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Abstract

Kombucha is a traditional beverage obtained from fermented sugar-tea by a community of bacteria and yeasts. 
Understanding the microbial composition and their functions in Kombucha fermentation is of significance, but 
most of the studies have relied on the culture-dependent method. In this study, a metagenomic analysis was con-
ducted to obtain a more comprehensive insight into Kombucha fermentation. Results showed that the bacteria of 
Kombucha were dominated by Komagataeibacter (36.24 to 63.35%), Gluconacetobacter (10.39 to 26.21%), Glu-
conobacter (6.62 to 27.10%), Acetobacter (0.3 to 6.64%), and the fungus Kluyveromyces (0.63 to 36.98%) was also 
identified. Taxonomic composition and abundance of the microbial community were distinct with each Kombucha 
sample. The carbohydrate active enzyme functions of the communities primarily comprised glycosyltransferase 
(GT) families (40.6%), glycoside hydrolase (GH) families (32.0%), and carbohydrate-binding module (CBM) fam-
ilies (12.9%). Moreover, functional genes and their KEGG pathways were predicted, which demonstrated that the 
functional genes present in the bacterial community were enriched in pathways for neurodegenerative disease, 
amino acid metabolism, metabolism of cofactors and vitamins, carbohydrate metabolism, folding, sorting and 
degradation, and translation. The results of this study would provide a better understanding of the microbiota and 
metabolites as well as health-promoting potential of Kombucha, and may facilitate the optimization of the process 
to produce Kombucha products with desirable qualities.

Keywords: fermentation; Kombucha; metagenomics; microbial community

P   U   B   L   I   C   A   T   I   O   N   S
 CODON

The enhanced beneficial activities of Kombucha have 
been brought about by the metabolic interactions 
between acetic acid bacteria (AAB), lactic acid bacteria 
(LAB), and yeasts in SCOBY (de Miranda et al., 2022). 
Traditional culture-dependent methods have been 
applied to describe the microbial communities during 
the fermentation of Kombucha (Chakravorty et al., 2016; 
Li et al., 2022; Torán-Pereg et al., 2021). These studies 
have proved that Acetobacter, Gluconacetobacter, and 
Komagateibacter were the abundant genus in Kombucha. 
However, certain species are uncultured on the restricted 

Introduction

Kombucha is an acidic and sweet beverage obtained from 
fermented sugared tea, which is widely accepted among 
consumers worldwide. This beverage is usually fermented 
by the presence of symbiotic culture of bacteria and yeast 
(SCOBY) for 10 to 15 days. Kombucha consumption has 
been associated with many health-promoting properties, 
such as antimicrobial potential, anti-inflammatory, hepa-
toprotective, antidiabetic, and antioxidative properties 
(Hou et al., 2021; Jayabalan et al., 2014; Morales, 2020).
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on 1% (w/v) agarose gel and NanoDrop 2000 (Thermo 
Fisher Scientific, USA).

Kombucha samples were subjected to sequencing on an 
Illumina HiSeq Xten instrument (San Diego, CA, USA). 
Library preparation was carried out according to the 
NEBNext® Ultra™ DNA Library Prep Kit for Illumina 
(NEB, USA) per manufacturer’s instructions. Sequencing 
was carried out using a 300 cycle High Output V2 kit, 
following standard Illumina sequencing protocols as 
described by Doyle et al. (2017). Raw whole-metage-
nome shotgun sequencing reads were trimmed in each 
sample dataset based on sequence length and quality 
by using SeqPrep and Sickl. MetaPhlan3 was used to 
determine the specie-level taxonomic profile of microbi-
ome of each sample using default settings. High-quality 
Illumina metagenomic samples were assembled using 
metaSPAdes (ver. 3.13.0). Melonnpan v. 0.99 was used to 
predict the metabolites produced from each microbiome. 
Metagenome assembly was carried out to assemble con-
tigs. MetaBAT 2 was implemented for genome binning, 
with default settings. CheckM was then used to check 
the quality of metagenome assembled genomes (MAGs), 
as well as to assign taxonomic classifications. High-
quality MAGs (completeness >80% and contamination 
<10%) were selected for downstream analysis. FastANI 
was used to assign taxonomy to the MAGs. The anno-
tated amino acid sequences were functionally annotated 
by comparing against the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) using diamond. Putative second-
ary metabolites were encoded by antiSMAH. Amino acid 
sequences were also compared against the Carbohydrate-
Active Enzymes database (CAZy) using HMMER (Chen 
et al., 2020; Villarreal-Soto et al., 2020).

Statistical analysis

The statistical significance was calculated by using one-
way analysis of variance (ANOVA) in SPSS (version 20, 
IBM, USA), and only the P value < 0.05 was considered 
statistically significant.

Results and Discussion

Microbial composition of Kombucha

Detailed insights into both microbial community 
and their metabolic functions are necessary to obtain 
Kombucha products of a desired quality. In this study, 
metagenomics was applied to examine the microbi-
ota of Kombucha after 10 days. A total of 74,262,320, 
78,324,270, and 80,119,548 reads were generated for GD, 
AH, and SD, respectively. There was significant difference 

culture media, making the description of the whole com-
munity unreliable.

In recent years, culture-independent methods have been 
proved as a good approach to identify microorganisms 
and reveal their potential metabolic functions in differ-
ent fermented foods (Chen et al., 2020; Song et al., 2021; 
Wang et al., 2021; Zhuang et al., 2022). The metagenom-
ics analysis provides a higher taxonomic resolution to 
the species or even strain-level precision with increased 
accuracy. Moreover, this approach enables functional 
elucidation of identified microorganisms through nonse-
lective genes annotation of genomic assemblies (Filippis 
et al., 2020). However, the application of metagenomics 
analysis in characterizing microbial composition and 
functional microbiota of Kombucha during fermentation 
is limited.

In this study, the bacterial communities of three tra-
ditional fermented Kombucha were characterized by 
shotgun metagenomics, and the potential metabolic 
functions of microorganisms were also clarified. The 
results of this study will facilitate the optimization of pro-
cess to produce desirable Kombucha products.

Materials and Methods

Kombucha production

Three Kombucha cellulose pellicles with 200 mL 
starter culture were acquired from three different geo-
graphic locations of Guangdong (GD), Anhui (AH), and 
Shandong (SD) in China. All Kombucha were cultivated 
under the same condition as previously described by 
Marsh et al. (2014) with slight modifications. For each 
Kombucha sample, 2 L of water was boiled, and 10 g 
of black tea (Lipton, UK) was added for the incubation 
for 20 min at room temperature. After the removal of 
tea leaves, 200 g of sucrose was added and then stirred 
to dissolve. Finally, 5% (w/v) of each SCOBY was added 
once the sugar-tea solution was cooled to room tempera-
ture, and then incubated at 30oC for 10 days.

Metagenomic DNA extraction of pellicles

To extract DNA from pellicles of the fermented 
Kombucha at day 10, 1.0 g of cellulosic pellicle was 
removed from the surface biofilm, washed twice with 
sterile water, and then cut into small pieces. Then, the 
metagenomic DNA of samples was extracted by DNeasy® 
PowerFood® Microbial Kit (QIAGEN, Germany) accord-
ing to the manufacturer’s instructions. The purity and 
concentration of DNA were checked by electrophoresis 
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Burkholderia represented less than 1% of the communi-
ties found in all samples (Figure 1B). Pediococcus strains 
from Kombucha proved to have high inhibitory activity 
against a large range of foodborne bacteria and fungi 
(Diguta et al., 2020).

Fungus diversity was considerably lower in Kombucha 
compared to bacteria due to the pH effect, although 
bacteria and fungus are both necessary for the fermen-
tation of Kombucha. In this study, Kluyveromyces and 
Malassezia were the dominant fungus in all Kombucha 
samples, while Aspergillus and Pichia were present in 
low concentration (Figure 1B). However, other common 
yeasts in Kombucha (Dekkera, Zygosaccharomyces, and 
Candida) were undetected in this study. Such distinction 
in the fungus diversity is rather interesting and needs to 
be further studied. Yeasts would produce ethanol through 
the glycolysis pathway by the hydrolysis of sucrose into 
fructose and glucose (Hou et al., 2021).

At the species level, Komagataeibacter interme-
dius, Gluconacetobacter sp., Gluconobacter oxydans, 
Komagataeibacter hansenii, and Komagataeibacter rhae-
ticus were among the most abundant species in GD and 
SD samples. However, the abundant species in the AH 
sample were Komagataeibacter saccharivorans, followed 
by Kluyvromyces marxianus, Gluconacetobacter sp, K. 
hansenii, and Gluconobacter oxydans (Figure 1C). Listeria 
monocytogenes was identified in Kombucha. This may 
be due to the strong tolerance to low pH in Kombucha 
(Duze et al., 2021). This foodborne pathogen may cause 
a life-threatening disease in humans. Other pathogenic 
microorganisms, including Salmonella enterica and 
Penicillium spp, were also identified from Kombucha 
prepared in unhygienic environments (Villarreal-Soto 
et al., 2020).

LAB are not always isolated from Kombucha. Lactococcus 
lactis, Lactobacillus parakefiri, Lactobacillus sp. wkB10, 
and Bifidobacterium sp. were identified in this study. 
LAB were also reported to be used in Kombucha fermen-
tation to enhance its biological function or added as pro-
biotics (Fu et al., 2014; Yang et al., 2022). The presence of 
LAB is interesting due to their potential to confer probi-
otic properties and promote health through production 
of prebiotics (Amiri et al., 2021; Milićević et al., 2021).

A significant difference in bacterial community of differ-
ent Kombucha samples at the genus level was observed 
in this study, due to the weather, geographical location, 
and different fermentation conditions (Leal et al., 2018). 
In general, Kombucha is homemade with poor control of 
the microorganisms in the starter culture, resulting in a 
final product with heterogeneous properties (Noronha  
et al., 2022).

in the read number among three groups (P < 0.05). 
Following assembly, 9912, 10,450, and 10,437 contigs 
were obtained in GD, AH, and SD, respectively (Table 1).  
Significant difference (P < 0.05) was also observed in 
species-level α diversity (Shannon, Simpson, and ACE) 
among the three Kombucha (Table 1).

The sequences comprising the total reads corresponded 
to 7 phyla, 39 genera, and 77 species in Kombucha. The 
overall microbial diversity was higher than the find-
ings of previous studies (Jafari et al., 2022; Torán-Pereg 
et al., 2021). The results indicated that the metagenomic 
approach may generate a more complete microbiota pro-
file with enhanced taxonomic resolution and precision in 
analyzing microbial community in foods when compared 
with culture-dependent methods (Zhang et al., 2022).

At the phylum level, Proteobacteria was the dominant 
phylum and in all Kombucha samples with a relative 
abundance of 96, 62.92, and 98.1% in GD, AH, and SD, 
respectively (Figure 1A). Other studies also reported this 
as the most abundant phyla in Kombucha (Fabricio et al., 
2022). Ascomycota is another prevailing phylum in sam-
ple AH with an abundance of 36.95% (Figure 1A).

The most abundant genus Komagataeibacter accounted 
for 36.24, 45.61, and 63.35% of microbial composi-
tion in GD, AH, and SD, respectively, followed by 
Gluconacetobacter and Gluconobacter (Figure 1B). 
These genera were also reported to be dominant in pre-
vious studies (Lee et al., 2022; Subbiahdoss et al., 2022; 
Villarreal-Soto et al., 2020). Komagataeibacter has the 
ability to produce cellulose, and organic acids inte-
gral to sweet and sour flavor profiles of Kombucha, and 
shows higher resistance to acetic acid than other AAB 
(Subbiahdoss et al., 2022). Gluconacetobacter partic-
ipated in producing gluconic and glucuronic acids, and 
Dsaccharic acid-1,4-lactone during the fermentation 
process (Li et al., 2022). Besides these three genera, 
Acetobater proved to be another prevailing genus in GD 
and SD samples (Figure 1B). The genus of Acetobacter 
produces acetic acid from ethanol via alcohol dehydro-
genase and aldehyde dehydrogenase, which enters the 
Krebs cycle obtaining water and carbon dioxide as end 
products. Other genera like Pediococcus, Bacillus, and 

Table 1.  Sample sequencing information and α-diversity indices.

Group Reads Contigs Shannon Simpson ACE

GD 74,262,320 9912 3.280023 0.841363 44.0

AH 78,324,270 10,450 2.206987 0.696792 45.0

SD 80,119,548 10,437 2.750050 0.751996 43.0

GD: sample collected from Guangdong; AH: sample collected 
from Anhui; SD: sample collected from Shandong.
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Figure 1.  Classification of microbial population of three different Kombucha after 10 days of fermentation at the phylum  
level (A), genus level (B), and species level (C). GD, AH, and SD indicate the samples collected from Guangdong, Anhui, and 
Shandong provinces, China..

(A)

(B)

(C)
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a donor to an acceptor, which could include carbohy-
drates, proteins, lipids, and other molecules. Cellulose 
synthase of the GT2 family is a known metabolic activity 
of K. xylinus (Villarreal-Soto et al., 2020). GHs and PLs 
are enzyme families that cleave glycosidic bonds between 
carbohydrates or between carbohydrate and noncarbo-
hydrate moieties.

Yet, it is not fully understood which metabolic pathways 
are preferably used to generate the appropriate metab-
olites resulting in a successful Kombucha fermentation, 
and how the different functionalities are distributed 
among them. In this study, genes encoding metabolism 
were dominant, followed by those involved in genetic 
information processing, human disease, and organismal 
systems (Figure 3A).

The heatmap of KEGG metabolic pathways showed that 
the functional profile of the three Kombucha samples 
collected from different regions were relatively homog-
enous, but some differences were observed (Figure 3B). 
Three samples collected from different regions were 
mainly involved in 42 metabolic pathways. Among 
them, neurodegenerative disease, amino acid metabo-
lism, metabolism of cofactors and vitamins, carbohy-
drate metabolism, folding, sorting and degradation, and 

Functional annotation of microbial communities in 
Kombucha

Since various active enzymes are involved in the degra-
dation of sucrose during the Kombucha fermentation, 
the potential genes were predicted to be involved in car-
bohydrate metabolism based on comparisons of genes 
against the CAZy database. It is interesting to identify the 
differences in the metagenomic potential of carbohydrate 
utilization capacity between the Kombucha samples. At 
the class level, glycosyltransferases (GT) families GT2, 
GT8, GT4, GT1, and GT0 are the abundant enzymes in 
Kombucha, followed by glycoside hydrolases (GH) fami-
lies GH18, GH2, GH23, and GH28; carbohydrate-binding 
modules (CBM) families CBM48, CBM50, and CBM13; 
carbohydrate esterases (CE) families CE9, CE8, and CE3; 
and auxiliary activity (AA) families AA1 and AA6 (Figure 
2A). Comparison of the metagenome-encoding micro-
bial carbohydrate metabolism genes across the three 
Kombucha revealed that: seven CAZy families (GT2, 
GT4, CBM48, PL4_2, GT1, GH23, and CBM50) were 
significantly enriched in GD; three CAZy families (GT2, 
GT4, and CBM48) were significantly enriched in AH; 
and GT2, GT4, CBM48, GT1, and CE8 were significantly 
enriched in SD (Figure 2B). GTs catalyze the formation 
of glycosidic bonds by transferring a sugar residue from 

Figure 2.  Relative abundances of carbohydrate-active enzymes at the family level (A) and their distribution in different  
Kombucha samples (B).
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metabolism, translation, cell growth and death, metab-
olism of cofactors and vitamins, and energy metabolism 
were included. Carbohydrate metabolism is the most 

Figure 3.  Predicted genes in KEGG pathways within the microbial community. (A) Counts of genes associated with KEGG 
pathways at level 1. (B) Relative abundances of KEGG pathways in different Kombucha samples at level 2.

translation were identified in all samples. In the category 
of metabolism, pathways that were enriched in carbo-
hydrate metabolism, signal transduction, amino acid 
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abundant pathway, which accounted for an average of 
6.4% of the total microbial gene abundance in Kombucha 
(Figure 3B). This pathway has also proved to be import-
ant in Kombucha fermentation (Villarreal-Soto et al., 
2020).

Conclusion

The in-depth characterization of the microbial commu-
nity and functional capacity in Kombucha collected from 
different regions of China were revealed by metagenomic 
analysis in this study. Some similarities were observed 
between the three different microbial populations, and 
the abundant species were limited to Komagataeibacter, 
Gluconacetobacter, Gluconobacter, and Acetobacter. 
Considerable differences were exhibited in micro-
bial communities and metabolic functions of various 
Kombucha samples, but whether the difference in biolog-
ical profiles of obtained Kombucha beverage needs fur-
ther studies. The results provide a new insight into the 
microbiota and metabolites as well as the health-promot-
ing potential of Kombucha, and may facilitate the opti-
mization of the process to produce Kombucha products 
with desirable qualities.
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