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Abstract

Plasma-activated water (PAW), which is the water treated by cold plasma, represents a promising strategy for food 
decontamination. However, studies of the influences of heating on the antibacterial efficacy and physicochemi-
cal characteristics of PAW are limited. Therefore, the present work is aimed at determining the effect of heating 
on the bactericidal effects and physicochemical properties of PAW. PAW (1.0 mL) was heated in a water bath 
at 30–80°C for 10 min. After being cooled to room temperature, the antibacterial efficacy and physicochemical 
properties of PAW were measured. Heating at 40–80°C for 10 min caused a significant decrease in the antibac-
terial activity of PAW against Listeria monocytogenes and Salmonella typhimurium. After heating at 40–80°C for  
10 min, the pH value and oxidation reduction potential (ORP) of PAW remained stable, and the level of nitrate 
and electrical conductivity of PAW remarkably increased, while hydrogen peroxide and nitrite contents signifi-
cantly decreased. The combination treatment of PAW and mild heating (40–60°C for 4 min) showed greater anti-
bacterial effect on L. monocytogenes and S. typhimurium. After the combined treatment of PAW with mild heating 
at 60°C for 4 min, the populations of L. monocytogenes and S. typhimurium decreased by 7.83 log10 CFU/mL and 
9.35 log10 CFU/mL, respectively, which were significantly higher than that caused by PAW at 25°C or mild heating 
at 60°C alone. In summary, the antibacterial activity of PAW is significantly affected by the treatment temperature. 
This work provides a basis for the practical application of PAW in the food industry.
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Introduction

Microbiological contamination may occur at various 
points along the food chain, including production, pro-
cessing, storage, distribution, and preparation. Spoilage 
microorganisms may result in the loss of nutritional and 
sensory properties of food products, such as discoloration, 
unpleasant odor, and off-flavor (Odeyemi et al., 2020). It 
is estimated that a significant portion of the total fruits 
and vegetables is wasted each year worldwide due to the 
microbial and biochemical spoilage of food (Alegbeleye 

et al., 2022), which causes immense economic losses 
for both producers and retailers. In addition, foodborne 
pathogens have become a serious public health threat in 
the last few years. The most common pathogenic micro-
organisms include Esherichia coli, L. monocytogenes, 
Bacillus cereus, Clostridium botulinum, Staphylococcus 
aureus, Campylobacter jejuni, and Salmonella spp. 
(Bintsis 2017). As noted by the World Bank, foodborne 
disease causes total economic loss of up to $95.2  bil-
lion within low- and middle-income countries, and the 
annual cost of curing foodborne illnesses is estimated at  
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temperatures have not been well examined. Therefore, 
the current work aimed to investigate the influences of 
heating (30–80°C) on the antibacterial effects and phys-
icochemical properties of PAW. In addition, the antimi-
crobial efficacy of PAW in combination with mild heating 
(40, 50, and 60°C) against L. monocytogenes and S. typh-
imurium was also investigated.

Materials and methods

Bacterial strains and chemicals

L. monocytogenes strain American Type Culture 
Collection (ATCC) 15313 used in this study was obtained 
from the ATCC. S. typhimurium strain China Center of 
Industrial Culture Collection (CICC) 21484 was pur-
chased from the CICC (Beijing, China). Tryptic soy agar 
(TSA) and tryptic soy broth (TSB) were provided by 
Aobox Biotechnology Co., Ltd. (Beijing, China).

Cultivation of strains

L. monocytogenes (Gram-positive) and S. typhimurium 
(Gram-negative) were individually grown on TSA 
plates for 24 h at 37°C. One single colony of each 
strain was inoculated into 50 mL of TSB and incubated 
at 37°C overnight with constant shaking (120 rpm).  
Then, the cells were harvested by centrifugation at 5000 × 
g for 10 min at 4°C and washed thrice with sterile sodium 
chloride solution (0.85%, w/v). The cell pellets were then 
resuspended in 30 mL of sterile saline (0.85% NaCl) at a 
final density of approximately 9 log10 CFU/mL.

Preparation of PAW

In this work, PAW was prepared with an atmospheric 
pressure plasma jet (APPJ) system based on gliding 
arc discharge in air (Xiang et al., 2019b). The distance 
between the atmospheric-pressure plasma jet nozzle and 
the water surface was 5 mm. Compressed air (approxi-
mately 0.18 MPa) was selected as the working gas at a flow 
rate of 30 L/min at the jet outlet. Every 200 mL of sterile 
distilled water (SDW) was activated by plasma (discharge 
power 750 W) for 60 s to acquire PAW.

Influences of heating on the antibacterial efficacy  
of PAW

As shown in Figure 1, an aliquot of PAW (1.0 mL) was put 
into microcentrifuge tubes, which were incubated in a shak-
ing water bath for 10 min at different temperatures (30, 40, 
50, 60, 70, and 80°C). After incubation, the PAW samples 

$15 billion (James and Segovia, 2020). Therefore, micro-
bial contamination is a challenging and significant issue 
for the food industry.

In recent years, various processing techniques have been 
applied to ensure the microbiological quality and safety 
of food products. Thermal sterilization has been one of 
the most widely utilized methods to achieve long-term 
shelf stability of food products by inactivating microor-
ganisms and endogenous enzymes (Dong et al., 2021; 
Gavahian et al., 2020; Wu et al., 2020). However, conven-
tional thermal processing operations also lead to the loss 
of heat-sensitive nutrients (such as vitamins and phenolic 
antioxidants) and the generation of potential toxic com-
pounds such as acrylamide, furan, and acrolein, resulting 
in lowered nutritional value and sensory quality of food 
products (van Boekel et al., 2010).

In recent years, with an increase of consumers’ demands 
for fresh and high-quality foods, nonthermal processing 
techniques, mainly pulsed electric fields, ultrasound, high 
hydrostatic pressure, cold plasma, and high-pressure car-
bon dioxide, have drawn considerable attention within 
the food industry (Anbarasan et al., 2022; Niveditha et al., 
2021; Sruthi et al., 2022; Wu et al., 2020). Plasma-activated 
water (PAW), also known as plasma-treated water (PTW), 
is obtained by nonthermal plasma discharge over or in 
distilled water (Xiang et al., 2020). PAW exhibits excellent 
antimicrobial activity against various bacteria, yeast, mold, 
and viruses (Thirumdas et al., 2018). Because of its antibac-
terial efficacy and eco-friendly nature, PAW has been suc-
cessfully applied to improve the microbial safety and quality 
of various food products, such as fruits, vegetables, meat 
and fish products, edible mushrooms, fish, eggs, and cereal 
products (Liao et al., 2019; Rahman et al., 2022; Xiang et 
al., 2019b). It has been reported that the antibacterial effi-
cacy of PAW is influenced by the plasma discharge type, 
working gas, plasma activation time, and treatment time 
(Shaw et al., 2018; Xiang et al., 2018; Xu et al., 2016). In 
addition, certain environmental factors also affect the anti-
microbial properties of PAW, such as organic matter (Xiang  
et al., 2019a) and temperature (Shen et al., 2016). Shen 
et al. (2016) discovered that the antibacterial activ-
ity of PAW against S. aureus decreased remarkably 
with increasing storage temperature (−80, −20, 4, and  
25 °C). Similar findings were also observed by Tsoukou 
et al. (2020), who determined that storing PAW and plas-
ma-activated saline at −80 or −150°C provided a better 
means to retain their bactericidal activity than higher tem-
peratures (−16°C, 4°C, and room temperature) over long-
term storage.

The above data suggested that temperature may affect the 
antimicrobial efficacy of PAW. However, to the best of 
our knowledge, the changes in the antibacterial and phys-
icochemical properties of PAW after heating at different 
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were quickly cooled to room temperature (Xiang et al., 
2020). Thereafter, 100 μL of each bacterial suspension was 
violently mixed with 900 μL of the obtained PAW and then 
incubated for 8 min at ambient temperature (Xiang et al., 
2019a). Thereafter, the obtained mixtures were 10-fold seri-
ally diluted with sterile saline solution (0.85% NaCl). Then 
100 μL of the appropriate dilution was spread plated onto 
TSA plates. Colonies on the plates were counted after incu-
bation at 37°C for 24 h and the results were expressed as 
log10 CFU/mL. All of the tests were performed in triplicate.

Influences of heating on the physicochemical  
properties of PAW

An aliquot of PAW (1.0 mL) was put into the tubes and 
incubated in a shaking water bath for 10 min at different 
temperatures (30, 40, 50, 60, 70, and 80°C). Thereafter, 
the PAW samples were quickly cooled to room tempera-
ture and the main physicochemical properties of PAW 
were measured. 

pH
The pH levels of PAW samples were measured using a 
SevenGo Duo pH Meter (Mettler-Toledo, Switzerland).

Oxidation reduction potential (ORP)
The ORP value was determined using a 501 rechargeable 
ORP composite electrode (INESA Scientific Instrument 
Co., Ltd., Shanghai, China) connected to a SevenGo Duo 
pH Meter. 

Electrical conductivity
The electrical conductivity was measured using a con-
ductivity meter (INESA Scientific Instrument Co., Ltd., 
Shanghai, China).

H2O2
The H2O2 concentrations of PAW samples were mea-
sured using a colorimetric detection kit (D799773-
0050) according to the manufacturer’s protocol (Sangon 
Biotech Shanghai Co., Ltd., Shanghai, China).

NO3
−

The NO3
− content of PAW samples was determined by 

ultraviolet absorption spectrometry at a wavelength of 
220 nm (Shen et al., 2016).

NO2
−

The NO2
− contents of PAW samples were measured with 

a colorimetric assay kit (D799311-0050, Sangon Biotech 
Shanghai Co., Ltd., Shanghai, China) according to the 
manufacturer’s instructions.

Antibacterial activity of PAW combined with  
mild heating

L. monocytogenes and S. typhimurium were selected to 
investigate the bactericidal efficacy of PAW in combi-
nation with mild heating. For PAW treatment alone,  
900 μL of fresh PAW was mixed with 100 μL of bacterial 
suspension and incubated at 25°C for 4 min in a shaking 

Figure 1. Schematic diagram of the plasma jet and experimental setup, including the generation of PAW and inactivation of 
PAW preheated or heated at different temperatures against bacteria. PAW, plasma-activated water; SDW, sterile distilled water.
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water bath. For mild heating treatment alone, 900 μL of 
sterile saline solution was mixed with 100 μL of bacterial 
suspension and then incubated in a shaking water bath 
at 40, 50, and 60°C for 4 min, respectively. For the com-
bined treatments, 900 μL of PAW was blended with 100 
μL of bacterial suspension and then incubated in a shak-
ing water bath at 40, 50, and 60°C for 4 min, respectively. 
Then, the mixtures were immediately cooled to room 
temperature and the bacterial viability was evaluated 
with the previously described plating method. The SDW-
treated cells served as the control.

Statistical analysis

All analyses were performed in at least triplicate. Data 
are presented as the mean ± standard deviation (SD) 
and were analyzed using SPSS version 24.0 for Windows 
(IBM SPSS Inc., Chicago, IL, USA). Statistically signifi-
cant differences were analyzed by one-way analysis of 
variance (ANOVA) followed by Duncan’s multiple-range 
test with a level of P < 0.05.

Results and discussion

Influence of heating treatment on the inactivation  
efficacy of PAW

The influences of mild heating on the inactivation 
efficacy of PAW against L. monocytogenes and S. 
typhimurium are illustrated in Figure 2. The initial 
populations of L. monocytogenes and S. typhimurium 
vegetative cells were 9.21 log10 CFU/mL and 9.28 log10 

CFU/mL, respectively. After the treatment with PAW 
preheated at 30°C, the population of L. monocytogenes 
decreased significantly by 1.54 log10 CFU/mL (P < 0.05). 
The heating treatment (40–80°C for 10 min) caused a 
significant decrease in the antimicrobial activity of 
PAW against L. monocytogenes (Figure 2A). After the 
treatments of PAW preheated at 40, 50, 60, 70, and 
80°C, the populations of L. monocytogenes were mark-
edly reduced by 1.40-, 1.17-, 1.20-, 1.02-, and 0.85-log 
values, respectively, which were lower than that of PAW 
preheated at 30°C (P < 0.05). A similar trend was also 
observed for S. typhimurium (Figure 2B). These data 
show that the heating treatment at 40–80°C for 10 min 
causes a significant decrease in the inactivation efficacy 
of PAW against L. monocytogenes and S. typhimurium. 
These data are consistent with previous findings of 
Shen et al. (2016) and Tsoukou et al. (2020) that PAW 
exhibits higher antibacterial activity when stored at low 
temperature.

Effect of heating treatment on the pH values  
of PAW

The influences of heating treatment on the antimicrobial 
activity of PAW may be attributed to the changes in the 
physicochemical properties of PAW. The acidification of 
plasma-treated liquid has been previously reported, and 
acidic pH is considered to play a crucial role in the bac-
tericidal action of PAW (Thirumdas et al., 2018). As seen 
in Figure 3A, the pH value of PAW was 3.17 after plasma 
activation for 60 s, which was significantly (P < 0.05) 
lower than the 6.20 of SDW. The acidification of plasma- 

Figure 2. Influences of heating treatment on the inactivation efficacy of PAW against L. monocytogenes (A) and S. typhimurium (B).  
PAW samples were preheated at 30, 40, 50, 60, 70, and 80°C for 10 min. Then the antibacterial activity of these PAW samples was 
investigated as described in the Materials and Methods section. The SDW-treated cells served as the control. Values with different 
lowercase letters are significantly different (P < 0.05). PAW, plasma-activated water; SDW, sterile distilled water.
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treated solution is mostly attributed to the formation of 
NO3

−, NO2
−, and peroxynitrites from reactive nitrogen 

species (RNS) during plasma discharge (Liao et al., 2018; 
Thirumdas et al., 2018). After preheating at 30°C for  
10 min, the pH value of PAW increased to 3.23. As shown 
in Figure 3A, there were no significant changes in the 
pH values of PAW samples after the heating treatment 
at 30–80°C for 10 min (P > 0.05). A similar finding has 
been reported in our previous study (Xiang et al., 2020), 
in which the pH values of PAW remained essentially sta-
ble after mild heating at 25–55°C for 30 min.

Influence of heating treatment on the ORP 
values of PAW

ORP is a measure of the ability of a solution to oxidize or 
reduce another substance and is related to the concen-
tration of oxidizers as well as their activity and strength 
(Thirumdas et al., 2018). As presented in Figure 3B, 
after plasma activation for 60 s, the ORP value of SDW 
was 298.00 mV, and the ORP value of PAW was 571.83 
mV (P < 0.05). Similar findings were reported by Joshi  
et al. (2018) that the ORP of PAW was 534.52 mV, which 
was significantly higher than the ORP of distilled water 
of 376.54 mV. According to previous reports, the higher 
ORP value of PAW is associated with the production of 
reactive species and plays a crucial role in the antibacte-
rial action of PAW (Thirumdas et al., 2018). Thus, ORP 
serves to be a good indicator for the efficacy of PAW and 
its antimicrobial capacity (Joshi et al., 2018). As shown 
in Figure 3B, no significant changes in the ORP val-
ues of PAW were observed after heating at 30–80°C for  
10 min (P > 0.05). Similar findings have been reported 
in our previous study (Xiang et al., 2020) and elsewhere 
(Shen et al., 2016). For example, there was no obvious 
change in the ORP of PAW samples stored at −80, −20, 4, 
or 25°C for up to 30 days (Shen et al., 2016).

Influence of heating treatment on the electrical 
conductivity of PAW

Electrical conductivity is commonly used to assess the 
ability of a liquid to conduct an electrical current and is 
directly related to the concentration of ions in the solu-
tion. As shown in Figure 3C, the electrical conductivity 
of PAW was 409.00 μS/cm after plasma activation for  
60 s, which was significantly higher than the 4.22 μS/cm  
of SDW (P < 0.05). The increase in the conductiv-
ity of PAW may be attributed to the formation of 
active ions in water during plasma activation (Joshi  
et al., 2018; Suwal et al., 2019). Similarly, Sergeichev et al. 
(2021) also found a significant increase in the electrical 
conductivity of water after microwave discharge plasma 
exposure. Preheating at 30 or 40°C for 10 min caused no 

significant changes in the electrical conductivity of PAW 
(P > 0.05). However, an increase in the electrical conduc-
tivity of PAW was noticed after the heating treatment at 
40–80°C for 10 min (Figure 3C). The electrical conduc-
tivity of PAW was increased after heating treatment at 

Figure 3. Influence of heating treatment on the pH (A), ORP 
(B), and electrical conductivity (C) of PAW. PAW samples 
were preheated at 30, 40, 50, 60, 70, and 80°C for 10 min. Val-
ues with different lowercase letters are significantly different 
(P < 0.05). ORP, oxidation reduction potential; PAW, plasma- 
activated water; SDW, sterile distilled water.
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40–80°C for 10 min (P < 0.05). In addition to the amount 
and composition of ionic species, the temperature also 
affects the electrical conductivity of a solution (Zhang et 
al., 2020b). At elevated temperatures, the ionization and 
the mobility speeds of the ions in solution may be acceler-
ated, leading to an increase in their conductivity. Further 
investigations are still needed to understand the role of 
electrical conductivity in the antibacterial efficacy of PAW.

Effect of heating treatment on reactive species 
levels of PAW

Various reactive oxygen and nitrogen species (RONS) 
are generated in solutions during plasma activation, 
including H2O2, nitrite, nitrate, ozone, hydroxyl radi-
cals, and superoxide anions (Thirumdas et al., 2018). As 
depicted in Table 1, the concentration of H2O2 in PAW 
was 38.13 μmol/L after 60 s of plasma activation, which 
was in agreement with previous studies (Sergeichev  
et al., 2021; Shen et al., 2016). Shen et al. (2016) observed 
that the H2O2 concentrations of PAW stored at −80 °C 
did not vary significantly over 30 days. In contrast, the 
H2O2 levels in PAW samples decreased to 6.0 μmol/L 
from approximately 24.4 μmol/L after 30-day storage at 
−20, 4, and 25°C (Shen et al., 2016). H2O2, a long-lived 
powerful oxidizing agent, is thought to be involved in the 
antimicrobial action of PAW. As one of the main reactive 
oxygen species in PAW, H2O2 is thought to be mainly 
generated by the following chemical reactions at the gas/
liquid interface (Thirumdas et al., 2018).

H2O + e−→ H• + •OH + e− (1)

H2O + e−→ H+ + •OH + 2e− (2)

•OH + •OH → H2O2 (3)

As displayed in Table 1, the H2O2 levels of PAW 
decreased following heating treatment at 30–80°C for  

10 min, which was in accordance with the decreasing 
trend of bactericidal activity (Figure 2). The concentra-
tion of H2O2 decreased from 38.13 to 29.00 μmol/L as 
the heating temperature increased from 30 to 80°C. As 
a reactive molecule, H2O2 is unstable and decomposes 
exothermally into water and oxygen gas by the following 
reaction:

2 H2O2(aq) → 2 H2O(l) + O2(g) (4)

Heating, light, and catalysts can accelerate this decompo-
sition process (Anikin et al., 2022). Therefore, it can be 
speculated that the decrease in the bactericidal efficacy 
of PAW may be related to the demonstration of H2O2 
accelerated by the heating treatment.

RNS, including NO3
−, NO2

−, and peroxynitrites, are also 
thought to play significant roles in the antimicrobial 
properties of PAW (Schnabel et al., 2014; Thirumdas  
et al., 2018). As shown in Table 1, the NO3

− and NO2
− 

levels of PAW increased to 921.18 and 812.29 μmol/L, 
respectively, after plasma treatment for 60 s. NO3

− and 
NO2

− in PAW are generated by the dissolution of nitro-
gen oxides formed by gas-phase reactions of N2 and O2 or 
H2O in the air plasma (Pavlovich et al., 2014).

N2(g) + O2(g) → 2NO(g) (5)

2NO(g) + O2(g) → 2NO2(g) (6)

NO(g) + O3(g) → NO2(g) + O2(g) (7)

2NO2(g) + H2O(l) → NO2
− + NO3

− + 2H+ (8)

NO2
− + H2O2 + H+ → NO3

− + H2O + H+ (9)

The heating treatment also caused remarkable changes 
in the levels of NO3

− and NO2
− in PAW. After incuba-

tion at indicated temperature (30–80°C) for 10 min, 
the NO3

− amounts in PAW increased remarkably in a 

Table 1. Influences of heating treatment on the H2O2, NO3
−, and NO2

− levels of PAW.

Group Heating temperature (°C) H2O2 (μmol/L) NO3
− (μmol/L) NO2

− (μmol/L)

SDW 30 ND ND ND

PAW – 38.13 ± 0.48a 921.18 ± 6.37e 812.29±2.95a

PAW 30 38.13 ± 0.85a 932.00 ± 10.03e 809.22 ± 4.37a

PAW 40 36.38 ± 0.48b 1002.53 ± 5.29d 768.60 ± 9.39b

PAW 50 33.50 ± 0.41c 1012.47 ± 11.60d 738.57 ± 9.52c

PAW 60 33.38 ± 0.75c 1072.63 ± 7.90c 738.23 ± 4.37c

PAW 70 31.88 ± 0.48d 1116.47 ± 8.01b 659.04 ± 6.54d

PAW 80 29.00 ± 0.41e 1135.29 ± 17.56a 642.32 ± 5.05e

–, indicates PAW was not heated. Means followed by different letters in the same column are statistically different (P < 0.05) by the Duncan’s multiple 
range test. ND, not detected. PAW, plasma-activated water; SDW, sterile distilled water.



106 Quality Assurance and Safety of  Crops & Foods 15 (2)

Wang B et al.

temperature-dependent manner (Table 1). As the heating 
temperature increased from 30 to 80°C, the content of 
NO3

− increased from 932.00 to 1135.29 μmol/L. Similar 
findings were reported in previous studies, which showed 
that the NO3

− concentration of PAW increased in a tem-
perature-dependent manner following mild heating at 
25–55°C for 30 min (Xiang et al., 2020). In addition, Shen 
et al. (2016) reported that the NO3

− in PAW was more 
suitable during storage at higher temperatures, with 25°C 
> 4°C > −20°C > −80°C obtained in descending order for 
the NO3

− contents in PAW. In contrast with the changing 
tendency of NO3

-, the levels of NO2
− in PAW decreased 

remarkably with increasing heating temperatures from 
30 to 80°C (Table 1). The significant changes in the NO2

− 
and NO3

− levels may contribute to the decrease in the 
antibacterial activity of PAW (Figure 2).

In this work, only the contents of long half-life reactive 
species (H2O2, NO3

−, and NO2
−) in PAW were measured 

after heating treatment. Many highly reactive species with 
short lifetimes may also be involved in the antimicrobial 
action of PAW. Therefore, in future studies, more attention 
should be paid to the stability of the short half-life of reac-
tive species in PAW during heating treatment or storage.

Synergistic antibacterial efficacy of PAW with 
mild heating against bacteria

The antibacterial activity of PAW combined with mild 
heating (40, 50, and 60°C) against L. monocytogenes and  
S. typhimurium was also investigated. As exhibited 
in Figure 4, L. monocytogenes and S. typhimurium 
decreased by 0.83- and 1.29-log values, respectively, after 

PAW treatment alone at 25°C for 4 min. The population 
of L.  monocytogenes decreased by 0.01, 0.30, and 2.06 
log10 CFU/mL following the mild heat treatments at 40, 
50, and 60°C for 4 min, respectively. Although mild heat-
ing decreased the antibacterial capacity of PAW (Figure 
2), the combined treatment of PAW and mild heating 
showed a greater antibacterial effect against L. mono-
cytogenes than any other single treatment. As indicated 
in Figure 4A, the populations of L. monocytogenes were 
reduced by 3.55, 6.61, and 7.83 log10 CFU/mL, followed 
by the PAW treatment combined with mild heating at 
40, 50, and 60°C for 4 min, respectively. The enhanced 
antibacterial efficacy of PAW combined with mild heat-
ing was also observed for S. typhimurium (Figure 4B). 
Similarly, the populations of S. typhimurium cells were 
reduced by 4.70 and 7.35 log10 CFU/mL, respectively, 
after PAW treatment combined with mild heating at 40 
and 50°C for 4 min. When treated with PAW at 60°C, 
the population of S. typhimurium was reduced from 
approximately 9.35 log10 CFU/mL to an undetectable 
level (Figure 4B). Similar findings were also reported in 
previous studies (Bai et al., 2020; Choi et al., 2019; Liao 
et al., 2020; Zhang et al., 2020a). For instance, PAW 
exhibited greater antimicrobial activity against B. cereus 
spores at higher temperatures (Bai et al., 2020). Zhang 
et al. (2020a) also found that Saccharomyces cerevisiae 
decreased by 4.40-log after the synergistic combina-
tion of PAW and mild heat at 50°C for 6 min, which was 
significantly higher than the individual treatments of 
PAW at 25°C (0.27-log) or mild heat at 50°C for 6 min 
(1.92-log).

Although preheating at 40–80°C for 10 min caused 
a significant decrease in the inactivation efficacy of 

Figure 4. Inactivation of L. monocytogenes (A) and S. typhimurium (B) induced by PAW and mild heating, either alone or in 
combination for 4 min, respectively. Values with different superscript letters are significantly different (P < 0.05). PAW, plasma- 
activated water.
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