin, B.J., Saari, N. and Meor Hussin, A.S., 2020. Review on the biological detoxification of mycotoxins using lactic acid bacteria to enhance the sustainability of foods supply. Molecules 25(11): 2655. https://doi.org/10.3390/molecules25112655
- Nasrollahzadeh, A., Mokhtari, S., Khomeiri, M. and Saris, P.E., 2022a. Antifungal preservation of food by lactic acid bacteria. Foods 11(3): 395. https://doi.org/10.3390/foods11030395
- Nasrollahzadeh, A., Mokhtari, S., Khomeiri, M. and Saris, P.E., 2022b. Mycotoxin detoxification of food by lactic acid bacteria. International Journal of Food Contamination 9(1): 1–9. https://doi.org/10.1186/s40550-021-00087-w
- Nazareth, T.D.M., Luz, C., Torrijos, R., Quiles, J.M., Luciano, F.B., Mañes, J. and Meca, G., 2021. Potential application of lactic acid bacteria to reduce aflatoxin B1 and fumonisin B1 occurrence on corn kernels and corn ears. Toxins 12: 21. https://doi.org/10.3390/ toxins12010021
- Ngea, G.L.N., Yang, Q., Tchabo, W., Castoria, R., Zhang, X. and Zhang, H., 2021. Leuconostoc mesenteroides subsp. mesenteroides LB7 isolated from apple surface inhibits P. expansum in vitro and reduces patulin in fruit juices. International Journal of Food Microbiology 339: 109025. https://doi.org/10.1016/j.ijfoodmicro.2020.109025
- Nielsen, B., Colle, M.J. and Ünlü, G., 2021. Meat safety and quality: a biological approach. International Journal of Food Science and Technology 56: 39–51. https://doi.org/10.1111/ijfs.14602
- Nikolchina, I. and Rodrigues, P., 2021. A preliminary study on mycobiota and ochratoxin a contamination in commercial palm dates (Phoenix dactylifera). Mycotoxin Research 37: 215–220. https://doi.org/10.1007/s12550-021-00432-0
- Pandey, A.K., Shakya, S., Patyal, A., Ali, S.L., Bhonsle, D., Chandrakar, C., Kumar, A., Khan, R. and Hattimare, D., 2021.

- Detection of aflatoxin M1 in bovine milk from different agro-climatic zones of Chhattisgarh, India, using HPLC-FLD and assessment of human health risks. Mycotoxin Research 37: 265–273. https://doi.org/10.1007/s12550-021-00437-9
- Panwar, R., Kumar, N., Kashyap, V., Ram, C. and Kapila, R., 2019.
 Aflatoxin M1 detoxification ability of probiotic lactobacilli of Indian origin in in vitro digestion model. Probiotics and Antimicrobial Proteins 11:460–469. https://doi.org/10.1007/s12602-018-9414-y
- Poormohammadi, A., Bashirian, S., Mir Moeini, E.S., Reza Faryabi, M. and Mehri, F., 2021. Monitoring of aflatoxins in edible vegetable oils consumed in Western Iran in Iran: A risk assessment study. International Journal of Environmental Analytical Chemistry 1–11. https://doi.org/10.1080/03067319.2021.1938023
- Przybylska, A., Chrustek, A., Olszewska-Słonina, D., Koba, M. and Kruszewski, S., 2021. Determination of patulin in products containing dried fruits by enzyme-linked immunosorbent assay technique patulin in dried fruits. Food Science and Nutrition 9: 4211–4220. https://doi.org/10.1002/fsn3.2386
- Quattrini, M., Bernardi, C., Stuknytė, M., Masotti, F., Passera, A., Ricci, G. and Fortina, M.G., 2018. Functional characterization of Lactobacillus plantarum ITEM 17215: A potential biocontrol agent of fungi with plant growth promoting traits, able to enhance the nutritional value of cereal products. Food Research International 106: 936–944. https://doi.org/10.1016/j.foodres.2018.01.074
- Ragoubi, C., Quintieri, L., Greco, D., Mehrez, A., Maatouk, I., D'Ascanio, V., Landoulsi, A. and Avantaggiato, G., 2021. Mycotoxin removal by Lactobacillus spp. and their application in animal liquid feed. Toxins 13: 185. https://doi.org/10.3390/ toxins13030185
- Rather, I.A., Seo, B.J., Rejish Kumar, V.J., Choi, U.H., Choi, K.H., Lim, J.H. and Park, Y.H., 2013. Isolation and characterization of a proteinaceous antifungal compound from L actobacillus plantarum YML 007 and its application as a food preservative. Letters in Applied Microbiology 57:69–76. https://doi. org/10.1111/lam.12077
- Richard, J.L., Payne, G.A., Desjardins, A.E., Maragos, C., Norred, W.P. and Pestka, J.J., 2003. Mycotoxins: risks in plant, animal and human systems. CAST Task Force Report 139:101–103.
- Ruggirello, M., Nucera, D., Cannoni, M., Peraino, A., Rosso, F., Fontana, M., Cocolin, L. and Dolci, P., 2019. Antifungal activity of yeasts and lactic acid bacteria isolated from cocoa bean fermentations. Food Research International 115: 519–525. https:// doi.org/10.1016/j.foodres.2018.10.002
- Russo, P., Arena, M.P., Fiocco, D., Capozzi, V., Drider, D. and Spano, G., 2017. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. International Journal of Food Microbiology 247:48–54. https://doi.org/10.1016/j.ijfoodmicro.2016.04.027
- Ryan, L.A.M., Zannini, E., Dal Bello, F., Pawlowska, A., Koehler, P. and Arendt, E.K., 2011. Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent forbakery products. International Journal of Food Microbiology 146: 276–283. https://doi.org/10.1016/j.ijfoodmicro.2011.02.036
- Sadeghi, A., Ebrahimi, M., Mortazavi, S.A. and Abedfar, A., 2019.Application of the selected antifungal LAB isolate as a protective

- starter culture in pan whole-wheat sourdough bread. Food Control 95: 298–307. https://doi.org/10.1016/j.foodcont.2018.08.013
- Sadiq, F.A., Yan, B., Tian, F., Zhao, J., Zhang, H. and Chen, W., 2019. Lactic acid bacteria as anti-fungal and anti-mycotoxigenic agents: a comprehensive review. Comprehensive Reviews in Food Science and Food Safety 18: 1403–1436. https://doi. org/10.1111/1541-4337.12481
- Sahnouni, F., Benattouche, Z., Matallah-Boutiba, A., Benchohra, M., Moumen Chentouf W., Bouhadi D. and Boutiba Z., 2016. Antimicrobial activity of two marine algae Ulva rigida and Ulva intestinalis collected from Arzew gulf 72 (Western Algeria), Journal of Applied Environmental and Biological Sciences 6: 242–248.
- Sajid, M., Mehmood, S., Yuan, Y. and Yue, T., 2019. Mycotoxin patulin in food matrices: occurrence and its biological degradation strategies. Drug Metabolism Reviews 51: 105–120. https://doi.org/10.1080/03602532.2019.1589493
- Saladino, F., Quiles, J.M., Mañes, J., Fernández-Franzón, M., Luciano, F.B. and Meca, G., 2017. Dietary exposure to mycotoxins through the consumption of commercial bread loaf in Valencia, Spain. LWT 75:697–701. https://doi.org/10.1016/j. lwt.2016.10.029
- Salas, M.L., Thierry, A., Lemaitre, M., Garric, G., Harel-Oger, M., Chatel, M. and Coton, E., 2018. Antifungal activity of lactic acid bacteria combinations in dairy mimicking models and their potential as bioprotective cultures in pilot scale applications. Frontiers in Microbiology 9:1787. https://doi.org/10.3389/ fmicb.2018.01787
- Saraoui, T., Leroi, F., Björkroth, J. and Pilet, M.F., 2016.Lactococcus piscium: a psychrotrophic lactic acid bacterium with bioprotective or spoilage activity in food—a review. Journal of Applied Microbiology 12:907–918. https://doi.org/10.1111/jam.13179
- Schmidt M., Lynch K.M., Zannini E. and Arendt E.K., 2018. Fundamental study on the improvement of the antifungal activity of *Lactobacillus reuteri* R29 through increased production of phenyllactic acid and reuterin. Food Control 88:139–148. https://doi.org/10.1016/j.foodcont.2017.11.041
- Sevim, S., Topal, G.G., Tengilimoglu-Metin, M.M., Sancak, B. and Kizil, M., 2019. Effects of inulin and lactic acid bacteria strains on aflatoxin M1 detoxification in yoghurt. Food Control 100: 235–239. https://doi.org/10.1016/j.foodcont.2019.01.028
- Sokoutifar, R., Razavilar, V., Anvar, A.A. and Shoeiby, S., 2018.
 Degraded aflatoxin M1 in artificially contaminated fermented milk using Lactobacillus acidophilus and Lactobacillus plantarum affected by some bio-physical factors. Journal of Food Safety 38: e12544. https://doi.org/10.1111/jfs.12544
- Strack, L., Carli, R.C., da Silva, R.V., Sartor, K.B., Colla, L.M. and Reinehr, C.O., 2020. Food biopreservation using antimicrobials produced by lactic acid bacteria. Research, Society and Development 9: e998986666. https://doi.org/10.33448/rsd-v9i8.6666
- Taheur, F.B., Mansour, C. and Chaieb, K., 2021. Application of Kefir probiotics strains as aflatoxin B1 binder in culture medium, milk and simulated gastrointestinal conditions. MOL2NET 7: 1–8.
- Taheur, F.B., Mansour, C., Jeddou, K.B., Machreki, Y., Kouidhi, B., Abdulhakim, J.A. and Chaieb, K., 2020. Aflatoxin B1 degradation by

- microorganisms isolated from Kombucha culture. Toxicon 179: 76–83. https://doi.org/10.1016/j.toxicon.2020.03.004
- Taheur, F.B., Mansour, C., Kouidhi, B. and Chaieb, K., 2019. Use of lactic acid bacteria for the inhibition of Aspergillus flavus and Aspergillus carbonarius growth and mycotoxin production. Toxicon 166: 15–23. https://doi.org/10.1016/j.toxicon.2019.05.004
- Taroub, B., Salma, L., Manel, Z., Ouzari, H.I., Hamdi, Z. and Moktar, H., 2019. Isolation of lactic acid bacteria from grapefruit: anti-fungal activities, probiotic properties, and in vitro detoxification of ochratoxin A. Annals of Microbiology 69: 17–27. https://doi.org/10.1007/s13213-018-1359-6
- Tolosa, J., Ruiz, M.J., Ferrer, E. and Vila-Donat, P., 2020. Ochratoxin A: occurrence and carry-over in meat and meat by-products. Reviews in Toxicology 37: 106–110.
- Turkoglu, C. and Keyvan, E., 2019. Determination of aflatoxin M1 and ochratoxin A in raw, pasteurized and UHT milk in Turkey. Acta Scientiae Veterinariae 47: 1626. https://doi. org/10.22456/1679-9216.89667
- Twarużek, M., Ałtyn, I. and Kosicki, R., 2021. Dietary supplements based on red yeast rice a source of citrinin? Toxins 13(7): 497. https://doi.org/10.3390/toxins13070497
- USDA, 2016. Grain, fungal diseases and mycotoxin reference. United States Grain Inspection, Packers and Stockyards Administration, Washington, DC. Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y. and Geng, W., 2021. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in Bioengineering and Biotechnology 9: 612285. https://doi.org/10.3389/fbioe.2021.612285
- Wayah, S.B. and Philip, K., 2018.Pentocin MQ1: a novel, broad-spectrum, pore-forming bacteriocin from Lactobacillus pentosus CS2 with quorum sensing regulatory mechanism and biopreservative potential. Frontiers in Microbiology 9:564. https://doi.org/10.3389/fmicb.2018.00564
- Wei, C., Yu, L., Qiao, N., Zhao, J., Zhang, H., Zhai, Q., Tian, F. and Chen, W., 2020. Progress in the distribution, toxicity, control, and detoxification of patulin: a review. Toxicon 184: 83–93. https://doi.org/10.1016/j.toxicon.2020.05.006
- Wiernasz, N., Cornet, J., Cardinal, M., Pilet, M.F., Passerini, D. and Leroi, F., 2017.Lactic acid bacteria selection for biopreservation as a part of hurdle technology approach applied on seafood. Frontiers in Marine Science 4:119. https://doi.org/10.3389/ fmars.2017.00119
- Yan, B., Zhao, J., Fan, D., Tian, F., Zhang, H. and Chen, W., 2017.
 Antifungal activity of Lactobacillus plantarum against Penicillium roqueforti in vitro and the preservation effect on Chinese steamed bread. Journal of Food Processing and Preservation 41:e12969. https://doi.org/10.1111/jfpp.12969
- Ye, L., Wang, Y., Sun, L., Fang, Z., Deng, Q., Huang, Y., Zheng, P., Shi. Q., Liao, J. and Zhao, J., 2020. The effects of removing aflatoxin B1 and T-2 toxin by lactic acid bacteria in high-salt fermented fish product medium under growth stress. LWT-Food Science and Technology 130: 109540. https://doi.org/10.1016/j. lwt.2020.109540
- Yoon, R.B., Hong, S.-Y., Cho, S.M., Lee, K.R., Kim, M., and Chung, S.H., 2016.Aflatoxin M1 levels in dairy products from South Korea. Journal of Food and Nutrition Research 55: 171–180.

- Zhang, N., Liu, J., Li, J., Chen, C., Zhang, H., Wang, H.K. and Lu, F.P., 2016. Characteristics and application in food preservatives of Lactobacillus plantarum TK9 isolated from naturally fermented congee. International Journal of Food Engineering 12:377–384. https://doi.org/10.1515/ijfe-2015-0180
- Zheng, X., Wei, W., Rao, S., Gao, L., Li, H. and Yang, Z., 2020. Degradation of patulin in fruit juice by a lactic acid bacteria strain Lactobacillus casei YZU01. Food Control 112: 107147. https://doi.org/10.1016/j.foodcont.2020.107147
- Złoch, M., Rogowska, A., Pomastowski, P., Railean-Plugaru, V., Walczak-Skierska, J., Rudnicka, J. and Buszewski, B., 2020. Use of Lactobacillus paracasei strain for zearalenone binding and metabolization. Toxicon 181: 9–18. https://doi.org/10.1016/j. toxicon.2020.03.011
- Zoghi, A., Khosravi Darani, K. and Hekmatdoost, A., 2021. Effects of pretreatments on patulin removal from apple juices using Lactobacilli: binding stability in simulated gastrointestinal condition and modeling. Probiotics and Antimicrobial Proteins 13: 135–145. https://doi.org/10.1007/s12602-020-09666-3
- Zoghi, A., Khosravi-Darani, K., Sohrabvandi, S. and Attar, H., 2019.

 Patulin removal from synbiotic apple juice using Lactobacillus plantarum ATCC 8014. Journal of Applied Microbiology 126: 1149–1160. https://doi.org/10.1111/jam.14172
- Zudaire, L., Viñas, I., Plaza, L., Iglesias, M.B., Abadias, M. and Aguiló-Aguayo, I., 2018. Evaluation of postharvest calcium treatment and biopreservation with Lactobacillus rhamnosus GG on the quality of fresh-cut 'Conference' pears. Journal of the Science of Food and Agriculture 98:4978–4987. https://doi.org/10.1002/jsfa.9031