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Abstract

The feasibility of near-infrared (NIR) spectroscopy and partial least-squares regression (PLSR) was investigated 
for rapid prediction of the quality of Chinese soy sauce. Twenty-four soy sauce samples from eight common 
brands available in China were analyzed for the contents of various components that may affect the quality of soy 
sauce. Sensory evaluation was also conducted to determine the relationship between components and the sensory 
quality of soy sauce. Subsequently, NIR spectra (400–2500 nm) of the samples were obtained, and the raw spectra 
were subjected to different pretreatment methods. PLSR was performed on the raw and treated spectra to con-
struct models using a calibration set. The performance of models was evaluated by comparing the determination 
coefficient of prediction (R2

P) and root-mean-square error of prediction (RMSEP). The results showed that the 
models constructed using the moisture content (R2

P of 0.825 and RMSEP of 1.73), amino acid nitrogen content 
(R2

P of 0.785 and RMSEP of 0.071), and taste scores (R2
P of 0.733 and RMSEP of 11.93) performed well, and the 

interactions between amino acid nitrogen content and taste of soy sauce were clarified. This study demonstrates 
that NIR spectroscopy can be used as a valid alternative method for rapid prediction of the sensory quality of soy 
sauce during processing.

Keywords: near-infrared (NIR) spectroscopy; partial least-squares regression (PLSR); rapid quality prediction; sensory 
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Introduction

Soy sauce is a condiment originating in China that is 
made by fermentation of soybeans. It is widely used in 
the East and Southeast Asian cuisines. China is a major 
producer and consumer of soy sauce. The current global 
annual production volume of soy sauce is approximately 
8 million tons, and China produces approximately 
5  million tons of this product (Shurtleff and Aoyagi, 
2012). Compared with other countries, China has a 
wider variety of types of soy sauce, including braised soy 
sauce, steamed soy sauce, seafood soy sauce, and shrimp 
seed soy sauce. With improvements in quality of life, 

consumers are increasingly focusing on the sensory qual-
ities of food (Jürkenbeck and Spiller, 2021). Consequently, 
the sensory characteristics of soy sauce have become 
important for determining its quality. Sensory evaluation 
is an important tool that can be used to explore consumer 
preferences and market demand (Stone et al., 2020).

Sensory evaluation of food products involves the use 
of human sensory organs to assess their various quality 
characteristics and provides comparative descriptions 
(Sarkar et  al., 2022b; Steinhaus and Schieberle, 2007). 
However, this process is time-consuming and costly, and 
the results are highly subjective. Sensory evaluation can 
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also be influenced by environmental factors (Xu et  al. 
2013), and it cannot be used for rapid testing of product 
sensory quality (Sarkar et  al., 2022a). Therefore, estab-
lishment of an objective, effective, and rapid quality 
evaluation model is currently considered to be the most 
critical aspect in quality testing of soy sauce.

Near-infrared (NIR) spectroscopy is a convenient, effi-
cient, and low-cost analytical technique that has under-
gone rapid development in the recent years (Zareef et al., 
2020). It combines spectroscopic measurement analysis 
with chemometrics and is rapid, nonpolluting, nonde-
structive, and capable of determining multiple compo-
nents simultaneously (Bázár et  al., 2016; Li et  al., 2007, 
2020). Currently, NIR spectroscopy is widely used in food 
testing (Cortes et al., 2017; Escribano et al., 2017; Jamshidi 
et al., 2016; Lan et al., 2020; Lorenzo et al., 2009), such as 
identification of chestnut varieties (Corona et  al., 2021), 
prediction of the moisture content in roasted pistachio 
kernels (Mohammadi-Moghaddam et  al., 2018), and 
evaluation of the sensory properties of wines (Cayuela 
et al., 2017). Wang et al. (2021) investigated the feasibil-
ity of using NIR spectroscopy and partial least-squares 
regression (PLSR) to evaluate the quality of Japanese 
fermented soy sauce. They found that NIR spectroscopy 
could be used as an alternative to conventional methods 
for soy sauce quality control, and could quickly and eco-
nomically grade soy sauce products. However, the brew-
ing of Japanese soy sauce is different from that of Chinese 
soy sauce, and there is only one main variety (Koikuchi 
soy sauce) that differs significantly from Chinese soy 
sauce in its taste and texture (Diez-Simon et  al., 2020). 
Consequently, the feasibility of applying NIR spectros-
copy to sensory evaluation of Chinese soy sauce is unclear.

The aim of this study was to explore the feasibility of using 
NIR spectroscopy for rapid and objective sensory eval-
uation of Chinese soy sauce. The relationship between 
the sensory characteristics of Chinese soy sauce and 
their quality was first investigated using 24 samples from 
common soy sauce brands. The results were believed to 
provide scientific data for identifying key components 
of soy sauce and to improve their appearance and taste. 
Subsequently, the correlation between the components, 
sensory scores, and NIR spectrum were clarified by per-
forming different pretreatment methods on the spectral 
data. Overall, NIR spectroscopy was promising to rapidly 
assess the sensory evaluation of Chinese soy sauce.

Experimental

Sample preparation

Twenty-four bottles of eight commercially available soy 
sauce brands were obtained. The bottles were randomly 

grouped into a calibration set (n = 18) and a validation 
set (n = 6). The calibration set was used to construct a 
quantitative calibration model, and the validation set was 
used to predict the model accuracy. The soy sauce sam-
ples were divided into two groups, A and B, according to 
their sensory scores. The 12 samples with higher sensory 
scores were placed in Group A, and the 12 samples with 
lower sensory scores were placed in Group B. The groups 
were used to compare the characteristics between differ-
ent soy sauces.

Analysis of physiochemical indicators

The color, salt content, Brix value, pH, moisture con-
tent, and amino acid nitrogen content were analyzed 
in triplicates using the previously described method 
(Wang et  al., 2018). Briefly, the color of each soy 
sauce sample was measured using a spectrophotome-
ter (CM-5, Konica Minolta, Tokyo, Japan); the analy-
ses of salt content and Brix values were carried out by 
using a conductivity salinometer (PAL-SALT, Atago 
Corporation, Tokyo, Japan) and a digital saccharimeter 
(PAL-1, Atago Co), respectively; the pH of the soy sauce 
was measured using a pH meter (Remag PHS-2F, Yidian 
Scientific Instruments Corporation, Shanghai, China); 
and the measurement of moisture content was per-
formed by thermophysical drying. The determination 
of the amino acid nitrogen content in soy sauce was 
carried out by absorbance measurements at 400 nm, 
according to the national standards method reported in 
GB 5009.235-2016 Determination of amino acid nitro-
gen in food.

Analysis of organic acid and sugar

The contents of organic acids and sugars were deter-
mined by using a high-performance liquid chro-
matography (HPLC) as previously reported (Sarkar 
et al., 2020). The HPLC measurement was carried out 
by using the Shimadzu LC-20A system (Shimadzu 
Corporation, Kyoto, Japan). For the separation of 
organic acid, a Shodex KC-811 (i.d. 8 mm × 300 mm, 
Showa Denko Corporation, Tokyo, Japan) column was 
used, and the temperature was maintained at 50°C. 
The eluent (3.0 mmol/L HClO4 solution) flow rate 
was 1.0 mL/min, and the chromatogram of samples 
was recorded with UV detection at 210 nm. As for 
sugar analysis, a Shodex KS-801 column (i.d. 8 mm × 
300  mm, Showa Denko Co.) was used for separation, 
the column temperature was set at 80°C, ultrapure 
water used as eluent with a flow rate of 0.7 mL/min,  
and the detection was performed on a differential 
refractive index detector. Both analyses were measured 
in triplicates.
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Sensory evaluation

The sensory evaluation of soy sauce was carried out by 
employing 37 assessors (19–30 years old; 12 men and 
25 women) with professional training and experience. For 
evaluation process, the 24 soy sauce samples were first 
poured onto white plastic plates to observe the color and 
texture. The assessors also put their noses 5 cm above the 
soy sauce to evaluate the aroma of soy sauce. Next, fresh 
cucumbers were cut into small pieces and dipped in the 
soy sauce for taste tests. Finally, each sample was scored 
according to its appearance, texture, taste, and aroma on 
a scale of 1–5 for each component. A higher score indi-
cated higher satisfaction. The best possible score of a 
sample was 20 for each evaluation. The ratings given by 
all 37 individuals were added together to obtain a final 
total sensory evaluation score for each sample.

NIR spectroscopy

The acquisition of NIR spectroscopy for assessing the 
quality of soy sauces was performed according to a previ-
ous method (Wang et  al., 2021). Briefly, the NIR spectra 
were collected using diffuse reflectance mode (Cary 5000, 
Varian Corporation, California, USA) with the wavelength 
ranging from 400 to 2500 nm. All samples were scanned 
on the same day to ensure that all measurement condi-
tions were consistent, including ambient temperature and 
humidity. The pretreatment methods of spectra could be 
used to eliminate errors caused by disturbances, such as 
high-frequency random noise, baseline drift, and stray 
light, and to improve the reliability of the NIR model (Chen 
et al., 2013). In this work, nine pretreatments including first 
derivative (1st derivative), second derivative (2nd deriva-
tive), multiple scattering correction (MSC), and standard 
normal variate (SNV) methods, and combinations of these 
methods were employed into the spectrum processing, and 
the Savitsky–Golay algorithm with 10 points of smoothing 
was used to optimize the raw spectroscopic data.

Modelling and validation

The NIR predictive model was established by correlating 
the spectra and measured data with the aim to predict-
ing the values of unknown samples (Xie et al., 2009). In 
this study, all soy sauce samples were randomly separated 
into two subsets of 16 and 8 samples. The 16 samples 
were classified into the calibration set and used for model 
development and cross validation, while the other 8 sam-
ples were classified into the validation set and used to test 
the practical performance of the established models.

The measured indicators, sensory scores, and spectral 
data of calibration set were first used to establish the 

predictive model. The modelling process was performed 
by PLSR using the Unscrambler data processing soft-
ware (version 10.4, CAMO Software, Oslo, Norway). 
Subsequently, the established calibration models were 
validated by both internal full cross-validation and exter-
nal validation of the validation set (Cámara-Martos 
et al., 2012). The correction coefficient of determination 
(R2

c), root-mean-square error of correction (RMSEC), 
cross-validation coefficient of determination (R2

cv), and 
root-mean-square error of cross-validation (RMSECV) 
were calculated to clarify the performance. The valida-
tion set was further employed to evaluate the feasibility 
of calibration model according to prediction coefficient 
of determination (R2

p), root-mean-square error of predic-
tion (RMSEP), and deviation rate (bias). For these indexes, 
R2 indicates the degree of linear correlation between the 
predicted value from the model and the reference value. 
While RMSEC, RMSECV, and RMSEP represent the stan-
dard deviations between model predictions and reference 
values during model calibration, cross-validation, and 
independent validation, respectively. For the same batch 
of samples, the smaller values of RMSEC, RMSECV, and 
RMSEP indicate better model performance. The calcula-
tion of these indexes was as following:
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Where, k is the number of samples in the validation set 
used for model testing.

Bias i, predicted i, actual� ��1
k

y y( ) (5)

Where, k is the number of samples in the prediction set.

Among these equations, yi,actual denotes the measured 
value of the i-th sample, ŷi,actual denotes the average val-
ues in the calibration set (or validation set), and yi,predicted 
denotes the predicted value of the i-th sample.
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Statistical analysis

The means and standard deviation were calculated to 
analyze the sensory attributes in soy sauce samples tested. 
All the results were reported as mean ± standard devia-
tion of at least three measurements. The analysis of vari-
ance (ANOVA) was applied by using DPS software (Data 
Processing System, Hangzhou Rui feng Information 
Technology Co., Ltd., Zhejiang, China) to determine sig-
nificant differences between soy sauces. The statistical 
significance level was set at P < 0.05.

Results and Discussion

Sensory evaluation results

In the sensory evaluation, the highest score was 512 and 
the lowest score was 332 (Table 1). Samples with high 
taste and appearance scores tended to have high over-
all scores. According to the results of the sensory eval-
uation, the 24 samples were divided into two groups of 
12 with the higher-ranking samples in Group A and the 
lower-ranking samples in Group B.

Soy sauce composition

Color analysis

The results of color measurements are shown in Figure 1. 
L*, a*, b* are the three elements of the lab color space. L* 
indicates the brightness, with an L* value of 0 indicating 
pure black and an L* value of 100 indicating pure white. 
a* denotes the red index and indicates a spectral change 
from red to green. Larger positive values of a* indicate 
a reddish color and smaller negative values indicate a 
greenish color. The value of b* indicates a spectral change 
from yellow to blue, with larger positive values indicating 
a yellowish color and smaller negative values indicating a 
bluish color (Aliakbarian et al., 2016).

The a* values of soy sauce samples with higher rankings 
ranged from 0.2 to 1.0, and the b* values ranged from 
−0.1 to 0.4 (Figure 1). These results were within an appro-
priate range for the desired appearance of soy sauce. It is 
generally believed that as the Japanese soy sauce becomes 
redder (i.e., a larger a* value), the quality improves (Wang 
et  al., 2021). However, the results in this study showed 
that the a* value of Chinese soy sauce could vary within 
a certain range. Very high values of a* and b* will not 
improve the quality of soy sauce. The L* values of the soy 
sauce ranged from 2.6 to 3.2 (Table 2), and did not greatly 
contribute to its appearance.

Taste analysis

A certain amount of brine is usually added to soy sauce 
during the fermentation process to inhibit the growth of 
unwanted bacteria (Syifaa et al., 2016). The salt contents 
and Brix values of the 24 soy sauce samples are shown in 
Figure 2. The high-quality soy sauce samples had salt con-
tents between 12 and 17% and Brix values between 41 and 
47%. If the salt content is too high, it will adversely affect 
the taste and health benefits of the soy sauce (Bibbins-
Domingo et al., 2010). By contrast, if the salt content is 

Figure 1.  Measurements of a* and b* values of samples by 
using a CM-5 spectrophotometer. The numbering in figure is 
the same as the ranking in Table 1.

Table 1.  Reference data on the sensory scores of soy sauce.

Ranking Name Total score Taste Appearance

1 Factory A 512 121 140

2 Factory B 510 124 138

3 Factory C 509 128 130

4 Factory D 507 128 136

5 Factory E 507 127 129

6 Factory F 496 115 134

7 Factory G 494 116 135

8 Factory H 472 124 125

9 Factory I 467 116 128

10 Factory J 464 118 117

11 Factory K 462 122 115

12 Factory L 461 109 126

13 Factory M 458 119 116

14 Factory N 450 110 122

15 Factory O 448 107 113

16 Factory P 441 118 111

17 Factory Q 437 104 119

18 Factory R 423 113 107

19 Factory S 416 105 107

20 Factory T 410 83 99

21 Factory U 408 80 101

22 Factory V 382 100 87

23 Factory W 382 70 106

24 Factory X 332 78 109
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Table 2.  Average physicochemical compositions in soy sauce samples.

Rank a* b* L* Salt (%) Brix (%)

1 0.55 ± 0.06 −0.03 ± 0.02 2.64 ± 0.01 12.78 ± 0.15 46.66 ± 0.55

2 0.31 ± 0.02 0.25 ± 0.06 3.12 ± 0.04 15.57 ± 0.62 41.78 ± 1.61

3 0.51 ± 0.02 0.01 ± 0.03 2.84 ± 0.02 13.40 ± 0.06 45.79 ± 1.16

4 0.86 ± 0.04 0.36 ± 0.04 2.86 ± 0.01 15.45 ± 0.75 51.18 ± 0.97

5 0.23 ± 0.06 0.15 ± 0.02 2.71 ± 0.04 14.42 ± 0.17 43.29 ± 0.55

6 0.80 ± 0.03 0.33 ± 0.02 2.92 ± 0.02 13.97 ± 0.15 52.42 ± 0.57

7 0.14 ± 0.05 0.04 ± 0.04 2.83 ± 0.09 17.89 ± 0.06 41.45 ± 1.12

8 1.00 ± 0.06 0.07 ± 0.05 3.07 ± 0.01 15.78 ± 0.34 42.45 ± 1.45

9 0.96 ± 0.04 0.28 ± 0.04 3.54 ± 0.03 12.96 ± 0.32 41.33 ± 1.52

10 2.08 ± 0.03 1.24 ± 0.04 3.28 ± 0.01 14.45 ± 0.46 45.38 ± 0.97

11 0.70 ± 0.04 0.27 ± 0.01 2.99 ± 0.02 10.56 ± 0.16 32.86 ± 1.21

12 1.11 ± 0.03 0.43 ± 0.03 3.19 ± 0.02 13.46 ± 0.30 41.19 ± 0.54

13 2.06 ± 0.07 0.99 ± 0.05 3.69 ± 0.02 7.18 ± 0.15 37.66 ± 0.55

14 1.83 ± 0.03 1.06 ± 0.07 3.38 ± 0.01 11.90 ± 0.30 35.56 ± 1.15

15 1.40 ± 0.07 0.33 ± 0.01 3.42 ± 0.04 16.45 ± 0.86 40.41 ± 1.09

16 1.40 ± 0.02 0.63 ± 0.02 3.08 ± 0.01 15.56 ± 0.19 41.87 ± 0.53

17 1.48 ± 0.05 0.63 ± 0.02 3.03 ± 0.01 14.31 ± 0.11 52.31 ± 1.62

18 1.84 ± 0.03 0.83 ± 0.04 3.45 ± 0.06 13.24 ± 0.28 46.37 ± 0.53

19 2.09 ± 0.01 1.51 ± 0.02 4.62 ± 0.04 16.38 ± 0.00 32.36 ± 0.98

20 0.24 ± 0.02 −0.19 ± 0.03 1.34 ± 0.03 13.77 ± 0.26 56.24 ± 1.77

21 0.27 ± 0.07 −0.19 ± 0.05 2.19 ± 0.01 14.92 ± 0.72 54.19 ± 0.57

22 2.47 ± 0.03 1.11 ± 0.04 3.61 ± 0.01 15.55 ± 0.31 50.44 ± 0.56

23 −0.02 ± 0.02 −0.28 ± 0.04 2.12 ± 0.02 15.43 ± 0.21 40.63 ± 1.72

24 0.32 ± 0.04 0.13 ± 0.05 2.50 ± 0.01 16.27 ± 0.49 49.21 ± 0.01

Rank Moisture (%) Glucose* Galactose Oxalic acid Citric acid

1 59.11 ± 0.05 12.95 ± 0.56 ND 1.61 ± 0.05 5.12 ± 0.01

2 64.07 ± 0.03 5.76 ± 0.09 ND 0.54 ± 0.02 6.42 ± 0.15

3 63.52 ± 0.01 7.48 ± 0.05 ND 0.82 ± 0.05 17.21 ± 0.19

4 60.84 ± 0.01 11.01 ± 0.10 6.07 ± 0.15 0.59 ± 0.01 8.57 ± 0.03

5 61.46 ± 0.11 7.66 ± 0.24 ND 0.76 ± 0.04 11.59 ± 0.12

6 59.42 ± 0.04 6.54 ± 0.06 7.96 ± 0.29 0.61 ± 0.00 14.06 ± 0.18

7 60.52 ± 0.58 8.62 ± 0.08 ND 0.65 ± 0.02 9.74 ± 0.39

8 64.89 ± 0.09 3.25 ± 0.02 7.94 ± 0.43 1.69 ± 0.00 5.11 ± 0.19

9 63.31 ± 0.10 11.94 ± 0.21 6.85 ± 0.14 0.91 ± 0.04 15.15 ± 0.47

10 63.15 ± 0.08 10.85 ± 0.30 8.10 ± 0.11 0.94 ± 0.02 7.83 ± 0.16

11 72.76 ± 0.13 5.68 ± 0.16 4.34 ± 0.18 0.66 ± 0.02 5.29 ± 0.18

12 63.87 ± 0.57 12.51 ± 0.12 10.32 ± 0.14 2.44 ± 0.05 7.10 ± 0.33

13 66.52 ± 0.29 3.25 ± 0.03 4.46 ± 0.07 0.29 ± 0.01 6.33 ± 0.16

14 61.69 ± 0.11 13.22 ± 0.35 9.85 ± 0.37 1.05 ± 0.02 8.66 ± 0.45

15 67.33 ± 0.20 5.29 ± 0.05 ND 0.86 ± 0.01 6.40 ± 0.16

16 63.73 ± 0.10 10.86 ± 0.12 6.80 ± 0.37 0.91 ± 0.01 5.41 ± 0.13

17 60.82 ± 0.34 9.65 ± 0.36 8.35 ± 0.03 0.60 ± 0.00 14.03 ± 0.07

18 60.24 ± 0.10 10.55 ± 0.05 ND 0.97 ± 0.03 7.02 ± 0.12

19 71.03 ± 0.30 7.57 ± 0.10 3.75 ± 0.16 0.58 ± 0.02 5.05 ± 0.14

20 47.25 ± 0.39 18.57 ± 0.13 ND 30.08 ± 0.93 ND

21 51.30 ± 0.13 11.62 ± 0.13 ND 10.76 ± 0.92 6.83 ± 0.21

22 64.21 ± 0.01 11.28 ± 0.14 8.17 ± 0.14 0.85 ± 0.04 5.61 ± 0.43

23 61.32 ± 0.64 21.95 ± 0.34 ND 8.39 ± 0.14 ND

24 62.98 ± 0.11 5.81 ± 0.10 ND 1.82 ± 0.03 7.57 ± 0.32

(Continues)
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Table 2.  Continued.

Rank Tartaric acid Lactic acid Pyroglutamic acid Amino acid nitrogen

1 35.96 ± 0.97 3.97 ± 0.11 2.64 ± 0.05 1.06 ± 0.00

2 60.56 ± 1.95 16.87 ± 0.16 4.33 ± 0.05 0.93 ± 0.00

3 82.52 ± 1.19 12.05 ± 0.39 1.76 ± 0.08 1.01 ± 0.00

4 10.12 ± 0.04 ND 4.19 ± 0.14 1.05 ± 0.00

5 27.11 ± 0.37 ND 5.19 ± 0.03 1.08 ± 0.00

6 9.86 ± 0.13 ND 4.43 ± 0.05 1.05 ± 0.00

7 98.03 ± 3.60 ND 5.04 ± 0.07 1.01 ± 0.00

8 3.01 ± 0.12 9.66 ± 0.41 2.18 ± 0.06 0.88 ± 0.00

9 54.18 ± 2.31 ND 5.47 ± 0.20 1.07 ± 0.00

10 20.99 ± 0.59 ND 4.19 ± 0.14 0.98 ± 0.00

11 8.68 ± 0.36 17.78 ± 0.38 3.89 ± 0.08 0.72 ± 0.00

12 12.40 ± 0.28 22.73 ± 0.78 4.67 ± 0.10 0.90 ± 0.00

13 3.78 ± 0.15 8.67 ± 0.29 2.16 ± 0.04 0.85 ± 0.00

14 25.48 ± 0.92 ND 5.16 ± 0.19 0.91 ± 0.00

15 5.20 ± 0.13 6.09 ± 0.04 2.94 ± 0.06 0.79 ± 0.00

16 11.96 ± 0.34 ND 4.70 ± 0.12 1.10 ± 0.00

17 12.27 ± 0.05 ND 4.81 ± 0.20 0.93 ± 0.00

18 14.89 ± 0.36 15.21 ± 0.20 2.90 ± 0.04 0.52 ± 0.00

19 9.82 ± 0.33 4.18 ± 0.15 1.33 ± 0.05 0.48 ± 0.00

20 11.71 ± 0.30 ND 2.58 ± 0.02 1.00 ± 0.00

21 54.27 ± 2.09 ND 4.30 ± 0.13 0.98 ± 0.00

22 14.47 ± 0.59 9.42 ± 0.14 4.73 ± 0.13 1.09 ± 0.00

23 9.46 ± 0.46 ND 3.88 ± 0.09 0.66 ± 0.00

24 20.37 ± 0.89 ND 4.04 ± 0.09 0.78 ± 0.00

*The units of  organic acids, sugars, and amino acid nitrogen are g/kg; ND: not detected.

Figure 2.  Plots of salt content versus Brix content for soy 
sauces. The numbering in figure is the same as the ranking 
in Table 1.

too low, the growth of unwanted bacteria during the fer-
mentation process will not be inhibited and this affects 
the quality of the soy sauce (Taormina et al., 2010).

The moisture content affects both the fermentation pro-
cess of the soy sauce and the texture of the finished prod-
uct. The moisture contents of the soy sauce samples are 

shown in Table 2. The results showed that moisture con-
tents did not adversely affect the sensory quality of the 
soy sauce.

The pH values and amino acid nitrogen contents 
of the samples are shown in Figure 3. The pH of soy 
sauce affects its flavor, with a lower pH resulting in 
a more prominent sour taste. The pH values of the 
higher-quality soy sauces were all greater than 5.1, and 
the pH values of the lower-quality soy sauces were all 
less than 4.9. These results showed that higher acid-
ity might be detrimental to the taste of soy sauce. 
Amino acid nitrogen represents the nitrogen content 
of free amino acids in soy sauce, and amino acids 
are closely related to the umami taste of soy sauce 
(Yanfang and Wenyi, 2009). The average levels of 
amino acid nitrogen in Groups A and B were 0.978 and 
0.841 g/kg, respectively. The difference in the amino 
acid nitrogen between Groups A and B was signifi-
cant (P < 0.05), and this might be related to the taste 
results. Consequently, the samples with high sensory 
scores had high amino acid nitrogen contents, which 
supported the positive effect of the amino acid nitro-
gen content on the taste of soy sauce.
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Five organic acids including oxalic, citric, tartaric, lactic, 
and pyroglutamic acids were detected in this experiment 
(Table 2). Among these acids, tartaric acid had the high-
est content. The average contents of oxalic, citric, tar-
taric, lactic, and pyroglutamic acids were 1.018, 9.433, 
35.285, 6.922, and 3.998 g/kg, respectively, in Group A, 
and 4.763, 6.076, 16.14, 3.631, and 3.628 g/kg, respec-
tively, in Group B. These results showed that amino acid 
nitrogen, citric acid, tartaric acid, and lactic acid are ben-
eficial to the taste of soy sauce, while oxalic acid is det-
rimental to the taste of soy sauce and pyroglutamic acid 
has little effect on the taste of soy sauce.

The sugars in soy sauce provide sweetness and act as 
a source of carbon for other chemical reactions during 

fermentation (Chiou et  al., 1999; Kwak and Lim, 
2004). Both glucose and galactose were detected in the 
samples (Table 2), with glucose present at higher levels. 
Glucose was detected in all of the samples at 3.25–
21.95 g/kg. The average level in Group A (8.688  g/kg)  
was lower than that in Group B (10.802 g/kg). The 
lower level in Group A might be because glucose is 
an important carbon source that is consumed during 
the later stages of fermentation to produce some taste 
and flavor substances. This reduces the level of glucose 
and makes the overall flavor of the soy sauce richer. 
Galactose was detected in only 13 of the samples 
(Table  2) at 3.75–10.32 g/kg, and there was no signif-
icant correlation between the taste quality of the soy 
sauce and galactose. Overall, the physical and chemi-
cal properties could be used to objectively evaluate the 
quality of soy sauce.

Spectral analysis

In the NIR spectra (Figure 4), the samples showed mul-
tiple absorption peaks. Large differences were observed 
in the 400–800 nm region, which was probably because 
of the different colors of the soy sauce samples. All 
spectra showed large absorption peaks at 996–1134 nm, 
1134–1325 nm, 1800–1950 nm, and 2140–2380 nm. 
The first two absorption peaks corresponded to the C-O 
and O-H functional groups in alcohols and phenols, and 
the latter two were attributed to O-H, N-H, and C-H 
groups.

Figure 4.  Original near-infrared spectra of soy sauces tested.

Figure 3.  Plots of pH and amino acid nitrogen content 
for soy sauces. The numbering in figure is the same as the 
ranking in Table 1.
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Establishment and validation of the quantitative analysis 
models

PLSR was used to build the model, and nine preprocess-
ing methods (no treatment, 1st derivative, 2nd deriva-
tive, MSC, MSC + 1st derivative, MSC + 2nd derivative, 
SNV, SNV + 1st derivative, SNV + 2nd derivative) were 
used to improve the model accuracy. The data obtained 

by modelling and prediction using PLSR are shown in 
Table S1 Accuracy parameters for judging the quality of 
the PLSR models based on the calibration and valida-
tion sets of different components and sensory scores of soy 
sauce samples. When the NIR spectra were modelled 
using the total sensory evaluation score, the model had 
poor predictive performance as shown by the low R2

P 
and high RMSEP (Table 3). The four scores were then 

Table 3.  Accuracy parameters for judging the quality of the PLSR models based on the calibration and validation sets of sensory scores of 
soy sauce samples using the full spectrum.

Parameters Pretreatment LVs

Calibration Validation

R2
c RMSEC R2

cv RMSECV R2
p RMSEP Bias

Total sensory 
evaluation 
score

None 3 0.313 30.122 0.152 35.434 0.222 59.621 −1.310

1st derivative 2 0.339 29.531 0.228 33.805 0.228 59.420 3.733

2nd derivative 3 0.439 27.208 0.204 34.329 0.252 58.507 2.146

MSC 2 0.312 30.146 0.183 34.775 0.201 60.448 5.495

MSC + 1st derivative 2 0.345 29.400 0.236 33.623 0.218 59.823 2.104

MSC + 2nd derivative 3 0.434 27.333 0.196 34.498 0.234 59.197 1.189

SNV 2 0.315 30.065 0.188 34.666 0.228 59.444 4.525

SNV + 1st derivative 2 0.348 29.347 0.241 33.518 0.227 59.465 2.108

SNV + 2nd derivative 2 0.440 27.202 0.208 34.241 0.236 59.106 1.357

Taste score None 3 0.675 7.392 0.550 9.210 0.716 12.303 −1.281

1st derivative 2 0.677 7.367 0.590 8.789 0.713 12.381 1.589

2nd derivative 3 0.762 6.325 0.598 8.670 0.711 12.410 0.322

MSC 2 0.653 7.637 0.513 9.583 0.680 13.074 1.571

MSC + 1st derivative 1 0.564 8.560 0.524 9.476 0.733 11.930 1.486

MSC + 2nd derivative 1 0.563 8.572 0.509 9.615 0.727 12.058 1.016

SNV 2 0.656 7.609 0.523 9.486 0.702 12.603 1.348

SNV + 1st derivative 1 0.658 7.584 0.539 9.318 0.687 12.930 1.671

SNV + 2nd derivative 1 0.555 8.646 0.507 9.642 0.730 11.991 1.149

Amino acid 
nitrogen

None 5 0.78 0.081 0.51 0.129 NA 0.177 0.085

1st derivative 2 0.84 0.069 0.64 0.11 0.128 0.144 0.051

2nd derivative 4 0.96 0.034 0.604 0.1149 0.259 0.132 0.052

MSC 4 0.95 0.038 0.72 0.096 0.732 0.0796 −0.027

MSC + 1st derivative 2 0.75 0.087 0.610 0.114 NA 0.186 0.084

MSC + 2nd derivative 3 0.98 0.023 0.627 0.1116 0.451 0.114 0.049

SNV 4 0.97 0.030 0.730 0.095 0.785 0.071 −0.026

SNV + 1st derivative 2 0.74 0.087 0.607 0.1146 NA 0.186 0.083

SNV + 2nd derivative 3 0.99 0.021 0.626 0.1117 0.33 0.126 0.052

Moisture None 2 0.975 0.845 0.787 2.592 0.784 1.931 1.159

1st derivative 1 0.953 1.153 0.716 2.998 0.525 2.862 −0.361

2nd derivative 1 0.701 2.903 0.659 3.282 NA 7.084 −3.962

MSC 2 0.962 1.033 0.619 3.47 0.825 1.738 0.152

MSC + 1st derivative 1 0.955 1.132 0.831 2.312 0.703 2.261 −0.169

MSC + 2nd derivative 1 0.714 2.838 0.697 3.097 NA 7.428 −3.822

SNV 2 0.743 2.691 0.559 3.736 NA 6.698 −3.246

SNV + 1st derivative 1 0.956 1.119 0.793 2.559 0.689 2.314 −0.269

SNV + 2nd derivative 1 0.709 2.864 0.686 3.149 NA 7.286 −3.765

LVs, number of  latent variables; MSC, multiple scattering correction; NA, not available; R2
c, the correction coefficient of  determination; R2

cv, the coefficient 
of  determination in full cross-validation; R2

p, the coefficient of  determination for prediction; RMSEC, root mean square error of  correction; RMSECV, root 
mean square error of  cross-validation; RMSEP, root mean square error of  prediction; SNV: standard normal variate.
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modelled separately, and the model with the taste score 
was found to have the best predictive performance. 
The best taste score model was obtained using MSC + 
1st derivative, which had a R2

P of 0.733 and RMSEP of 
11.93 (Table 3). The appearance score model was simi-
lar to the total sensory evaluation score model and had 
poor predictive performance. The aroma score model 
and the texture score model gave no valid prediction set 
data, which indicated that they had poor feasibility. Each 
parameter that may affect the quality of soy sauce was 
modelled with the spectra, and the moisture and amino 
acid nitrogen contents had the best modelling results and 
predictive ability. The best moisture content model was 
developed using MSC and had a R2

P of 0.825 and RMSEP 
of 1.73. The best amino acid nitrogen content model was 
developed using SNV correction and had a R2

P of 0.785 
and RMSEP of 0.071. Both models had good predictive 
performance. The predictive performances of the models 
constructed using the remaining constituents were poor 
because either there was no valid prediction set data or 
the models had low R2

P and high RMSEP. In summary, 
the models for the moisture content, amino acid nitro-
gen content, and taste score had good predictive per-
formances and could be used to rapidly predict the soy 
sauce quality.

Amino acid nitrogen is the main umami substance in soy 
sauce. The taste analysis showed that soy sauce samples 
with high sensory scores and good taste also had high 
amino acid nitrogen contents. The good predictive abil-
ity of NIR spectroscopy for both the amino acid nitrogen 
content and taste score was likely related to the close 
relationship between these two components. Generally, 
high-quality soy sauce contains more amino acid nitro-
gen than low-quality soy sauce. This means that amino 
acid nitrogen is important for evaluating the quality of 
soy sauce.

Conclusions

The rich substances in soy sauce that are related to sen-
sory quality have brought new challenges on how to 
quantitatively evaluate its final quality. This study per-
formed a comprehensive investigation of physicochemi-
cal and sensory experiments on 24 commercial soy sauce 
samples in China. The contents of amino acid nitrogen, 
citric acid, tartaric acid, and lactic acid, beneficial for 
improving the quality of soy sauce, and the interaction 
between them were clarified. Glucose showed a negative 
effect on the soy sauce quality. Furthermore, with the aim 
to developing a rapid and objective method for predict-
ing the measured components and sensory scores of soy 
sauces, the feasibility of NIR spectroscopy was tested and 
validated by modelling with PLSR. The predictive models 
showed good performances on predicting the moisture 

content, amino acid nitrogen content, and the taste score 
of soy sauce, which were considered useful for classify-
ing the sensory quality of soy sauce quickly and econom-
ically. Finally, this work has some limitations, such as 
ignoring the aroma-producing compounds. Therefore, 
further studies should focus on analyzing the factors that 
may affect the quality of soy sauce, and improve the pre-
dictive performance for routine use.
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Supplementary

Table S1.  Accuracy parameters for judging the quality of the PLSR models based on the calibration and validation sets of different 
components and sensory scores of soy sauce samples.

Parameters Pretreatment LVs

Calibration Validation

R2
c RMSEC R2

cv RMSECV R2
p RMSEP Bias

Amino acid 
nitrogen

None 5 0.777 0.081 0.510 0.129 NA 0.177 0.085

1st derivative 2 0.840 0.069 0.640 0.110 0.128 0.144 0.051

2nd derivative 4 0.961 0.034 0.604 0.149 0.259 0.132 0.052

MSC 4 0.951 0.038 0.720 0.096 0.732 0.080 –0.027

MSC + 1st derivative 2 0.747 0.087 0.610 0.114 NA 0.186 0.084

MSC + 2nd derivative 3 0.982 0.023 0.627 0.116 0.451 0.114 0.049

SNV 4 0.969 0.030 0.730 0.095 0.785 0.071 –0.026

SNV + 1st derivative 2 0.745 0.087 0.607 0.146 NA 0.186 0.083

SNV + 2nd derivative 3 0.985 0.021 0.626 0.117 0.330 0.126 0.052

D-Galactose None 3 0.321 3.130 0.106 3.802 NA 4.781 3.466

1st derivative 2 0.353 3.054 0.220 3.551 NA 5.131 3.986

2nd derivative 2 0.274 3.235 0.155 3.696 NA 4.102 3.637

MSC 2 0.328 3.310 0.187 3.625 NA 5.158 4.248

MSC + 1st derivative 2 0.366 3.024 0.253 3.476 NA 5.012 3.826

MSC + 2nd derivative 2 0.271 3.243 0.155 3.697 NA 4.285 3.694

SNV 2 0.331 3.106 0.207 3.582 NA 5.088 4.136

SNV + 1st derivative 2 0.367 3.022 0.254 3.475 NA 4.997 3.825

SNV + 2nd derivative 2 0.262 3.263 0.142 3.728 NA 4.253 3.708

Glucose None 1 0.267 3.173 NA 3.946 0.352 4.657 1.690

1st derivative 1 0.262 3.183 0.040 3.844 0.445 4.310 1.316

2nd derivative 1 0.279 3.146 0.097 3.729 0.484 4.157 1.502

MSC 1 0.247 3.216 0.050 3.823 0.424 4.391 1.398

MSC + 1st derivative 1 0.276 3.153 0.088 3.747 0.531 3.966 1.337

MSC + 2nd derivative 1 0.287 3.128 0.136 3.647 0.585 3.728 1.443

SNV 1 0.248 3.213 0.053 3.818 0.418 4.415 1.391

SNV + 1st derivative 1 0.271 3.163 0.077 3.769 0.513 4.039 1.310

SNV + 2nd derivative 1 0.282 3.140 0.125 3.669 0.568 3.806 1.414

Oxalic acid None 4 0.990 0.691 0.611 4.570 NA 9.592 3.689

1st derivative 2 0.997 0.406 0.684 4.123 0.382 4.853 0.899

2nd derivative 3 0.928 1.862 0.424 5.563 NA 7.617 3.355

MSC 5 0.990 0.698 0.667 4.227 NA 7.955 3.086

MSC + 1st derivative 2 0.997 0.379 0.789 3.363 NA 9.785 3.831

MSC + 2nd derivative 3 0.959 1.404 0.604 4.611 NA 8.600 3.691

SNV 6 0.994 0.542 0.698 4.029 NA 9.000 3.897

SNV + 1st derivative 2 0.997 0.384 0.774 3.482 NA 9.602 3.713

SNV + 2nd derivative 3 0.952 1.509 0.576 4.773 NA 8.328 3.594

Lactic acid None 1 0.093 6.149 NA** 7.064 0.217 7.231 –1.553

1st derivative 1 0.080 6.193 0.018 6.778 0.202 7.301 –1.283

2nd derivative 1 0.066 6.242 0.034 6.721 0.173 7.431 –1.737

MSC 1 0.099 6.131 0.038 6.706 0.221 7.212 –1.418

MSC + 1st derivative 1 0.091 6.159 0.040 6.699 0.192 7.347 –1.330

MSC + 2nd derivative 1 0.074 6.215 0.047 6.676 0.156 7.506 –1.353

SNV 1 0.096 6.141 0.030 6.734 0.223 7.203 –1.384

(Continues)
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Table S1.  Continued.

Parameters Pretreatment LVs

Calibration Validation

R2
c RMSEC R2

cv RMSECV R2
p RMSEP Bias

SNV + 1st derivative 1 0.090 6.161 0.036 6.712 0.196 7.326 –1.304

SNV + 2nd derivative 1 0.074 6.214 0.046 6.679 0.161 7.484 –1.335

Citric acid None 1 0.163 3.856 NA 4.835 0.350 2.959 1.910

1st derivative 2 0.687 2.357 0.275 3.801 0.535 2.504 1.359

2nd derivative 3 0.986 0.500 2.706 3.813 0.404 2.833 1.135

MSC 1 0.097 4.007 NA 5.140 0.474 2.663 0.855

MSC + 1st derivative 4 0.673 2.410 0.261 3.838 0.624 2.250 0.947

MSC + 2nd derivative 5 0.950 0.941 0.402 3.453 NA 4.073 0.200 

SNV 1 0.126 3.941 NA 5.163 0.542 2.485 0.810 

SNV + 1st derivative 4 0.680 2.385 0.304 3.727 NA 5.088 0.487

SNV + 2nd derivative 5 0.950 0.943 0.406 3.441 NA 4.099 0.293

Moisture None 2 0.975 0.845 0.787 2.592 0.784 1.931 1.159

1st derivative 1 0.953 1.153 0.716 2.998 0.525 2.862 –0.361

2nd derivative 1 0.701 2.903 0.659 3.282 NA 7.084 –3.962

MSC 2 0.962 1.033 0.619 3.470 0.825 1.738 0.152

MSC + 1st derivative 1 0.955 1.132 0.831 2.312 0.703 2.261 –0.169

MSC + 2nd derivative 1 0.714 2.838 0.697 3.097 NA 7.428 –3.822

SNV 2 0.743 2.691 0.559 3.736 NA 6.698 –3.246

SNV + 1st derivative 1 0.956 1.119 0.793 2.559 0.689 2.314 –0.269

SNV + 2nd derivative 1 0.709 2.864 0.686 3.149 NA 7.286 –3.765

Brix None 1 0.459 4.777 0.341 5.585 NA 7.738 5.723

1st derivative 1 0.463 4.761 0.405 5.307 NA 7.714 5.181

2nd derivative 1 0.420 4.947 0.387 5.388 NA 8.234 5.475

MSC 1 0.446 4.824 0.345 5.569 NA 7.603 5.391

MSC + 1st derivative 1 0.443 4.849 0.397 5.343 NA 8.114 5.165

MSC + 2nd derivative 1 0.403 5.019 0.356 5.521 NA 8.658 5.294

SNV 1 0.456 4.792 0.358 5.514 NA 7.558 5.379

SNV + 1st derivative 1 0.451 4.812 0.403 5.315 NA 7.993 5.129

SNV + 2nd derivative 1 0.412 4.982 0.368 5.470 NA 8.547 5.264

L* None 2 0.690 0.365 0.559 0.462 NA 0.519 0.237

1st derivative 1 0.665 0.380 0.546 0.468 NA 0.486 0.227

2nd derivative 1 0.648 0.389 0.574 0.453 NA 0.467 0.182

MSC 1 0.674 0.374 0.569 0.456 NA 0.430 0.195

MSC + 1st derivative 1 0.684 0.369 0.614 0.432 NA 0.510 0.220

MSC + 2nd derivative 1 0.668 0.378 0.639 0.417 NA 0.537 0.197

SNV 1 0.677 0.373 0.572 0.455 NA 0.434 0.198

SNV + 1st derivative 1 0.685 0.369 0.606 0.436 NA 0.505 0.227

SNV + 2nd derivative 1 0.671 0.376 0.637 0.419 NA 0.529 0.203

b* None 1 0.436 0.372 0.354 0.421 NA 0.379 0.26

1st derivative 1 0.412 0.380 0.369 0.417 NA 0.429 0.318

2nd derivative 1 0.368 0.394 0.333 0.428 NA 0.402 0.300

MSC 1 0.439 0.371 0.400 0.406 NA 0.395 0.297

MSC + 1st derivative 1 0.392 0.386 0.346 0.424 NA 0.423 0.322

MSC + 2nd derivative 1 0.338 0.403 0.272 0.448 NA 0.414 0.316

SNV 1 0.444 0.369 0.406 0.404 NA 0.399 0.299

SNV + 1st derivative 1 0.399 0.384 0.354 0.421 NA 0.426 0.324

SNV + 2nd derivative 1 0.347 0.400 0.286 0.443 NA 0.416 0.318

(Continues)
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Table S1.  Continued.

Parameters Pretreatment LVs

Calibration Validation

R2
c RMSEC R2

cv RMSECV R2
p RMSEP Bias

a* None 1 0.474 0.479 0.425 0.530 NA 0.883 0.764

1st derivative 1 0.448 0.490 0.421 0.532 NA 0.965 0.842

2nd derivative 1 0.394 0.514 0.374 0.553 NA 0.939 0.818

MSC 1 0.468 0.482 0.452 0.518 NA 0.921 0.816

MSC + 1st derivative 1 0.433 0.497 0.403 0.540 NA 0.969 0.845

MSC + 2nd derivative 1 0.588 0.424 0.379 0.551 NA 0.929 0.833

SNV 1 0.472 0.480 0.457 0.515 NA 0.925 0.819

SNV + 1st derivative 1 0.440 0.494 0.412 0.536 NA 0.972 0.849

SNV + 2nd derivative 1 0.592 0.422 0.378 0.551 NA 0.934 0.835

Appearance 
score

None 3 0.359 10.948 0.223 12.770 0.189 11.320 –6.205

1st derivative 2 0.389 10.693 0.309 12.038 0.410 9.652 –4.902

2nd derivative 3 0.470 9.963 0.275 12.334 0.424 9.542 –5.610

MSC 2 0.338 11.128 0.229 12.715 0.418 9.590 –3.950

MSC + 1st derivative 2 0.374 10.821 0.294 12.168 0.334 10.256 –5.802

MSC + 2nd derivative 3 0.469 9.969 0.265 12.414 0.261 10.808 –6.382

SNV 2 0.340 11.113 0.230 12.712 0.425 9.531 –4.352

SNV + 1st derivative 2 0.376 10.808 0.298 12.134 0.362 10.037 –5.790

SNV + 2nd derivative 3 0.475 9.914 0.277 12.314 0.300 10.520 –6.303

Taste score None 3 0.675 7.392 0.550 9.210 0.716 12.303 –1.281

1st derivative 2 0.677 7.367 0.590 8.789 0.713 12.381 1.589

2nd derivative 3 0.762 6.325 0.598 8.670 0.711 12.410 0.322

MSC 2 0.653 7.637 0.513 9.583 0.680 13.074 1.571

MSC + 1st derivative 1 0.564 8.560 0.524 9.476 0.733 11.930 1.486

MSC + 2nd derivative 1 0.563 8.572 0.509 9.615 0.727 12.058 1.016

SNV 2 0.656 7.609 0.523 9.486 0.702 12.603 1.348

SNV + 1st derivative 1 0.658 7.584 0.539 9.318 0.687 12.930 1.671

SNV + 2nd derivative 1 0.555 8.646 0.507 9.642 0.730 11.991 1.149

Total sensory 
evaluation 
score

None 3 0.313 30.122 0.152 35.434 0.222 59.621 –1.310

1st derivative 2 0.339 29.531 0.228 33.805 0.228 59.420 3.733

2nd derivative 3 0.439 27.208 0.204 34.329 0.252 58.507 2.146

MSC 2 0.312 30.146 0.183 34.775 0.201 60.448 5.495

MSC + 1st derivative 2 0.345 29.400 0.236 33.623 0.218 59.823 2.104

MSC + 2nd derivative 3 0.434 27.333 0.196 34.498 0.234 59.197 1.189

SNV 2 0.315 30.065 0.188 34.666 0.228 59.444 4.525

SNV + 1st derivative 2 0.348 29.347 0.241 33.518 0.227 59.465 2.108

SNV + 2nd derivative 2 0.440 27.202 0.208 34.241 0.236 59.106 1.357

Texture score None 1 0.268 9.944 0.208 10.948 NA 25.978 5.527

1st derivative 1 0.321 9.578 0.187 11.095 NA 25.737 4.179

2nd derivative 2 0.997 0.616 0.130 11.475 NA 25.388 3.988

MSC 1 0.232 10.184 0.141 11.400 NA 25.102 4.235

MSC + 1st derivative 2 0.303 9.703 0.163 11.259 NA 24.821 3.354

MSC + 2nd derivative 3 0.429 8.778 0.181 11.136 NA 24.610 3.231

SNV 1 0.237 10.147 0.151 11.337 NA 25.213 4.210

SNV + 1st derivative 2 0.300 9.719 0.157 11.298 NA 24.824 3.296

SNV + 2nd derivative 3 0.429 8.778 0.149 11.351 NA 24.657 3.267

LVs, number of  latent variables; MSC, multiple scattering correction; NA, not available; R2
c, the correction coefficient of  determination; R2

cv, the coefficient 
of  determination in full cross-validation; R2

p, the coefficient of  determination for prediction; RMSEC, root mean square error of  correction; RMSECV, root 
mean square error of  cross-validation; RMSEP, root mean square error of  prediction; SNV: standard normal variate.


