RESEARCH ARTICLE

Decoding Hippophae rhamnoides’ action of mechanism in Sjögren’s syndrome: A network pharmacology and molecular docking study

Lu-yun Xia1, Zheng Luo1, Han-piao Xu1, Liu Liu1, Wen-ying Huai1, Jun Xia1, Qiao-zhi Yin2, Tian-e Zhang1,2*, Yun-hui Chen1

1College of Basic Medicine/College of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China;

2Key Biology Laboratory for TCM Viscera-Manifestation Research of Sichuan University, Chinese Medical Center of Chengdu University of TCM, Chengdu, China

These authors contributed equally to this work.

Abstract

This study aimed to decode the potential bioactive compounds and action mechanism of Hippophae rhamnoides in treating Sjögren’s syndrome using network pharmacology and molecular docking approach. The Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform (TCMSP) and HERB (a High--throughput Experiment- and Reference-guided database of TCM) database were used to identify the active components of -Hippophae rhamnoides and their targets. Databases, including GeneCards, Online Mendelian Inheritance (OMIM), and DisGeNET, were used to acquire the major targets of action in Sjögren’s syndrome. Venn diagrams were constructed to identify the compound gene targets. Then the Search Tool for the Retrieval of Interacting genes/proteins database (STRING) platform was used to build a protein–protein interaction (PPI) network to analyze the potential protein functional modules. Analysis of Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed through the Metascape platform to predict their biological processes and decipher the mechanism of action. The drug component–target–action pathway network was constructed through the Cytoscape 3.8.2 software. Furthermore, the AutoDock Vina software was used to perform molecular docking of core components and key targets, validating binding affinity between potential core components and key targets. Twenty-two Hippophae rhamnoide candidate compounds and 208 potential targets for Sjögren’s syndrome were acquired. The network analysis showed that the core active ingredients of Hippophae rhamnoides in regulating Sjögren’s syndrome were quercetin, kaempferol, and beta-sitosterol (β-sitosterol). Core targets included albumin (ALB), epidermal growth factor receptor (EGFR), Caspase-3 (CASP3), peroxisome proliferator-activated receptor gamma (PPAR-gamma or PPARG), estrogen receptor (ER) ESR1, heat shock protein HSP 90-alpha, EC 3.6.4.10 (HSP90AA1), plasminogen, EC 3.4.21.7 (PLG), MAPK14, MAPK8, and MAPK1. The KEGG analyses demonstrated that Hippophae rhamnoides could exert their functioning against Sjögren’s syndrome by reacting with the lipid and atherosclerosis signaling pathway and tumor necrosis factor (TNF) signaling pathway. Further, molecular docking analysis suggested that 10 compounds of Hippophae rhamnoides could be effective to treat Sjögren’s syndrome by matching five core genes to docking pockets. This study indicated that Hippophae rhamnoides’ functioning effects on Sjögren’s syndrome could be attributed to the regulation of a network comprising multi-targets, multi-compounds, and multi-pathways.

Key words: Hippophae rhamnoides, Sjögren’s syndrome, network pharmacology, molecular docking

*Corresponding authors: Tian-e Zhang and Yun-hui Chen, College of Basic Medicine/College of International -Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China. Emails: [email protected]; [email protected]

Received: 24 September 2022; Accepted: 28 November 2022; Published: 21 February 2023

DOI: 10.15586/qas.v15i1.1210

© 2023 Codon Publications
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). License (http://creativecommons.org/licenses/by-nc-sa/4.0/)

Introduction

Sjögren’s syndrome (SS) is a chronic autoimmune disease characterized by dysfunction and destruction of salivary and lacrimal glands associated with a wide range of systemic manifestations (Bombardieri et al., 2020). Males are 10 times more affected by this disease, and the reported mean age of onset is between 50 and 60 years. Various glandular manifestations are also observed in 30–50% of patients. The prevalence of primary Sjögren’s syndrome is inconsistent at around 1:1000–1:100 (Qin et al., 2015). In spite of all the efforts made, its pathogenesis remains poorly understood, and no well-acknowledged therapy that halts the progression of Sjögren’s syndrome has been available (Vivino et al., 2016). Therefore, there is an urgent need for research to develop novel pharmacological interventions.

Traditional Chinese medicine (TCM) contains various active ingredients and carries complex mechanisms of action to treat and prevent diseases. In the Chinese Pharmacopoeia 2020 edition, Hippophae rhamnoides has been described as a dried fruit of Hippophae rhamnoides L. that can strengthen the spleen, help digestion, arrest cough, eliminate phlegm, activate blood circulation, and disperse blood stasis. This edible medicinal fruit is of a food and medicine continuum and contains a wide variety of active ingredients, such as flavonoids, tannins, terpenoids, polysaccharides, and vitamins. These -pharmacological ingredients exert a wide range of pharmacological activities, including anti--inflammatory, antioxidant, hepato-protective, anti-obesity, anti--cardiovascular disorder properties as well as anti--bacterial potency (Gao-Shuang et al., 2121; Heinrich et al., 2021). Further, an increasing number of studies have reported that Hippophae rhamnoides may exert desirable therapeutic effects on Sjögren’s syndrome. However, its potential active ingredients and underlying mechanism remain elusive.

Network pharmacology has been considered a new approach to identify the mechanism of herb–-ingredient–target multimolecular synergy at the systemic level (Li and Zhang, 2013). Furthermore, the research strategy of network pharmacology embodies the TCM’s holistic view of the disease, providing new ideas and methods for relative research. Therefore, this study aimed at deciphering the Hippophae rhamnoides targets and potential -signaling pathways in the treatment of Sjögren’s syndrome by performing network pharmacologic and molecular docking study. The flow chart of the docking study is presented in Figure 1.

Figure 1. Flowchart of the study design.

Materials and methods

Hippophae rhamnoides’ chemical composition search and screening

The Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform (TCMSP) (http://tcmspw.com/tcmsp.php) is an online database used to filter the related targets and active ingredients of Hippophae rhamnoides. This database comprises 499 Chinese medicinal species and provides data about the absorption, distribution, metabolism, and excretion (ADME) properties of various ingredients (Ru et al., 2014). Oral bioavailability (OB) and drug-like (DL) properties are the foremost pharmacokinetic indicators (Huang et al., 2017). Oral bioavailability (OB) and drug-like (DL) properties are the foremost pharmacokinetic indicators (Huang et al., 2017). In this study, compounds with OB ndicatorinal speciesfrom Hippophae rhamnoides were selected as candidate components, and their corresponding target proteins were predicted by searching the HERB (High-throughput Experiment- and Reference-guided database of TCM; http://herb.ac.cn) database (Fang et al., 2021).

Construction of target networks of Hippophae rhamnoides’ components

Initially, active ingredients and targets of Hippophae rhamnoides were imported into the network visualization software Cytoscape 3.8.2 (Shannon et al., 2003). A network map of active ingredients and targets was constructed, and the core ingredients of Hippophae rhamnoides were screened.

Screening of Sjögren’s syndrome-related targets

The Online Mendelian Inheritance (OMIM; http://www.omim.org), the Human Gene Database (GeneCards; https://www.genecards.org), and DisGeNET (http://www.disgenet.org/) databases were screened using “Sjögren’s Syndrome” as keywords to identify the disease-related targets. After deduplication, a Venn diagram was drawn using active ingredient targets of Hippophae rhamnoides. Similarly, a Venn diagram was constructed using the disease targets of Sjögren’s syndrome with the microbiology letter online mapping tool (www.bioinformatics.com.cn) to obtain crossover genes as candidate genes.

Protein–protein interaction (PPI) network construction

A PPI network was constructed by importing the processed dataset into the Search Tool for the Retrieval of Interacting Genes/Proteins 11.5 (STRING) online database (https://string-db.org) and the Cytoscape 3.8.2 software. The Cytohubba plug-in of Cytoscape was utilized to screen out key genes.

Functional enrichment analysis

Gene ontology (GO) enrichment analysis was performed on target proteins obtained after network merging in the Metascape database (Zhou et al., 2019), and the R language toolkit was used to visualize biological processes, cellular components, molecular functions, and signaling pathways.

Compound–Target–Pathway (C-T-P) network construction

To further investigate the therapeutic mechanism of Hippophae rhamnoides in Sjögren’s syndrome, a C-T-P network was created using Cytoscape 3.8.2.

Molecular docking

Molecular docking was used to assess the binding activity of core compounds to key targets. Using core compounds as ligands and core target genes obtained from PPI network topology analysis as receptors, the AutoDock Vina 1.5.7 software developed by Olson’s research group in Scripps Research Institute (CA, USA) was applied for molecular docking (Trott and Olson, 2010). The top five targets of the PPI network and the top 10 core compounds of Hippophae rhamnoides were selected and downloaded from the RCSB PDB database (http://www.rcsb.org/) (Goodsell et al., 2020), while their chemical structures were downloaded from the TCMSP platform. The candidate compounds were converted to Program Database (PDB) format using AutoDock tools. The protein crystal structures of core target genes were pre--processed by dehydration, hydrogenation, modeling the missing loop regions, calculation of protein ionization, and protonation of protein structures. The compounds and proteins were converted into Protein Data Bank, Partial Charge (Q), & Atom Type (T) (PDBQT) format using AutoDock tool, and the position of each protein or its ligand was determined to figure out the active pocket of the protein. When the binding energy value is zero, the molecular proteins are considered to bind and interact spontaneously. Therefore, the lower the binding energy required for docking, the more stable the molecular conformation, and the best receptor-ligand binding complex is selected for visualization.

Results

Composition prediction of Hippophae rhamnoides

In all, 33 active compounds were screened using the requirements of OB ≥ 30% and DL ≥ 0; 18 and 22 active ingredients were obtained after deleting duplicates by searching the TCMSP database (Table 1). The active ingredients were entered into HERB to acquire drug target names, and 208 gene targets were obtained after removing duplications.

Table 1. Potential active compounds of Hippophae rhamnoides.

No. Molecular ID Molecular name OB (%) DL (%) Drug attribution
SJ1 MOL001004 Pelargonidin 37.99 0.21 Hippophae rhamnoides
SJ2 MOL010211 14,15-Dimethyl-alpha-sitosterol 43.14 0.78 Hippophae rhamnoides
SJ3 MOL010212 14-Methyl-alpha-sitosterol 43.49 0.78 Hippophae rhamnoides
SJ4 MOL010230 ST5330591 48.08 0.84 Hippophae rhamnoides
SJ5 MOL010240 Ergosta-7-en-3-beta-ol 38.76 0.83 Hippophae rhamnoides
SJ6 MOL010241 Ergostenol 35.41 0.71 Hippophae rhamnoides
SJ7 MOL001979 LAN 42.12 0.75 Hippophae rhamnoides
SJ8 MOL001420 ZINC04073977 38.00 0.76 Hippophae rhamnoides
SJ9 MOL001494 Mandenol 42.00 0.19 Hippophae rhamnoides
SJ10 MOL001510 24-Epicampesterol 37.58 0.71 Hippophae rhamnoides
SJ11 MOL002268 Rhein 47.07 0.28 Hippophae rhamnoides
SJ12 MOL002773 Beta-carotene 37.18 0.58 Hippophae rhamnoides
SJ13 MOL000354 Isorhamnetin 49.60 0.31 Hippophae rhamnoides
SJ14 MOL000358 Beta-sitosterol 36.91 0.75 Hippophae rhamnoides
SJ15 MOL000359 Sitosterol 36.91 0.75 Hippophae rhamnoides
SJ16 MOL000422 Kaempferol 41.88 0.24 Hippophae rhamnoides
SJ17 MOL000098 Quercetin 46.43 0.28 Hippophae rhamnoides
SJ18 MOL000433 Ferulic acid (FA) 68.96 0.71 Hippophae rhamnoides
SJ19 MOL000492 (+)-Catechin 54.83 0.24 Hippophae rhamnoides
SJ20 MOL006756 Schottenol 37.42 0.75 Hippophae rhamnoides
SJ21 MOL000073 Ent-Epicatechin 48.96 0.24 Hippophae rhamnoides
SJ22 MOL000953 CLR 37.87 0.68 Hippophae rhamnoides

Construction of target networks for Hippophae rhamnoides components

The network comprised 231 nodes (22 nodes for compounds, 208 nodes for targets, and one node for the herb) and 538 edges (Figure 2). Quercetin was connected to 161 targets with the highest degree of network connectivity, followed by kaempferol with 65 targets and β-sitosterol with 48 targets. The properties of this network were suitable for presenting complex compounds with multiple targets and compound–target interactions. The OBs of the three above-mentioned compounds were 46.43%, 41.88%, and 36.91%, respectively, suggesting that Quercetin, kaempferol, and β-sitosterol might be the potential key active compounds. Detailed information on the complex target network is provided in Supplementary Table S1.

Figure 2. Compound–target network. Yellow circles represent Hippophae rhamnoides, purple hexagons represent its active compounds, and red circles represent its related targets (IDs of the components are presented in Table 1).

Collection of Sjögren’s syndrome-related targets

A total of 2,185 Sjögren’s syndrome targets were integrated from multiple databases, including 643 targets from OMIM, 1,061 targets from GeneCards, and 481 targets from DisGeNET. After removing duplicates, a final list of 1,876 Sjögren’s syndrome-related targets was obtained (Table S2). In this study, 87 cross-targets were identified and collected for further mechanistic studies (Figure 3 and Table S3).

Figure 3. Venn diagram of intersection targets of Hippophae rhamnoides and Sjögren’s syndrome.

Potential target PPI network analysis

The STRING database was utilized to obtain the PPI network topology by importing 87 potential targets of Hippophae rhamnoides for improving Sjögren’s syndrome. The first 58 targets of the PPI network are shown in Figure 4. The network had 58 nodes and 269 edges with an average node degree of 9.276 and an average local clustering coefficient of 0.597. The built-in Network Analyzer function in Cytoscape 3.8.2 demonstrated that ALB, epidermal growth factor receptor (EGFR), epidermal growth factor receptor/Caspase-3 (CASP3), peroxisome proliferator-activated receptor gamma (PPARG), and estrogen receptor (ESR1) were the targets with large values and were of 43°, 28°, 25°, 24°, and 22°, respectively. It suggested that the efficacy mechanism of Hippophae rhamnoides in treating Sjögren’s syndrome could be closely related to these proteins.

Figure 4. Protein–protein interaction network of Hippophae rhamnoides for Sjögren’s syndrome.

Potential targets of GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway-enrichment analysis

The Metascape database and the R language toolkit were adopted to perform the GO and KEGG pathway-enrichment analysis of Hippophae -rhamnoides in treating Sjögren’s syndrome. The biological processes (BP) involved in the GO-enrichment results were mainly responses to inorganic substances and lipopolysaccharides, negative regulation of cell population proliferation, positive regulation of cell death and cell migration, response to radiation and nutrient levels, and cellular response to organic cyclic compounds (Figure 5A). Relevant cellular components (CC) included were membrane raft, vesicle lumen, transcription regulator complex, side of membrane, extracellular matrix, myelin sheath, and endocytic vesicle (Figure 5B). The molecular functions (MF) involved cytokine receptor binding, protein homodimerization activity, DNA-binding transcription factor binding, protein structure, transcription factor binding, protein domain-specific binding, and oxidoreductase activity (Figure 5C). The KEGG pathway analysis suggested that 171 KEGG pathways were significantly enriched with the potential therapeutic targets of Hippophae rhamnoides. Key pathways with high P-values and literature of relative diseases were extracted, and the 14 pathways closely associated with Sjögren’s syndrome were displayed, with lipid and atherosclerosis, and tumor necrosis factor (TNF) signaling pathway as the top two pathways (Figure 5D).

Figure 5. Gene ontology analysis for (A) BP, (B) CC, and (C) MF and pathway enrichment. (D) KEGG analysis of Hippophae rhamnoides–Sjögren’s syndrome overlapping target genes.

The component–target–pathway network diagram

The network analysis revealed that the top five targets in the highest degree were transcription factor p65 (RELA), AKT1, CASP8, CASP3, and transcription factor Jun (JUN), and the top five active ingredients in the highest degree were quercetin, kaempferol, β-sitosterol, folic acid, and isorhamnetin (Figure 6). It was indicated that these were the important components and targets of Hippophae rhamnoides for its potential therapeutic effect on Sjögren’s syndrome.

Figure 6. Component–target–pathway network. Blue circles represent active ingredients of Hippophae rhamnoides; green -circles represent signaling pathways of Sjögren’s syndrome; and purple circles represent the targets.

Molecular docking

The top 10 active compounds obtained from the analysis of component target network were docked with the five potential core targets, ALB, EGFR, CASP3, PPARG, and ESR1, obtained from the PPT network analysis. Detailed information on compounds and targets is demonstrated in Table 2 and Figure 7. Binding energies are presented in Table 3. When the binding activity was less than 0, the ligand molecule could spontaneously bind to the receptor protein. The ligand molecule had the desired binding affinity if the binding energy was less than –5.0 kJ-mol–1 (Yang et al., 2021). It was observed that all compound–target pairs had zero binding energy, suggesting that each core compound had good binding affinities for the first five targets. Docking pattern analysis was also performed for strong docking binding activity, as shown in Figure 8. The docking predictions might provide an initial basis for further drug target studies.

Table 2. Core active compounds of Hippophae rhamnoides .

Molecule ID Molecule name Degree Source
MOL000098 Quercetin 162 SJ17
MOL000422 Kaempferol 66 SJ16
MOL000358 Beta_sitosterol 49 SJ14
MOL000433 Ferulic acid (FA) 43 SJ18
MOL000354 Isorhamnetin 32 SJ13
MOL000359 Sitosterol 22 SJ15
MOL000073 Ent_Epicatechin 22 SJ21
MOL002773 Beta_carotene 22 SJ12
MOL001004 Pelargonidin 20 SJ1
MOL002268 Rhein 16 SJ11

Table 3. The binding energy values of core compounds of Hippophae rhamnoides and core targets.

Molecule name ALB (6r7s) binding affinity (KJ-mol–1) EGFR (6lud) binding affinity (KJ-mol–1) CASP3 (7rnd) binding affinity (KJ-mol–1) PPARG (7jqg) binding affinity (KJ-mol–1) ESR1 (6vgh) binding affinity (KJ-mol–1)
Kaempferol –8.2 –6.9 –7.4 –7.2 –7.1
Ferulic acid (FA) –8.4 –6.7 –8.0 –7.6 –7.7
Isorhamnetin –8.2 –5.6 –7.6 –7.8 –6.8
Pelargonidin –7.5 –5.9 –7.1 –7.2 –7.3

Figure 7. Three-dimensional (3D) structural diagram of the top five target proteins.

Figure 8. Molecular docking patterns of active components with ALB, CASP3, and PPARG.

Discussion

Owing to complexity, heterogeneity, and poorly defined active parameters of Sjögren’s syndrome, only a few treatment options are available, although it is one of the most common collagen diseases. TCM has demonstrated a desirable therapeutical potential for Sjögren’s syndrome, and the edible medicinal Hippophae rhamnoides has a variety of active ingredients with substantial anti--inflammatory, antioxidant, and immunity--enhancing properties. However, the composition of TCM is complicated, and its active ingredients are unclear in pharmacology and clinical practice, as specific target genes or proteins for drug action have not been identified completely. Network pharmacology combines system network analysis and pharmacology and may facilitate the systematic molecular study of effective components, targets, and pathways of herbs.

In the present study, the TCM active component–-target network analysis revealed that quercetin, kaempferol, β-sitosterol, FA, and isorhamnetin could act on multiple targets in the network, indicating that these components of Hippophae rhamnoides may exert therapeutic effects on Sjögren’s syndrome. Quercetin has been reported to exert significant improving effects on the loss of saliva flow, salivary gland damage, and inflammatory response in non-obese diabetic (NOD)/Ltj mice. Furthermore, it blocked the increased expression of obesity receptors and its downstream Janus kinase 2/signal transducer and activator of transcription 3 signaling in the salivary glands (Chang et al., 2022). Kaempferol inhibits the nuclear factor kappa B (NF-κB) binding activity of DNA and myeloid differentiation factor 88 and suppresses the release of interleukin 6 (IL-6), IL-1β, IL-18, and TNF-α, enhancing messenger RNA (mRNA) and protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated genes, and restraining the toll-like receptor 4 (Nam et al., 2017; Saw et al., 2014; Tang et al., 2015; Zhang et al., 2017). β-sitosterol may treat Sjogren’s syndrome with an improved prognosis by enhancing the expression of cholinergic receptor muscarinic 3 (CHRM3) and stimulating salivary secretion (Wu et al., 2022). Isorhamnetin can significantly improve innate immunity (Wang et al., 2012) and effectively down-regulate TNF-α, IL-6, and IL-1β and up-regulate IL-10 to reduce inflammatory responses (Zhang et al., 2017).

In the PPI network, 58 targets of Hippophae rhamnoides were identified to act in Sjögren’s syndrome, and the top 10 targets based on node degree were ALB, EGFR, CASP3, PPARG, ESR1, HSP90AA1, PLG, MAPK14, MAPK8, and MAPK1. These core proteins have potent therapeutic effects in Sjögren’s syndrome. Among them, increasing evidence has suggested that the EGFR pathway could have a significant impact on the inflammatory/immune reactions of epithelial cells. The EGFR-extracellular-signal-regulated kinase pathway plays a role in the pro-inflammatory responses mounted by Sjögren’s syndrome salivary gland epithelial cells (Sisto et al., 2015). While CASP3 is closely linked with autoimmunity (Lin et al., 2011), various studies have suggested that PPAR-γ agonists might exert anti-inflammatory activities by inhibiting production of cytokines in a variety of mouse models in chronic inflammatory and autoimmune diseases. Beauregard and Brandt (2003) found that PPAR-α and PPAR-γ can inhibit IL-1β-induced production of nitric oxide (NO) in cultured lacrimal gland acinar cells, suggesting PPAR agonists as useful therapeutic agents for preventing dry eye disease because of NO-mediated lacrimal gland damage. Results of the above research highlight that Hippophae rhamnoides may exert anti-Sjögren’s syndrome activity by modulating such core targets as EGFR, CASP3, and PPARG.

Gene ontology and KEGG-enrichment analysis of the 87 potential targets were performed to predict the mechanism underlying the therapeutic effect of Hippophae rhamnoides in Sjögren’s syndrome. The results showed that the 20 most significantly enriched BP terms were mainly responses to inorganic substances, lipopolysaccharides, and reactive oxygen species. Numerous studies have proposed that the onset and development of Sjögren’s syndrome are related to the activated immune system and the epithelial cells, targets, and players of autoimmune responses (Bombardieri et al., 2020). The enriched MFs included cytokine receptor binding, transcription factor, mitogen-activated protein kinase (MAPK), and integrin; heme-binding cytokine receptor binding, DNA-binding transcription factor binding, endo-peptidase activity, protein homo-dimerization activity, and protein structure. Further, the enriched CCs covered membrane raft, vesicle lumen, transcription regulator complex, side of membrane, extracellular matrix, and myelin sheath. These findings also illustrate the complexity of the pathological mechanism of Sjögren’s syndrome. To decode the potential mechanism of Hippophae rhamnoides in treating Sjögren’s syndrome, KEGG analysis of the 87 potential targets of Hippophae rhamnoides was conducted. The pathways related to Sjögren’s syndrome involved lipid and atherosclerosis, TNF-signaling pathway, and pancreatic cancer. Atherosclerosis is a major cause of cardiovascular disease involving autoimmune reactions and inflammation in its pathogenesis. During the early onset of atherosclerosis, inflammatory cells (monocytes, macrophages, dendritic cells, and T- and B-cells), and cytokines can be identified in the lesion area, and these cells may provoke cell-mediated immune reactions that (i) modulate the development of atherosclerosis and may (ii) predetermine its progression (Frostegård, 2002; Jonasson et al., 1997). TNF-α is mainly activated by macrophages and lymphocytes, and generated in salivary epithelial cells (Sisto et al., 2009). Several studies indicated that TNF-α plays an important role in the pathogenesis of Sjögren’s syndrome, as it is up-regulated in both plasma and salivary glands of patients with Sjögren’s syndrome as well as major salivary glands of animal models of Sjögren’s syndrome (Humphreys-Beher et al., 1994, 1998). These studies also propose that Hippophae rhamnoides can act on Sjögren’s syndrome at multiple levels through signaling pathway networks that are mediated by direct or indirect targets (Figure 9).

Figure 9. Potential target proteins of Hippophae rhamnoides regulating Sjögren’s syndrome on the predicted pathways (pink nodes are potential target proteins of Hippophae rhamnoides, and green nodes are relevant targets in the pathway).

According to the herb-active ingredient-target network and PPI network results, we selected five active ingredients and five key target genes for docking. The docking results showed that these compounds could bind stably to the active pocket of key protein, suggesting that Hippophae rhamnoides may treat Sjögren’s syndrome by inhibiting ALB, EGFR, CASP3, PPARG, and ESR1 (Figure 9).

Conclusion

This study deciphered the potential mechanism of Hippophae rhamnoides in treating Sjögren’s syndrome based on network pharmacology and molecular docking approach. Compounds such as quercetin, kaempferol, and β-sitosterol may play a critical role in treating Sjögren’s syndrome by affecting ALB, EGFR, CASP3, PPARG, and ESR1. Furthermore, the molecular docking study also demonstrated that the active components of Hippophae rhamnoides might dock well with ALB, EGFR, CASP3, PPARG, and ESR1. However, owing to the limitations of network pharmacology, further experimental investigations and verifications are warranted.

Author Contributions

TEZ, YHC, and LUX: conceptualization. ZL,YHC, and HPX: methodology and visualization. WYH, LL, XJ, and QZY: software. YHC , XLY and ZL: writing-original draft. YHC and TEZ: writing-review and editing. TEZ and QZY: supervision and project administration. All authors have read and agreed to the published version of the manuscript.

REFERENCES

Beauregard, C. and Brandt, P.C., 2003. Peroxisome proliferator--activated receptor agonists inhibit interleukin-1beta-mediated nitric oxide production in cultured lacrimal gland acinar cells. Journal of Ocular Pharmacology and Therapeutics 19(6): 579–587. 10.1089/108076803322660495

Bombardieri, M., Argyropoulou, O.D., Ferro, F., Coleby, R., Pontarini, E., Governato, G., Lucchesi, D., Fulvio, G., Tzioufas, A.G. and Baldini, C., 2020. One year in review 2020: pathogenesis of primary Sjögren’s syndrome. Clinical and Experimental Rheumatology 38(Suppl 126(4)): 3–9.

Chang, L., Kong, A., Guo, Y., et al., 2022. Quercetin ameliorates salivary gland apoptosis and inflammation in primary Sjögren’s syndrome through regulation of the leptin/OB-R signaling. Drug Development and Research 83(6): 1351–1361. 10.1002/ddr.21964

Fang, S., et al., 2021. HERB: a high-throughput experiment-and-reference-guided database of traditional Chinese medicine. Nucleic Acids Research 49(D1): D1197–D1206. 10.1093/nar/gkaa1063

Frostegård, J., 2002. Autoimmunity, oxidized LDL and cardiovascular disease. Autoimmunity Reviews 1(4): 233–237. 10.1016/S1568-9972(02)00059-9

Goodsell, D.S., et al., 2020. RCSB protein data bank: enabling biomedical research and drug discovery. Protein Science 29(1): 52–65. 10.1002/pro.3730

Heinrich, M, Yao, R. and Xiao, P. 2021. ‘Food and medicine-continuum’—why we should promote cross-cultural communication between the global East and West. Chinese Herbal Medicines 14(1): 3–4. 10.1016/j.chmed.2021.12.002

Hu, Gao-Shuang, et al., 2021. Current situation of research, development and utilization of seabuckthorn active substances. Food research and development 42(03): 218–224. CNKI:SUN:SPYK.0.2021-03-038

Huang, C., et al., 2017. Large-scale cross-species chemogenomic platform proposes a new drug discovery strategy of veterinary drug from herbal medicines. PLoS One 12(9): e0184880. 10.1371/journal.pone.0184880

Humphreys-Beher, M.G., et al., 1994. Utilization of the non-obese diabetic (NOD) mouse as an animal model for the study of secondary Sjögren’s syndrome. Advances in Experimental Medicine and Biology 350: 631–636. 10.1007/978-1-4615-2417-5_105

Humphreys-Beher, M.G., et al., 1998. Salivary gland changes in the NOD mouse model for Sjögren’s syndrome: is there a non-immune genetic trigger? European Journal of Morphology 36(Suppl): 247–251.

Jonasson, L., et al., 1997. Lipoprotein(a) and HLA-DRB1 and HLA-DQB1 genes in coronary artery disease. Atherosclerosis 133(1): 111–114. 10.1016/S0021-9150(97)00101-9

Li, S. and Zhang, B., 2013. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chinese Journal of Natural Medicines 11(2): 110–120. 10.3724/SP.J.1009.2013.00110

Lin, X., et al., 2011. Dendrobium officinale polysaccharides ameliorate the abnormality of aquaporin 5, pro-inflammatory cytokines and inhibit apoptosis in the experimental Sjögren’s syndrome mice. International Immunopharmacology 11(12): 2025–32. 10.1016/j.intimp.2011.08.014

Nam, S.Y., Jeong, H.J. and Kim, H.M., 2017. Kaempferol impedes IL-32-induced monocyte-macrophage differentiation. Chemico-Biological Interactions 274: 107–115. 10.1016/j.cbi.2017.07.010

Qin, B., et al., 2015. Epidemiology of primary Sjögren’s syndrome: a systematic review and meta-analysis. Annals of the Rheumatic Diseases 74(11): 1983–1989. 10.1136/annrheumdis-2014-205375

Ru, J., et al., 2014. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics 6: 13. 10.1186/1758-2946-6-13

Saw, C.L., et al., 2014. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway. Food and Chemical Toxicology 72: 303–311. 10.1016/j.fct.2014.07.038

Shannon, P., et al., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13(11): 2498–2504. 10.1101/gr.1239303

Sisto, M., et al., 2009. Tumor necrosis factor inhibitors block apoptosis of human epithelial cells of the salivary glands. Annals of the New York Academy of Sciences 1171: 407–414. 10.1111/j.1749-6632.2009.04688.x

Sisto, M., et al., 2015. The metalloproteinase ADAM17 and the epidermal growth factor receptor (EGFR) signaling drive the inflammatory epithelial response in Sjögren’s syndrome. Clinical and Experimental Medicine 15(2): 215–25. 10.1007/s10238-014-0279-4

Tang, X.L., et al., 2015. Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts. Inflammation 38(1): 94–101. 10.1007/s10753-014-0011-2

Trott, O. and Olson, A.J., 2010. AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computa-tional Chemistry 31(2): 455–461. 10.1002/jcc.21334

Vivino, F.B., et al., 2016. New treatment guidelines for Sjögren’s-disease. Rheumatic Disease Clinics of North America 42(3): 531–551. 10.1016/j.rdc.2016.03.010

Wang, H., et al., 2012. Effect of the Miaoyao Fanggan sachet--derived isorhamnetin on TLR2/4 and NKp46 expression in mice. Journal of Ethnopharmacology 144(1): 138–144. 10.1016/j.jep.2012.08.040

Wu, F., Wu, G., Li, T., Lu, W., Fu, T., Zhang, Z., 2022, Aug 23. Exploring the target and mechanism of Radix Paeoniae Alba on Sjogren’s syndrome. Combinatorial Chemistry & High Throughput Screening. Published online ahead of print. 10.2174/1386207325666220823144054

Yang, L., et al., 2021. Melatonin: multi-target mechanism against diminished ovarian reserve based on network pharmacology. Frontiers in Endocrinology (Lausanne) 12: 630504. 10.3389/fendo.2021.630504

Zhang, R., et al., 2017. Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways. Biomedicine & Pharmacotherapy 89: 660–672. 10.1016/j.biopha.2017.02.081

Zhou, Y., et al., 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications 10(1): 1523.

Supplementary

Table S1. Chemical composition

Mol ID Molecule Name MW AlogP Hdon Hacc OB(%) DL FASA- HL
MOL001004 Pelargonidin 271.26 1.933 4 5 37.99 0.21 94.05999756 0.479802
MOL010211 14,15-dimethyl-alpha-sitosterol 454.86 8.611 1 1 43.14 0.78 20.22999954 5.899813
MOL010212 14-methyl-alpha-sitosterol 440.83 8.36 1 1 43.49 0.78 20.22999954 6.040801
MOL010227 Canthaxanthine 564.92 9.716 0 2 41.59 0.56 34.13999939 3.866396
MOL010228 carotenoid 568.96 9.465 2 2 40.76 0.55 40.45999908 4.912507
MOL010230 ST5330591 490.84 9.419 0 2 48.08 0.84 26.29999924 8.119666
MOL010232 cislycopene 536.96 12.761 0 0 45.51 0.54 0 6.574152
MOL010234 delta-Carotene 536.96 12.185 0 0 31.80 0.55 0 2.616793
MOL010240 ergosta-7-en-3-beta-ol 472.96 9.76 0 1 38.76 0.83 9.229999542 3.496122
MOL010241 ergostenol 400.76 7.822 1 1 35.41 0.71 20.22999954 4.490605
MOL010247 (2R,6S,7aR)-2-[(1E,3E,5E,7E,9E,11E,13E,15E)-16-[(1R,4R)-4-hydroxy-2,6,6-trimethyl-1-cyclohex-2-enyl]-1,5,10,14-tetramethylhexadeca-1,3,5,7,9,11,13,15-octaenyl]-2,4,4,7a-tetramethyl-6,7-dihydro-5H-benzofuran-6-ol 598.99 8.447 2 3 57.88 0.53 49.68999863 16.66617
MOL010248 gamma-carotene 536.96 12.38 0 0 30.98 0.55 0 3.972945
MOL001979 LAN 426.8 8.12 1 1 42.12 0.75 20.22999954 5.835494
MOL010267 LYC 536.96 12.761 0 0 32.57 0.51 0 3.423468
MOL010283 ZINC03831331 450.77 10.251 0 2 47.60 0.65 34.13999939 28.4009
MOL001420 ZINC04073977 412.77 7.758 0 1 38.00 0.76 17.06999969 5.450883
MOL001494 Mandenol 308.56 6.991 0 2 42.00 0.19 26.29999924 5.385969
MOL001510 24-epicampesterol 400.76 7.628 1 1 37.58 0.71 20.22999954 4.496849
MOL002268 284.23 1.878 3 6 47.07 0.28 111.9000015 32.11726
MOL002588 (3S,5R,10S,13R,14R,17R)-17-[(1R)-1,5-dimethyl-4-methylenehexyl]-4,4,10,13,14-pentamethyl-2,3,5,6,7,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol 440.83 8.426 1 1 42.37 0.77 20.22999954 5.408929
MOL002773 beta-carotene 536.96 11.999 0 0 37.18 0.58 0 4.357938
MOL000354 isorhamnetin 316.28 1.755 4 7 49.60 0.31 120.3600006 14.33926
MOL000358 beta-sitosterol 414.79 8.084 1 1 36.91 0.75 20.22999954 5.355491
MOL000359 sitosterol 414.79 8.084 1 1 36.91 0.75 20.22999954 5.371091
MOL000422 kaempferol 286.25 1.771 4 6 41.88 0.24 111.1299973 14.74337
MOL000433 FA 441.45 0.007 7 13 68.96 0.71 213.2799988 24.81124
MOL000449 Stigmasterol 412.77 7.64 1 1 43.83 0.76 20.22999954 5.574595
MOL000492 (+)-catechin 290.29 1.92 5 6 54.83 0.24 110.3799973 0.609577
MOL005100 5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one 302.3 2.281 3 6 47.74 0.27 96.22000122 16.51482
MOL006756 Schottenol 414.79 8.084 1 1 37.42 0.75 20.22999954 5.632795
MOL000073 ent-Epicatechin 290.29 1.92 5 6 48.96 0.24 110.3799973 0.626389
MOL000953 CLR 386.73 7.376 1 1 37.87 0.68 20.22999954 4.518834
MOL000098 Quercetin 302.25 1.504 5 7 46.43 0.28 131.3600006 14.4005

Drug target

MOLID ID Genename
MOL001004 SJ1 ACHE
MOL001004 SJ1 AR
MOL001004 SJ1 CA2
MOL001004 SJ1 NR3C1
MOL001004 SJ1 NR3C2
MOL001004 SJ1 NOS2
MOL001004 SJ1 PGR
MOL001004 SJ1 PTGS1
MOL001004 SJ1 PTGS2
MOL001004 SJ1 RXRA
MOL001004 SJ1 NCOA1
MOL001004 SJ1 NCOA2
MOL001004 SJ1 MAPK14
MOL001004 SJ1 CHEK1
MOL001004 SJ1 CDK2
MOL001004 SJ1 PPARG
MOL001004 SJ1 DPP4
MOL001004 SJ1 ESR1
MOL001004 SJ1 CCNA2
MOL001004 SJ1 ESR2
MOL001004 SJ1 PIM1
MOL010211 SJ2 ESR1
MOL010211 SJ2 AR
MOL010212 SJ3 PGR
MOL010212 SJ3 ESR1
MOL010212 SJ3 AR
MOL010230 SJ4 ESR1
MOL010240 SJ5 AR
MOL010241 SJ6 PGR
MOL010241 SJ6 NCOA2
MOL010241 SJ6 AR
MOL010241 SJ6 ESR1
MOL001979 SJ7 NR3C2
MOL001979 SJ7 PGR
MOL001979 SJ7 NCOA2
MOL001979 SJ7 NR3C1
MOL001979 SJ7 AR
MOL001979 SJ7 ESR1
MOL001420 SJ8 PGR
MOL001420 SJ8 PTGS2
MOL001420 SJ8 NR3C1
MOL001420 SJ8 PRSS1
MOL001420 SJ8 DPP4
MOL001420 SJ8 ESR1
MOL001420 SJ8 AR
MOL001420 SJ8 GABRA1
MOL001420 SJ8 ACHE
MOL001494 SJ9 PTGS1
MOL001494 SJ9 PTGS2
MOL001494 SJ9 ACHE
MOL001494 SJ9 PPARG
MOL001494 SJ9 NCOA2
MOL001494 SJ9 DPP4
MOL001510 SJ10 PGR
MOL001510 SJ10 AR
MOL001510 SJ10 ESR1
MOL001510 SJ10 NCOA2
MOL002268 SJ11 AKR1B1
MOL002268 SJ11 JUN
MOL002268 SJ11 PTGS1
MOL002268 SJ11 PTGS2
MOL002268 SJ11 PPARG
MOL002268 SJ11 NCOA2
MOL002268 SJ11 CHEK1
MOL002268 SJ11 AR
MOL002268 SJ11 DPP4
MOL002268 SJ11 ESR2
MOL002268 SJ11 ESR1
MOL002268 SJ11 DPEP1
MOL002268 SJ11 CDK2
MOL002268 SJ11 MAPK14
MOL002268 SJ11 NOS2
MOL002268 SJ11 CCNA2
MOL002268 SJ11 GSK3B
MOL002268 SJ11 CA2
MOL002268 SJ11 PIM1
MOL002773 SJ12 AKT1
MOL002773 SJ12 ALB
MOL002773 SJ12 BCL2
MOL002773 SJ12 CASP3
MOL002773 SJ12 CASP7
MOL002773 SJ12 CASP8
MOL002773 SJ12 CASP9
MOL002773 SJ12 CAV1
MOL002773 SJ12 CTNNB1
MOL002773 SJ12 CYP1A2
MOL002773 SJ12 CYP3A4
MOL002773 SJ12 F3
MOL002773 SJ12 GJA1
MOL002773 SJ12 HMOX1
MOL002773 SJ12 JUN
MOL002773 SJ12 MMP1
MOL002773 SJ12 MMP2
MOL002773 SJ12 MMP10
MOL002773 SJ12 MYC
MOL002773 SJ12 PTGS2
MOL002773 SJ12 VEGFA
MOL000354 SJ13 NOS2
MOL000354 SJ13 OLR1
MOL000354 SJ13 RELA
MOL000354 SJ13 XDH
MOL000354 SJ13 NCF1
MOL000354 SJ13 DPEP1
MOL000354 SJ13 MAPK14
MOL000354 SJ13 PTGS2
MOL000354 SJ13 PIM1
MOL000354 SJ13 PPARD
MOL000354 SJ13 F7
MOL000354 SJ13 PRSS1
MOL000354 SJ13 ESR1
MOL000354 SJ13 ESR2
MOL000354 SJ13 MAOB
MOL000354 SJ13 GABRA1
MOL000354 SJ13 CA2
MOL000354 SJ13 GSK3B
MOL000354 SJ13 NCOA1
MOL000354 SJ13 CCNA2
MOL000354 SJ13 CHEK1
MOL000354 SJ13 PYGM
MOL000354 SJ13 AKR1B1
MOL000354 SJ13 AR
MOL000354 SJ13 PTGS1
MOL000354 SJ13 CDK2
MOL000354 SJ13 PPARG
MOL000354 SJ13 GRIA2
MOL000354 SJ13 NCOA2
MOL000354 SJ13 DPP4
MOL000354 SJ13 ACHE
MOL000358 SJ14 BAX
MOL000358 SJ14 BCL2
MOL000358 SJ14 CASP3
MOL000358 SJ14 CASP8
MOL000358 SJ14 CASP9
MOL000358 SJ14 JUN
MOL000358 SJ14 MAP2
MOL000358 SJ14 PON1
MOL000358 SJ14 PRKCA
MOL000358 SJ14 TGFB1
MOL000358 SJ14 ACHE
MOL000358 SJ14 CHRM4
MOL000358 SJ14 DRD1
MOL000358 SJ14 NR3C1
MOL000358 SJ14 CHRM1
MOL000358 SJ14 NCOA2
MOL000358 SJ14 DPP4
MOL000358 SJ14 CHRNA2
MOL000358 SJ14 CHRNA7
MOL000358 SJ14 GSK3B
MOL000358 SJ14 CCNA2
MOL000358 SJ14 SCN5A
MOL000358 SJ14 CHRM3
MOL000358 SJ14 PDE3A
MOL000358 SJ14 PGR
MOL000358 SJ14 CDK2
MOL000358 SJ14 CA2
MOL000358 SJ14 ESR1
MOL000358 SJ14 PPARG
MOL000358 SJ14 PRSS1
MOL000358 SJ14 ADRB2
MOL000358 SJ14 AR
MOL000358 SJ14 NOS2
MOL000358 SJ14 PTGS1
MOL000358 SJ14 PIM1
MOL000358 SJ14 DPEP1
MOL000358 SJ14 CHEK1
MOL000358 SJ14 GABRA1
MOL000358 SJ14 SLC6A4
MOL000358 SJ14 PTGS2
MOL000358 SJ14 NR3C2
MOL000358 SJ14 OPRM1
MOL000358 SJ14 MAPK14
MOL000358 SJ14 ADRA1B
MOL000358 SJ14 KCNH2
MOL000358 SJ14 CHRM2
MOL000358 SJ14 ADRA1D
MOL000358 SJ14 ESR2
MOL000359 SJ15 APOE
MOL000359 SJ15 BAX
MOL000359 SJ15 BCL2
MOL000359 SJ15 CASP3
MOL000359 SJ15 CASP8
MOL000359 SJ15 CASP9
MOL000359 SJ15 DHCR24
MOL000359 SJ15 ICAM1
MOL000359 SJ15 JUN
MOL000359 SJ15 MAP2
MOL000359 SJ15 NR3C2
MOL000359 SJ15 PGR
MOL000359 SJ15 PON1
MOL000359 SJ15 PRKCA
MOL000359 SJ15 SREBF1
MOL000359 SJ15 SREBF2
MOL000359 SJ15 TGFB1
MOL000359 SJ15 ABCB11
MOL000359 SJ15 NR3C1
MOL000359 SJ15 ESR1
MOL000359 SJ15 NCOA2
MOL000359 SJ15 AR
MOL000422 SJ16 ACHE
MOL000422 SJ16 AHR
MOL000422 SJ16 AKT1
MOL000422 SJ16 ALOX5
MOL000422 SJ16 AR
MOL000422 SJ16 BAX
MOL000422 SJ16 BCL2
MOL000422 SJ16 CALM3
MOL000422 SJ16 CASP3
MOL000422 SJ16 CHRM1
MOL000422 SJ16 CYP1A1
MOL000422 SJ16 CYP1A2
MOL000422 SJ16 CYP1B1
MOL000422 SJ16 CYP3A4
MOL000422 SJ16 DIO1
MOL000422 SJ16 ESR1
MOL000422 SJ16 ESR2
MOL000422 SJ16 GSTM1
MOL000422 SJ16 GSTM2
MOL000422 SJ16 GSTP1
MOL000422 SJ16 HAS2
MOL000422 SJ16 HMOX1
MOL000422 SJ16 ICAM1
MOL000422 SJ16 IKBKB
MOL000422 SJ16 INSR
MOL000422 SJ16 JUN
MOL000422 SJ16 MMP1
MOL000422 SJ16 NOS2
MOL000422 SJ16 PGR
MOL000422 SJ16 POLD1
MOL000422 SJ16 PPARG
MOL000422 SJ16 PPP3CA
MOL000422 SJ16 MAPK8
MOL000422 SJ16 PRSS1
MOL000422 SJ16 PSMD3
MOL000422 SJ16 PTGS1
MOL000422 SJ16 PTGS2
MOL000422 SJ16 RELA
MOL000422 SJ16 SELE
MOL000422 SJ16 SLC2A4
MOL000422 SJ16 SLC6A2
MOL000422 SJ16 SLPI
MOL000422 SJ16 STAT1
MOL000422 SJ16 TNF
MOL000422 SJ16 VCAM1
MOL000422 SJ16 XDH
MOL000422 SJ16 AKR1C3
MOL000422 SJ16 NR1I2
MOL000422 SJ16 NR1I3
MOL000422 SJ16 AHSA1
MOL000422 SJ16 F7
MOL000422 SJ16 GABRA1
MOL000422 SJ16 PIM1
MOL000422 SJ16 MAPK14
MOL000422 SJ16 CDK1
MOL000422 SJ16 NCOA2
MOL000422 SJ16 DPEP1
MOL000422 SJ16 CDK2
MOL000422 SJ16 ADRA1B
MOL000422 SJ16 GSK3B
MOL000422 SJ16 CHRM2
MOL000422 SJ16 CCNA2
MOL000422 SJ16 CA2
MOL000422 SJ16 CHEK1
MOL000422 SJ16 DPP4
MOL000433 SJ18 CDK2
MOL000433 SJ18 GSK3B
MOL000433 SJ18 ABCA1
MOL000433 SJ18 HMGCR
MOL000433 SJ18 SLCO1B1
MOL000433 SJ18 ABCG5
MOL000433 SJ18 ABCG8
MOL000433 SJ18 CHRM1
MOL000433 SJ18 CHRM2
MOL000433 SJ18 AR
MOL000433 SJ18 LTA4H
MOL000433 SJ18 ESR1
MOL000433 SJ18 MAOB
MOL000433 SJ18 PRSS1
MOL000433 SJ18 MAOA
MOL000433 SJ18 CTRB1
MOL000433 SJ18 ADRA1B
MOL000433 SJ18 SCN5A
MOL000433 SJ18 RXRA
MOL000433 SJ18 CDK2
MOL000433 SJ18 DPEP1
MOL000433 SJ18 SLC6A3
MOL000433 SJ18 ADRA1D
MOL000433 SJ18 PPARG
MOL000433 SJ18 PLAU
MOL000433 SJ18 CHRNA7
MOL000433 SJ18 PGR
MOL000433 SJ18 NR3C2
MOL000433 SJ18 ADRB2
MOL000433 SJ18 ADRB1
MOL000433 SJ18 NCOA2
MOL000433 SJ18 ADRA2A
MOL000433 SJ18 PTGS2
MOL000433 SJ18 NCOA1
MOL000433 SJ18 CHRM3
MOL000433 SJ18 CA2
MOL000433 SJ18 NOS2
MOL000433 SJ18 DPP4
MOL000433 SJ18 PTGS1
MOL000433 SJ18 SLC6A2
MOL000433 SJ18 ACHE
MOL000433 SJ18 NR3C1
MOL000433 SJ18 AKR1B1
MOL000433 SJ18 GABRA1
MOL000492 SJ19 CALM3
MOL000492 SJ19 CAT
MOL000492 SJ19 ESR1
MOL000492 SJ19 HAS2
MOL000492 SJ19 PTGS1
MOL000492 SJ19 PTGS2
MOL000492 SJ19 RXRA
MOL000492 SJ19 CA2
MOL000492 SJ19 DPEP1
MOL000492 SJ19 GSK3B
MOL000492 SJ19 DPP4
MOL000492 SJ19 CHEK1
MOL000492 SJ19 NOS2
MOL000492 SJ19 ESR2
MOL000492 SJ19 PPARG
MOL000492 SJ19 PIM1
MOL000492 SJ19 CCNA2
MOL000492 SJ19 MAPK14
MOL000492 SJ19 NCOA2
MOL000492 SJ19 CDK2
MOL000492 SJ19 AR
MOL006756 SJ20 PGR
MOL006756 SJ20 AR
MOL006756 SJ20 NCOA2
MOL006756 SJ20 ESR1
MOL000073 SJ21 ESR1
MOL000073 SJ21 PTGS1
MOL000073 SJ21 PTGS2
MOL000073 SJ21 DPEP1
MOL000073 SJ21 MAPK14
MOL000073 SJ21 PPARG
MOL000073 SJ21 ESR2
MOL000073 SJ21 CCNA2
MOL000073 SJ21 CDK2
MOL000073 SJ21 PIM1
MOL000073 SJ21 DPP4
MOL000073 SJ21 AR
MOL000073 SJ21 CA2
MOL000073 SJ21 NOS2
MOL000073 SJ21 GSK3B
MOL000953 SJ22 NR3C2
MOL000953 SJ22 PGR
MOL000953 SJ22 NCOA2
MOL000953 SJ22 DPP4
MOL000953 SJ22 ESR1
MOL000953 SJ22 AR
MOL000953 SJ22 NR3C1
MOL000953 SJ22 PRSS1
MOL000098 SJ17 ACACA
MOL000098 SJ17 ACHE
MOL000098 SJ17 ACP3
MOL000098 SJ17 PARP1
MOL000098 SJ17 ADRB2
MOL000098 SJ17 AHR
MOL000098 SJ17 AKT1
MOL000098 SJ17 AKR1B1
MOL000098 SJ17 ALOX5
MOL000098 SJ17 BIRC5
MOL000098 SJ17 AR
MOL000098 SJ17 BAX
MOL000098 SJ17 CCND1
MOL000098 SJ17 BCL2
MOL000098 SJ17 BCL2L1
MOL000098 SJ17 BMP2
MOL000098 SJ17 CASP3
MOL000098 SJ17 CASP8
MOL000098 SJ17 CASP9
MOL000098 SJ17 CAT
MOL000098 SJ17 CAV1
MOL000098 SJ17 RUNX2
MOL000098 SJ17 RUNX1T1
MOL000098 SJ17 CCNB1
MOL000098 SJ17 CD40LG
MOL000098 SJ17 CDKN1A
MOL000098 SJ17 CDKN2A
MOL000098 SJ17 CHUK
MOL000098 SJ17 COL1A1
MOL000098 SJ17 COL3A1
MOL000098 SJ17 CLDN4
MOL000098 SJ17 CRP
MOL000098 SJ17 CTSD
MOL000098 SJ17 CYP1A1
MOL000098 SJ17 CYP1A2
MOL000098 SJ17 CYP1B1
MOL000098 SJ17 CYP3A4
MOL000098 SJ17 NQO1
MOL000098 SJ17 DIO1
MOL000098 SJ17 E2F1
MOL000098 SJ17 E2F2
MOL000098 SJ17 EGF
MOL000098 SJ17 EGFR
MOL000098 SJ17 ELK1
MOL000098 SJ17 ERBB2
MOL000098 SJ17 ERBB3
MOL000098 SJ17 ESR1
MOL000098 SJ17 ESR2
MOL000098 SJ17 F3
MOL000098 SJ17 FOS
MOL000098 SJ17 GJA1
MOL000098 SJ17 CXCL2
MOL000098 SJ17 GSK3B
MOL000098 SJ17 GSTM1
MOL000098 SJ17 GSTM2
MOL000098 SJ17 GSTP1
MOL000098 SJ17 HAS2
MOL000098 SJ17 HIF1A
MOL000098 SJ17 HK2
MOL000098 SJ17 HMOX1
MOL000098 SJ17 HSF1
MOL000098 SJ17 HSPA5
MOL000098 SJ17 HSPB1
MOL000098 SJ17 ICAM1
MOL000098 SJ17 IFNG
MOL000098 SJ17 IGF2
MOL000098 SJ17 IGFBP3
MOL000098 SJ17 IL1A
MOL000098 SJ17 IL1B
MOL000098 SJ17 IL2
MOL000098 SJ17 IL6
MOL000098 SJ17 CXCL8
MOL000098 SJ17 IL10
MOL000098 SJ17 CXCL10
MOL000098 SJ17 INSR
MOL000098 SJ17 IRF1
MOL000098 SJ17 EIF6
MOL000098 SJ17 JUN
MOL000098 SJ17 KCNH2
MOL000098 SJ17 MAOB
MOL000098 SJ17 MMP1
MOL000098 SJ17 MMP2
MOL000098 SJ17 MMP3
MOL000098 SJ17 MMP9
MOL000098 SJ17 MPO
MOL000098 SJ17 MYC
MOL000098 SJ17 NFE2L2
MOL000098 SJ17 NFKBIA
MOL000098 SJ17 NKX3-1
MOL000098 SJ17 NOS2
MOL000098 SJ17 NOS3
MOL000098 SJ17 ODC1
MOL000098 SJ17 SERPINE1
MOL000098 SJ17 PCOLCE
MOL000098 SJ17 PLAT
MOL000098 SJ17 PLAU
MOL000098 SJ17 POLD1
MOL000098 SJ17 PON1
MOL000098 SJ17 POR
MOL000098 SJ17 PPARA
MOL000098 SJ17 PPARD
MOL000098 SJ17 PPARG
MOL000098 SJ17 PRKCA
MOL000098 SJ17 PRKCB
MOL000098 SJ17 MAPK1
MOL000098 SJ17 MAPK3
MOL000098 SJ17 PRSS1
MOL000098 SJ17 PSMD3
MOL000098 SJ17 PTEN
MOL000098 SJ17 PTGER3
MOL000098 SJ17 PTGS1
MOL000098 SJ17 PTGS2
MOL000098 SJ17 RAF1
MOL000098 SJ17 RASA1
MOL000098 SJ17 RB1
MOL000098 SJ17 RELA
MOL000098 SJ17 RXRA
MOL000098 SJ17 SCN5A
MOL000098 SJ17 CCL2
MOL000098 SJ17 CXCL11
MOL000098 SJ17 SELE
MOL000098 SJ17 SLC2A4
MOL000098 SJ17 SOD1
MOL000098 SJ17 SOD3
MOL000098 SJ17 SPP1
MOL000098 SJ17 STAT1
MOL000098 SJ17 SULT1E1
MOL000098 SJ17 TGFB1
MOL000098 SJ17 THBD
MOL000098 SJ17 TNF
MOL000098 SJ17 TOP1
MOL000098 SJ17 TOP2A
MOL000098 SJ17 TP53
MOL000098 SJ17 VCAM1
MOL000098 SJ17 VEGFA
MOL000098 SJ17 XDH
MOL000098 SJ17 DCAF5
MOL000098 SJ17 NR1I2
MOL000098 SJ17 MGAM
MOL000098 SJ17 ABCG2
MOL000098 SJ17 NPEPPS
MOL000098 SJ17 NR1I3
MOL000098 SJ17 ACAA2
MOL000098 SJ17 AHSA1
MOL000098 SJ17 RASSF1
MOL000098 SJ17 CHEK2
MOL000098 SJ17 DUOX2
MOL000098 SJ17 HERC5
MOL000098 SJ17 NCF1
MOL000098 SJ17 PIM1
MOL000098 SJ17 F7
MOL000098 SJ17 DPEP1
MOL000098 SJ17 GABRA1
MOL000098 SJ17 CDK1
MOL000098 SJ17 DPP4
MOL000098 SJ17 CA2
MOL000098 SJ17 MAPK14
MOL000098 SJ17 CDK2
MOL000098 SJ17 CCNA2
MOL000098 SJ17 CHEK1
MOL000098 SJ17 NCOA2

Duplicate removal

MOLID ID Genename
MOL001004 SJ1 ACHE
MOL001004 SJ1 AR
MOL001004 SJ1 CA2
MOL001004 SJ1 NR3C1
MOL001004 SJ1 NR3C2
MOL001004 SJ1 NOS2
MOL001004 SJ1 PGR
MOL001004 SJ1 PTGS1
MOL001004 SJ1 PTGS2
MOL001004 SJ1 RXRA
MOL001004 SJ1 NCOA1
MOL001004 SJ1 NCOA2
MOL001004 SJ1 MAPK14
MOL001004 SJ1 CHEK1
MOL001004 SJ1 CDK2
MOL001004 SJ1 PPARG
MOL001004 SJ1 DPP4
MOL001004 SJ1 ESR1
MOL001004 SJ1 CCNA2
MOL001004 SJ1 ESR2
MOL001004 SJ1 PIM1
MOL001420 SJ2 PRSS1
MOL001420 SJ2 GABRA1
MOL002268 SJ3 AKR1B1
MOL002268 SJ3 JUN
MOL002268 SJ3 DPEP1
MOL002268 SJ3 GSK3B
MOL002773 SJ4 AKT1
MOL002773 SJ4 ALB
MOL002773 SJ4 BCL2
MOL002773 SJ4 CASP3
MOL002773 SJ4 CASP7
MOL002773 SJ4 CASP8
MOL002773 SJ4 CASP9
MOL002773 SJ4 CAV1
MOL002773 SJ4 CTNNB1
MOL002773 SJ4 CYP1A2
MOL002773 SJ4 CYP3A4
MOL002773 SJ4 F3
MOL002773 SJ4 GJA1
MOL002773 SJ4 HMOX1
MOL002773 SJ4 MMP1
MOL002773 SJ4 MMP2
MOL002773 SJ4 MMP10
MOL002773 SJ4 MYC
MOL002773 SJ4 VEGFA
MOL000354 SJ5 OLR1
MOL000354 SJ5 RELA
MOL000354 SJ5 XDH
MOL000354 SJ5 NCF1
MOL000354 SJ5 PPARD
MOL000354 SJ5 F7
MOL000354 SJ5 MAOB
MOL000354 SJ5 PYGM
MOL000354 SJ5 GRIA2
MOL000358 SJ6 BAX
MOL000358 SJ6 MAP2
MOL000358 SJ6 PON1
MOL000358 SJ6 PRKCA
MOL000358 SJ6 TGFB1
MOL000358 SJ6 CHRM4
MOL000358 SJ6 DRD1
MOL000358 SJ6 CHRM1
MOL000358 SJ6 CHRNA2
MOL000358 SJ6 CHRNA7
MOL000358 SJ6 SCN5A
MOL000358 SJ6 CHRM3
MOL000358 SJ6 PDE3A
MOL000358 SJ6 ADRB2
MOL000358 SJ6 SLC6A4
MOL000358 SJ6 OPRM1
MOL000358 SJ6 ADRA1B
MOL000358 SJ6 KCNH2
MOL000358 SJ6 CHRM2
MOL000358 SJ6 ADRA1D
MOL000359 SJ7 APOE
MOL000359 SJ7 DHCR24
MOL000359 SJ7 ICAM1
MOL000359 SJ7 SREBF1
MOL000359 SJ7 SREBF2
MOL000359 SJ7 ABCB11
MOL000422 SJ8 AHR
MOL000422 SJ8 ALOX5
MOL000422 SJ8 CALM3
MOL000422 SJ8 CYP1A1
MOL000422 SJ8 CYP1B1
MOL000422 SJ8 DIO1
MOL000422 SJ8 GSTM1
MOL000422 SJ8 GSTM2
MOL000422 SJ8 GSTP1
MOL000422 SJ8 HAS2
MOL000422 SJ8 IKBKB
MOL000422 SJ8 INSR
MOL000422 SJ8 POLD1
MOL000422 SJ8 PPP3CA
MOL000422 SJ8 MAPK8
MOL000422 SJ8 PSMD3
MOL000422 SJ8 SELE
MOL000422 SJ8 SLC2A4
MOL000422 SJ8 SLC6A2
MOL000422 SJ8 SLPI
MOL000422 SJ8 STAT1
MOL000422 SJ8 TNF
MOL000422 SJ8 VCAM1
MOL000422 SJ8 AKR1C3
MOL000422 SJ8 NR1I2
MOL000422 SJ8 NR1I3
MOL000422 SJ8 AHSA1
MOL000422 SJ8 CDK1
MOL000433 SJ9 ABCA1
MOL000433 SJ9 HMGCR
MOL000433 SJ9 SLCO1B1
MOL000433 SJ9 ABCG5
MOL000433 SJ9 ABCG8
MOL000433 SJ9 LTA4H
MOL000433 SJ9 MAOA
MOL000433 SJ9 CTRB1
MOL000433 SJ9 SLC6A3
MOL000433 SJ9 PLAU
MOL000433 SJ9 ADRB1
MOL000433 SJ9 ADRA2A
MOL000492 SJ10 CAT
MOL000098 SJ11 ACACA
MOL000098 SJ11 ACP3
MOL000098 SJ11 PARP1
MOL000098 SJ11 BIRC5
MOL000098 SJ11 CCND1
MOL000098 SJ11 BCL2L1
MOL000098 SJ11 BMP2
MOL000098 SJ11 RUNX2
MOL000098 SJ11 RUNX1T1
MOL000098 SJ11 CCNB1
MOL000098 SJ11 CD40LG
MOL000098 SJ11 CDKN1A
MOL000098 SJ11 CDKN2A
MOL000098 SJ11 CHUK
MOL000098 SJ11 COL1A1
MOL000098 SJ11 COL3A1
MOL000098 SJ11 CLDN4
MOL000098 SJ11 CRP
MOL000098 SJ11 CTSD
MOL000098 SJ11 NQO1
MOL000098 SJ11 E2F1
MOL000098 SJ11 E2F2
MOL000098 SJ11 EGF
MOL000098 SJ11 EGFR
MOL000098 SJ11 ELK1
MOL000098 SJ11 ERBB2
MOL000098 SJ11 ERBB3
MOL000098 SJ11 FOS
MOL000098 SJ11 CXCL2
MOL000098 SJ11 HIF1A
MOL000098 SJ11 HK2
MOL000098 SJ11 HSF1
MOL000098 SJ11 HSPA5
MOL000098 SJ11 HSPB1
MOL000098 SJ11 IFNG
MOL000098 SJ11 IGF2
MOL000098 SJ11 IGFBP3
MOL000098 SJ11 IL1A
MOL000098 SJ11 IL1B
MOL000098 SJ11 IL2
MOL000098 SJ11 IL6
MOL000098 SJ11 CXCL8
MOL000098 SJ11 IL10
MOL000098 SJ11 CXCL10
MOL000098 SJ11 IRF1
MOL000098 SJ11 EIF6
MOL000098 SJ11 MMP3
MOL000098 SJ11 MMP9
MOL000098 SJ11 MPO
MOL000098 SJ11 NFE2L2
MOL000098 SJ11 NFKBIA
MOL000098 SJ11 NKX3-1
MOL000098 SJ11 NOS3
MOL000098 SJ11 ODC1
MOL000098 SJ11 SERPINE1
MOL000098 SJ11 PCOLCE
MOL000098 SJ11 PLAT
MOL000098 SJ11 POR
MOL000098 SJ11 PPARA
MOL000098 SJ11 PRKCB
MOL000098 SJ11 MAPK1
MOL000098 SJ11 MAPK3
MOL000098 SJ11 PTEN
MOL000098 SJ11 PTGER3
MOL000098 SJ11 RAF1
MOL000098 SJ11 RASA1
MOL000098 SJ11 RB1
MOL000098 SJ11 CCL2
MOL000098 SJ11 CXCL11
MOL000098 SJ11 SOD1
MOL000098 SJ11 SOD3
MOL000098 SJ11 SPP1
MOL000098 SJ11 SULT1E1
MOL000098 SJ11 THBD
MOL000098 SJ11 TOP1
MOL000098 SJ11 TOP2A
MOL000098 SJ11 TP53
MOL000098 SJ11 DCAF5
MOL000098 SJ11 MGAM
MOL000098 SJ11 ABCG2
MOL000098 SJ11 NPEPPS
MOL000098 SJ11 ACAA2
MOL000098 SJ11 RASSF1
MOL000098 SJ11 CHEK2
MOL000098 SJ11 DUOX2
MOL000098 SJ11 HERC5

Table S2

OMIM Genecards Disgenet
ACTG2 FBN1 STAT4
ADAR TP53 TNFAIP3
AFF3 PTEN TNIP1
AGRN MECP2 GTF2I
AHDC1 FGFR2 IL12A
AKT3 ALDH3A2 PRDM1
ALG14 HSPG2 NCF1
ALMS1 CDH1 DGKQ
ANAPC1 RET PHIP
ANTXR1 SIL1 TNFSF13B
ARID1A COL4A3 IRAK1BP1
ASPG3 LMNA ITSN2
ASXL2 COL1A2 FCGR2A
ATAD3A POLG PTTG1
ATP13A2 FAS TNF
B3GALT6 TGFBR2 THBS1
BBS5 CFH IL4
BCL10 PAX6 IL2RA
BCL11A IL10 IL2
BOLA3 INSR TGFB1
BOS2 AIRE AIRE
BSND AKT1 CYP19A1
C1DELp35 STAT3 CCR7
CALM2 CD40LG NFKBIA
CCDC28B TNFRSF1A ST14
CCDC88A SLC12A3 TRAF3IP2
CDC42 RELN FAS
CDC73 C3 ID3
CDCA7 CAV3 E2F1
CELA2A TNF MAP3K14
CENPF PITX2 HMOX1
CEP104 FOXP3 RORC
CFH PDGFRA IRF5
CFHR1 SSB BLK
CFHR3 FASLG RELN
CHN1 CD46 HLA-DPB1
CHRM3 SPTAN1 COL11A2P1
CHRNA1 IL6 SSB
CKAP2L ALB SHISA9
CLCNKA INS TNPO3
CLCNKB PNPLA6 IL17A
CNNM4 TREX1 IFNG
COL11A1 COL11A2 RO60
COL3A1 FOXC1 TRIM21
COL9A2 COL18A1 IL12A-AS1
COLEC11 CYLD KLRG1
CXCR4 ATP13A2 IL6
DCAF17 BDNF ATN1
DCTN1 PRKCD IL10
DDR2 SMAD3 CALR
DDX59 HLA-B HLA-DRA
DEL1p36 ELN IL1B
DEL1q21 NOTCH2 AQP5
DEL1q41q42 CTSC CXCL13
DEL2p12p11.2 ERCC5 CXCL10
DEL2p16.1-p15 HLA-DRB1 BPIFA2
DEL2p21 IL1B HLA-DRB1
DEL2q31 TH CTSS
DGUOK CTLA4 LILRA3
DNMT3A FGF10 MIR146A
DPYSL5 PSMB8 RBM45
DUP1q21 LEP CA6
DUP2q31.1 FERMT1 MUC1
DVL1 MAPK1 CXCL8
EIF2AK2 XIAP IL18
EIF2AK3 KIT IFNA1
EN1 CRP EGF
ENDOVESL FLNB MMP9
ESPN MEFV IL22
F5 STIM1 CXCL12
FASLG INPP5K IL23A
FLG2 TRIM21 HMGB1
FSHR ZNRD2 REG1A
FWS IFNG BCL2
GATAD2B TNFAIP3 IL21
GGPS1 TAP2 HT
GLI2 XK HLA-A
GNAI3 TGM5 CXCR5
GNB1 SCO2 IFNB1
GPSM2 EGFR SPTAN1
GRHL3 MTHFR BMP6
H3F3A H19 CNTN2
HAAO TGFB1 TRAF6
HADHA MPZ IL7
HHAT ZMPSTE24 TRBV20OR9-2
HOXD13 APOH ICAM1
HS2ST1 PPARG IL13
HSPG2 TNXB MYDGF
IBA57 CFB TXLNA
IFIH1 CP OAS1
IFT172 B2M NLRP3
IL6R GTF2IRD1 ACR
IRF6 NAGLU CHRM3
KCND3 ADIPOQ LINC02605
KCNH1 GTF2I TNFSF13
KCNJ10 SSNA1 CRISP3
KCNN3 CHRM3 MUC5AC
KIF14 CASP8 CASP3
KIRREL1 TAP1 VCAM1
KONDS FRAXA IFNA13
KYNU APOE RTEL1
LBR RO60 CCL21
LMNA MDM2 ADIPOQ
LMOD1 C4A ISG20
LOR IGF1 FOXP3
LRIG2 ITPR1 PSPN
LRP2 GNAQ AQP4
LYST COLQ MYD88
MCP TLR4 CXCL1
MDM4 LAMA3 PSMB9
MDS2 IL2RA CXCL9
MPV17 CD40 HLA-DQA1
MPZ EDN1 NGF
MSH2 PLOD2 HLA-B
MSH6 VEGFA IL17D
MTOR RNU4ATAC GZMA
MTX2 HOXD13 TLR7
MYCN NDN GSTT1
MYSM1 AICDA GSN
NBAS SGSH PAX6
NECTIN4 ACE GSTM1
NFU1 TNFSF13B MSMB
NLRC4 CXCL8 PSPH
NLRP3 STAT4 AREG
NOS1AP HFE IL1A
NOTCH2 C1S ITPR1
NPHP1 ATP6V1B2 ITGB2
NPHP4 KITLG ITGAL
NRAS F2 IL27
NRXN1 POMC ITGAE
NUP133 CRYAA IL5
ODC1 BSCL2 ITPR3
ORC1 CLN3 CXCL11
ORC4 CYP19A1 IGH
PADI3 CD27 LTA
PBX1 CCL2 HRES1
PDCN IL4 ICA1
PER3 GATA4 PTEN
PHGDH CD79A ASCL2
PIGF PRL CCL18
PIGV NOS3 PRL
PIK3CD HLA-DQB1 MDK
PKP1 AMHR2 MBL2
PLOD1 IL17A RAB4A
POGZ LBR RBBP4
POLR1B ADA AQP1
POU3F3 GDNF AGER
PPP1CB SLC6A4 CTLA4
PREPL IL1RN IL23R
PRG4 IL2 CD40
PSMB4 CXCR4 CCR9
PTCH2 SHBG C3
RAB3GAP1 OPA3 ALB
RAB3GAP2 ALDH2 MTOR
RBM8A RNF125 TP53
RC3H1 NR3C1 TXN
RFX5 CASR RIDA
RIT1 SERPINA1 LOC102723407
RLS7 HLA-A XBP1
RNF2 CYP21A2 EGFR
RNU4ATAC MMP9 IL33
RYR2 DHODH TRIM38
SCN1A PSMB9 CDKN2A
SDCCAG8 PIK3C2A VIP
SIAT9 CYP17A1 VEGFA
SKI CALR LOC102724971
SLC19A2 CA8 MALT1
SLC25A24 CCR6 BTG3
SLC2A1 IL18 PUF60
SLC5A7 BIVM-ERCC5 IL17F
SLC9A1 PTPN22 ADAM17
SOS1 KRT14 CXCR3
SOX11 SLC12A2 TAP2
SPEN H2AC18 TREX1
SPRED2 GAD1 STXBP3
SPRTN RETN IGHV3-52
STAMBP HCCS STAT1
SUCLG1 APTX SYT1
SYT2 FLT3 RELA
TBCE IRF5 TRIM27
TBX15 CSF3 CD27
TCHH CD4 CD14
TET3 SIAE PSMB8
TGFB2 PLA2G6 BCL6
TMCO1 PUF60 MUC16
TPRKB OCLN CD9
TTC7A MIR146A CD8A
USH2A ESR1 MSC
VANGL1 C2 PTPN2
WDPCP EGF BAX
WDR26 COL7A1 PVT1
WIPF1 VWF CD2
WLS PRTN3 PSS
WNT4 GMPPB PLAAT4
WS2B IL13 MIR146B
YRDC IL12A NRP1
YY1AP1 ELANE PTN
ZEB2 HADHA IL18R1
C1DUPp36.33 PHF21A AICDA
DUP1p36.33 CSF2 CD4
2ADUB FCGR3B RETN
ACDP4 LTF ABCG2
ACHRD IL23R CD44
ACTA3 IL7R PRKAA1
AGS2 MIR155 IKBKE
ALPS4 IL6R RNPC3
ALSS MPO CD68
AMSH HESX1 IL17RB
APC1 COG4 MIR448
APDS IL33 NUDT15
ARCND1 CFTR NAT10
BABS STAT1 TRIM68
BMFS6 ICAM1 CD69
C1DELp36 ETV6 MFN2
C1DELq21 CA2 RNF125
C1DELq41q42 ACSL4 TET2
C1DUPq21 CXCL13 PRKAA2
C1orf4 LPL CD40LG
C1orf69 HP PRTN3
C20orf37 PLAG1 TNFRSF8
C2DELp12p11.2 FGF3 CHST3
C2DELp161-p15 ISCA1 ATG5
C2DELp21 HLA-C ATF7IP
C2DUPq31.1 FN1 EIF2AK2
C2orf86 CCL5 MAP2K7
CACP AQP5 RAB3D
CAKUHED HTR2A MAPK8
CAPON ABHD5 MAPK1
CARD12 CDKN3 CLOCK
CCCAP IL1A VAC14
CD46 DNMT1 APOBEC3B
CFSMR GUSB PRKAB1
CHN SLC17A5 PPBP
CHS1 CRH EDA2R
CHT1 NGF SSRP1
CIAS1 CHUK C4A
CILD31 IFNA1 TRPM2
CLK1 TPO TTR
CMS15 CASP3 WNK1
CMS7A CXCL12 MUC5B
CMS8 IKZF1 IL25
CMT1B CTDP1 GORASP1
COCA1 TNFRSF1B UBTF
CRMP5 ETS1 SPTBN1
CTIP1 SELE UVRAG
D2S201E CD55 CX3CL1
DBS CD28 VDR
DEL1p35 SPP1 ROBO3
DGK AMPH SELE
DRADA IL7 TPMT
DRS2 CCL3 SLC17A1
DVC1 SOD1 TNFRSF1A
EAG SATB1 STAT3
EDM2 ENSG00000259505 STIM1
EDSFS ENSG00000234586 SPRR2A
EDSVASC ENSG00000244429 TAC1
ELA2A MSTO1 TAP1
ENDOVESLB CYP11A1 SPRR1B
FASPS3 CALCA SOAT1
FHR1 SELP TARBP1
FHR3 ERBB2 MIR551B
FRAP1 COQ8A SLPI
GAMOS5 MBL2 BTK
GEFSP2 IL1R1 TSPO
GGPPS1 PHIP SLC22A1
GINGF PON1 CLDN5
GLUT1 CCR1 VIPR2
GLYBP HLA-DQA1 TRPV1
GPR177 ABCA1 CASP1
GTBP NCF1 FAM167A
H3F3 VCAM1 HMCN1
HAYOS CD8A NT5C1A
HF1 TLR2 SEMA7A
HIRIP IL5 USO1
HMN7B ALDH3A1 SATB1
HOX4I EDA S100A9
HPE9 TG S100A8
HPMRS1 PDE8B TP63
HRPT2 HIF1A BDNF
IFPS C4B MIR483
IL6RQ FOXP2 RPE65
IMD37 AGPAT2 VAMP8
IRIP CCN2 CAST
JPO1 CXCL10 TAM
KCND3S VIP CCL5
KCS SOCS1 NAPB
KIAA0042 CCL11 XBP1P1
KIAA0401 GJA8 XDH
KIAA0436 EYS CA1
KIAA0461 SYP CA2
KIAA1150 GAST LAPTM5
KIAA1212 IL12A-AS1 CXCR4
KIAA1685 CCR5 NR1I3
KIAA2025 CYCS CCL25
KYNUU TGM1 CCL22
LAF4 LIPC DHX40
LDS4 FCGR2A ASRGL1
LGN BCL2 MAP1LC3B
LH1 MIF CCL17
LIG2 TLR3 TNFSF14
LMN1 CXCR2 PPARG
LQT15 TPH1 CTSD
MART2 LTA ERV3-1
MDA5 PHYH ESR1
MDPS ATP1A2 ALCAM
MGC1203 NFKB1 F9
MINT GAD2 NR1I4
MMDS2 TFRC ATF6
MRD27 PERP CUL9
MRD42 FADD FLNB
MTDPS6 ITGB2 FMR1
MTPA TNFSF4 EPHB2
NAG NOS2 ELN
NEPH1 IL3 CX3CR1
NFSRA HGF CYP1A1
NHE1 HLA-DRA IFNLR1
NLS1 PDPN NUDT10
NMYC BAX DLAT
NPH1 AQP4 DNASE1
NPHS18 BCL6 EDA
NPHS2 BMP6 ABCA1
NS14 RNPC3 EDNRA
NSLH2 CLN5 KCNH3
NTRKR3 MUC1 ARHGAP45
ODG1 CCK SEC14L2
OFD5 DNASE1L3 AMH
OORS SELL ACAD8
ORC1L GSTM1 CHIA
ORC4L NR4A2 PDLIM3
PARK9 LOC110806262 AMY1A
PBS CYP2U1 AMY1B
PEK VDR AMY1C
PHA LTBP1 GOLGA1
PKBG NPY GOLGA4
PLC PCNA HEYL
PRAAS3 HSPA5 GNL3
PRKR CST3 PADI4
PTHSL2 CXCR5 FPR2
PVRL4 ACE2 DDX58
RAB3GAP150 OTOA ALPP
RADMIS NR3C2 FUCA1
RBM8B STS FUCA2
RING2 S100A9 NCR3
RIT SPTBN2 ATRNL1
RP39 KIR3DL1 MYCBP
SCAMC1 IRF1 GOT2
SEMDJL1 CLU ADA
SERKAL GGT1 TRIM22
SESAME CXCR3 ABCA7
SGS MME SEMA3A
SK3 BLK NOD1
SKDEAS MCAM NXF1
SLB ATXN2 PERCC1
SLSN4 SERPINA3 CENPB
SMLMOD RELA GRAP
SNIBFIS ITGAM CFTR
SOM SAA1 CDKN2D
ST3GALV ACP1 CDK2AP2
STBM2 ENO2 AKT3
STL2 JUN MIR1248
SUCLA1 FLG MIR1207
TBRS ANXA5 OCLN
TCS4 TOR1A MIR4695
TEM8 IL15 MIR4484
THH MMP3 IFNG-AS1
THPH2 NFKBIA EBI3
THTR1 KRT1 PRG4
TKS THBS1 CCL27
TNFSF6 ALOXE3 SUB1
TTC7 IRAK1 TMED2
U4ATAC DIABLO TNFRSF13C
UHS1 IFNG-AS1 CLN3
USH1M PARP1 TMEM132D
VCRL1 CAVIN1 CNN3
VTSIP MYD88 CP
VWS1 HSPD1 CR2
WARBM1 CX3CR1 CRP
WASPIP MAPK10 NRSN1
XIGIS SYK CST3
YAP CXCR2P1 H3P19
ZFHX1B PAX5 H3P8
1D LINC00426 CKAP4
3MC2 LINC02384 DSTN
AGS7 HMGB1 TPPP
AHUS2 FGF7 RPP14
AOMS4 DDHD2 WDHD1
APNH BCL10 CHP1
APT1LG1 VIM DBA2
ARHGAP2 CASP1 SLC26A9
ARVD2 NFIB H3P13
ATR SPTBN1 CTSB
B120 ICOSLG LTBR
BBS15 FLNC MMP2
BEFAHRS TLR9 MMP3
BRYLIB1 ACADVL MPO
C1orf124 BTNL2 MS
C1orf28 CLDN4 MIAT
CJS KCND2 MSH5
CLAN TNFRSF13B MSN
CMS1B IRAK1BP1 MUC4
CMS22 DDC MYC
CMT2EE MAG STS
CMTDID DNAJC3 MIR34C
CRAM TOP1 LTF
CSS9 IL2RB LY9
DFNA37 MERTK LYZ
DSH IL17F MIR130A
EDSSPD2 XDH MIR155
EGBRS LEF1 MIR181A2
EMD2 DAB1 MIR200B
EVI SFTPD MIR223
EVI9 MIR200B MIR31
FCC1 ITGAL ATD
FCU GSTT1 NCL
GAMOS10 CD274 ATHS
GAMOS8 IFNB1 SF3B6
GF1 SRD5A1 SERPINA1
HCCA2 S100A8 PIK3CA
HESJAS SCT PIK3CB
HFL1 SAR1B PIK3CD
HJCYS EZR PIK3CG
HKRP1 PPT1 DNAJC10
HLF4 CENPB UGT2B28
HMN7A LCN2 POU2F1
HNPCC5 ATP6AP1 PDCD1
HTLVR MUC16 LEF1
HUS CCL4 NFKB1
ICF3 NTRK1 NFKBIL1
IDDEBF PDCD1 NR4A2
IL6QTL GZMB MIR377
IMD14A PROP1 OXTR
IMDSHY XRCC5 P2RX7
KCND3L MLN PAEP
KCS1 HLA-DPB1 PAX3
KIAA0328 CENPC TRAT1
KIAA0464 MIR145 PPARA
KIAA0562 CTSD MUC19
KIAA0806 CD44 HIF1A
KIAA1140 SUMF1 HLA-DRB3
KIAA1179 AQP2 HLA-H
KIAA1915 M6PR HOXC6
KINS STAT5A HSPA4
KRPPD XRCC6 LINC01139
LEUDEN ALPP IFI16
LLH NCAM1 IFI27
LPS CYP1A2 CCN1
MDHLO FAM167A GSTM2
MDS HSPB1 CD274
MICCAP ELOVL4 TRBV6-2
MKS12 RNASE3 TRBV5-6
MMDS1 HMGCR GPT
MMDS3 FURIN LAMTOR2
MOPD1 ITGA4 GRN
MPPH2 CCR7 GRIN2A
MRD25 TGFA NR3C1
MRD37 MICB PYCARD
MSF LAMB1 TBK1
MTDPS3 MUC19 APOH
MTDPS9 TACR1 RBPJ
MYSPC KIR2DS4 IL1RN
NPHS23 CAT IRAK1
NPY3R GAPDH IRF1
NS6 ATP7B IRF2
ODED CR1 KDR
P130 NR1H2 KRT6B
p150 CD70 LCN1
p68 ATF6 LEP
PERK DDHD1 LEPR
PHASK CFLAR PRAMEF13
PHGDHD ADCYAP1 INSRR
PHRINL MX1 ILF3
PINS GBA2 FASLG
PMGEDSV TBK1 IL6R
PRR4 IRF3 IL7R
PSS6 RAX CXCR1
RING1B FA2H CXCR2
ROC1 LYZ IL12RB1
RPRGL1 GOLGA1 AQP3
SCZD17 KRT7 TNFRSF9
SHAPNS CR2 ILF2
SHARP ATP6V1B1 LPL
SJS MIA2
SKCA3 ITGA2
SKI1 ALDH16A1
SKS C5AR1
SLSN1 GRP
SLSN7 ADAM17
SMADIP1 BAMBI
SMEI FCGR3A
SOPH NOS1
SPD1 RNF170
SPDRS CD59
SRN1 TNFRSF10A
STL5 CXCL9
STROMS KCTD7
TAR MUC5AC
TFCP2L4 TLR7
THL HLA-DRB5
TKT FBL
TMBTS PTGS1
TRMA CLN6
VCRL2 C3AR1
VSCM1 CHI3L1
WIP TNFRSF13C
ALGAZ IL23A
ARMD4 DNASE1
ARVC2 EWSR1
BBS16 IL1RL1
BDSD SIGLEC5
BMFS4 COL17A1
C1DELq21.1 TNIP1
CFHL1 MCOLN1
CFHL3 KIR2DL1
CHDTHP KCNC3
CMNS AGER
CMS1A KRT16
CMS20 ALOX5
CMS7B EXOSC10
DFNB82 SLC4A1
DSRAD AGMO
DSS EEF1A1
DYT18 PLA2G7
DYT33 CD80
EDSKCL1 TFEB
EDSS1 IRF7
FASL LCN1
FCAS1 PF4
FEB3A BCL2L1
FPLD2 TPP1
GANDS MAPK8
GAPO TRB
GIRDIN CCL17
GRNG OGDH
HGF IL12B
HIAA0929 ADIPOR1
HIES5 CATSPER1
HIPI3 MICA
HNPCC1 KRT19
HRD SULT1A3
ILFS2 IL17RA
IMD14B CASP9
IPAF PPOX
JBTS25 CA4
JBTS4 CTSG
KIAA0839 MASP2
KIAA1809 HLA-DMA
LIKNS TNFSF10
MARTS2 PLIN1
MCPH20 MUC5B
MEPCA IL22
MINAT CYP27B1
MMIHS3 IRF4
MMIHS5 SPINK1
MMRCS3 MIR31
MODED VIPR2
NNMS MIR142
NPHS22 CTSB
NS8 RORA
PEOB4 TNFRSF4
PIT KLRK1
RHOGAP2 ADIPOR2
RJALS TNFSF13
RTSC4 CLN8
SCA19 GC
SGMRT1 CD244
SIP1 CYP21A1P
SJA HRH2
SMARCF1 LGALS3
SPG74 AXL
SPG78 HMCN1
SRTD10 ITGB1
SZP ITSN2
TALS MKI67
THMD1 TXN
TRHY ATG5
UFS2 GFRA1
VWS2 ALDH4A1
WAS2 HYOU1
WHIMS1 PRDM1
WHSUS KRT5
WRCN TRAF6
WRS CLDN3
ZKS ICA1
ZLS1 HNRNPH1
ZLS3 CTSH
AHUS1 CBX5
AIFEC SLPI
ALPS1B TRAPPC10
APE ARHGAP6
CHN2 TGM2
CMCS RAP1A
CMD1A NFAT5
DEE6A AQP1
DEL1q21.1 IFNAR1
DILOS DNAJC5
DING FUCA1
DURS2 CXCL1
GIDID KLHL12
HAPO ITPR3
IFI4 TNFRSF8
MMRCS2 AMBP
MRD14 MALT1
NALP3 PNPLA1
NCMS P4HTM
NCPH1 FAM89B
NS4 ELAVL4
PEAMO ALDH1B1
PED PRRG4
PPS1 NFKBIL1
RATARS NCR3
RFMN TNFRSF6B
ROCHIS ARMS2
RP71 KRT6B
SCA22 ARMC8
SJS1 PPBP
UHS3 TJP1
VACRDS ARL9
WARBM2 A2M
BAP1 EDC4
BBS20 CA6
BRGDA9 TNFSF12
CSS2 CCL21
DRVT ACSL6
FCAS4 RECK
G1P1 ID3
GIV CCDC174
GLUT1DS SEPSECS
HGPS SSBL5P
LWS SSBL2P
MARTS1 SSBL3P
OFC6 TLR1
PYPAF1 CLEC7A
AGS6 KIR2DL3
DFNA34 BANK1
EIG12 ITGA1
FHM3 IL9
LUSYAM BRD2
PEHOL MIR130A
DEE6B XBP1
DYT9 TNPO3
KEFH MIR125B2
SDCHCN GAL
C2DELp12p11.2 CX3CL1
IL21
PADI4
AQP3
IL37
ITPR2
CD86
MIR30A
SOCS3
S100A6
CD2
RAB3D
GPI
HLA-DPA1
CCN1
MSMB
HLA-DRB3
GZMA
ACSL3
GLS
ABCA7
MUC4
GAS6
SDR9C7
H2AC4
MIR125B1
GRAP
CXCL11
IFI16
LINC00871
SNRNP70
TNFRSF18
HLA-DQA2
IL1RL2
TYRO3
IL18BP
ATP10B
PTTG1
IGHG1
PLA2G10
PRLR
TNFRSF25
RPLP0
EDA2R
IGHM
CD72
TNFSF15
PRCC
HLA-DMB
GRIP2
HLA-DOA
HCP5
SPDEF
HOOK1
REG1A
B3GAT1
DDIT3
CIDEC
PEAR1
ANO1
HLA-DQB2
ITGAX
MFSD8
PHC1
GADD45A
TLX1
PIP
SUMO4
IMMP1L
KIR3DS1
CCR4
SERPINH1
CCL3L1
FCRL4
TPI1
LTB
TRIM27
CD52
ERLIN1
GOLGA4
KIR2DS5
CASP2
NCOA1
PRRC2A
TLR8
SAFB
DNAJC24
TRAF3IP2
KIR2DS1
KIR2DS3
DEFB1
MUC7
LTBR
CD247
VAV1
CKAP4
CD58
HLA-DOB
MAP2K4
TSLP
AGPAT1
KIR2DL2
EPX
PSMB1
CARD16
CD276
TNRC6A
CXCR6
YIF1A
CCL22
LGALS1
FLNC-AS1
ATP6V1F
BAK1
DEFB4A
MIP
NTRK3
AZGP1
RNY1
ASCL2
CAPN1
ANGPTL2
CD200
TASL
BLVRB
NXF1
IGKC
RBMS3
FABP5
H4C2
ICAM3
TRIM68
CDKL2
DDX39B
APAF1
PRKAB1
H2BC3
WWTR1
AP4B1-AS1
RPS6KA5
RSAD2
PKM
C8B
IL32
MIR744
POLR3K
ATP6V0A4
BLZF1
MIR4695
TFF3
SSRP1
S1PR1
CHRM1
MIR1207
VARS1
PEBP1
B3GALT5
CTSF
MS4A1
HRH1
KIR2DS2
CCL20
PSIP1
TSIX
CLEC4A
TIGIT
SHISA9
PTN
VPS52
AREG
TNFRSF17
DCD
HLA-DRB6
HLA-DQB1-AS1
SPHK1
PRSS2
PINX1
KCNIP3
NAB1
MDK
IGSF10
ALDH9A1
PSME1
SIGLEC1
RAB11FIP5
RBBP4
STK19
LY6G5B
HDGF
CRISP3
AHCYL1
KLRG1
HACL1
IQGAP2
BOD1
TRIM38
CA1
IVL
CCN6
KCP
DHFRP2
EBI3
CCL27
ALDH3B1
FAM98A
CD226
PMVK
BTN2A1
ATF6B
TSBP1-AS1
MTCO3P1
TSSK1B
IL22RA1
ACSL1
ZNF646
MAML2
TSBP1
TCP1
CCL18
OAS1
C4BPA
FPR2
ARHGEF11
RASGRP3
NISCH
DLAT
CTSS
EPSTI1
RPL7
SH2D2A
TSPAN33
HLA-DQB3
lnc-HLA-DQB1-2
HSALNG0049436
LPO
P2RX7
DEFB103B
ALDH3B2
CRTC1
SLU7
SLC20A1
IL27
H1-1
CCL28
HNRNPDL
LILRA3
GRIN3B
AKNA
DGKQ
CPEB4
MIS18BP1
TRIM63
LAMP3
GNL3
IL36A
MRPL24
SULT1A1
LGALS9
RXRB
SLAMF7
PIGR
GPSM3
C3orf80
HCG23
LOC101929290
RNU6-959P
ENSG00000269918
HSALNG0021150
RF00026-588
lnc-IL12A-2
IL34
CLEC2B
INSRR
NR6A1
C4BPB
ZFPM1
CCR9
TPI1P2
CRTC3
FAM228A
IL1F10
DNAJC10
FBLN7
ARHGAP45
ISG20L2
NACC2
BTLA
COIL
PSME3
CREBRF
C3orf20
LRRC71
DEFB136
METTL25B
MIR9-1HG
MIR765
SATB1-AS1
MIR3142HG
LINC01485
LINC01117
WAKMAR2
LINC00562
PTMAP5
LINC02539
ENSG00000269954
ALG1L11P
GNG5P5
ENSG00000223356
ENSG00000271553
ENSG00000257105
COL11A2P1
BTF3L4P3
RN7SL700P
RNU6-187P
lnc-IRF5-3
lnc-LTBP1-1
NONHSAG044958.2
lnc-BTNL2-2
LOC107986649
ENSG00000242162
lnc-PTTG1-5
MN297643
NONHSAG045793.2
lnc-SLC35G5-2
lnc-HLA-DRB1-8
ENSG00000224163
HSALNG0014115
HSALNG0049429
HSALNG0061260
HSALNG0061261
HSALNG0049404
HSALNG0063445
ENSG00000288064
piR-35674-092
MN298231
HSALNG0109667
HSALNG0046729
HSALNG0049428
HSALNG0007635
HSALNG0007636
HSALNG0046730
HSALNG0049427
piR-52910
RF00017-5040
piR-61240-151
LOC105370283
LOC105374329
HSALNG0013607
piR-50437-359
IL25
SLC17A3
IFN1@
ATP6V0D2
DEFA1
WFDC2
SCGB2A1
CCL23
BIRC7
ACSL5
AQP7
CHIA
TRBV16
TNFSF18
ORM2
C2-AS1
ADAD1
SNRPD3
POU2F1
IGK
STATH
ALDH8A1
APOF
BPIFA2
SEPTIN7
DUT
SNRPD1
ATP6V1C2
CCR8
DPP7
F11R
CD6
H1-5
EBF1
VTCN1
GTF2I-AS1
CD180
ACCS
MFSD6
SPRR2A
FOXN2
MIR5100
MIR5572
MIR4524B
MIR5571
H2AC6
IGHV3-71
FGL1
SPRR1B
BHLHA15
HRES1
ASGR2
TXLNA
APOBEC3A
GTF2F1
VGLL3
BTN2A2
CST1
AQP6
BTN3A1
SLC17A2
BTN3A2
BTN3A3
HMGN4
AAK1
H3C2
H2BC4
SOCS6
H1-6
LOC116158548
O+G+D
ACTG2
ADAR
AFF3
AGRN
AHDC1
AKT3
ALG14
ALMS1
ANAPC1
ANTXR1
ARID1A
ASPG3
ASXL2
ATAD3A
ATP13A2
B3GALT6
BBS5
BCL10
BCL11A
BOLA3
BOS2
BSND
C1DELp35
CALM2
CCDC28B
CCDC88A
CDC42
CDC73
CDCA7
CELA2A
CENPF
CEP104
CFH
CFHR1
CFHR3
CHN1
CHRM3
CHRNA1
CKAP2L
CLCNKA
CLCNKB
CNNM4
COL11A1
COL3A1
COL9A2
COLEC11
CXCR4
DCAF17
DCTN1
DDR2
DDX59
DEL1p36
DEL1q21
DEL1q41q42
DEL2p12p11.2
DEL2p16.1-p15
DEL2p21
DEL2q31
DGUOK
DNMT3A
DPYSL5
DUP1q21
DUP2q31.1
DVL1
EIF2AK2
EIF2AK3
EN1
ENDOVESL
ESPN
F5
FASLG
FLG2
FSHR
FWS
GATAD2B
GGPS1
GLI2
GNAI3
GNB1
GPSM2
GRHL3
H3F3A
HAAO
HADHA
HHAT
HOXD13
HS2ST1
HSPG2
IBA57
IFIH1
IFT172
IL6R
IRF6
KCND3
KCNH1
KCNJ10
KCNN3
KIF14
KIRREL1
KONDS
KYNU
LBR
LMNA
LMOD1
LOR
LRIG2
LRP2
LYST
MCP
MDM4
MDS2
MPV17
MPZ
MSH2
MSH6
MTOR
MTX2
MYCN
MYSM1
NBAS
NECTIN4
NFU1
NLRC4
NLRP3
NOS1AP
NOTCH2
NPHP1
NPHP4
NRAS
NRXN1
NUP133
ODC1
ORC1
ORC4
PADI3
PBX1
PDCN
PER3
PHGDH
PIGF
PIGV
PIK3CD
PKP1
PLOD1
POGZ
POLR1B
POU3F3
PPP1CB
PREPL
PRG4
PSMB4
PTCH2
RAB3GAP1
RAB3GAP2
RBM8A
RC3H1
RFX5
RIT1
RLS7
RNF2
RNU4ATAC
RYR2
SCN1A
SDCCAG8
SIAT9
SKI
SLC19A2
SLC25A24
SLC2A1
SLC5A7
SLC9A1
SOS1
SOX11
SPEN
SPRED2
SPRTN
STAMBP
SUCLG1
SYT2
TBCE
TBX15
TCHH
TET3
TGFB2
TMCO1
TPRKB
TTC7A
USH2A
VANGL1
WDPCP
WDR26
WIPF1
WLS
WNT4
WS2B
YRDC
YY1AP1
ZEB2
C1DUPp36.33
DUP1p36.33
2ADUB
ACDP4
ACHRD
ACTA3
AGS2
ALPS4
ALSS
AMSH
APC1
APDS
ARCND1
BABS
BMFS6
C1DELp36
C1DELq21
C1DELq41q42
C1DUPq21
C1orf4
C1orf69
C20orf37
C2DELp12p11.2
C2DELp161-p15
C2DELp21
C2DUPq31.1
C2orf86
CACP
CAKUHED
CAPON
CARD12
CCCAP
CD46
CFSMR
CHN
CHS1
CHT1
CIAS1
CILD31
CLK1
CMS15
CMS7A
CMS8
CMT1B
COCA1
CRMP5
CTIP1
D2S201E
DBS
DEL1p35
DGK
DRADA
DRS2
DVC1
EAG
EDM2
EDSFS
EDSVASC
ELA2A
ENDOVESLB
FASPS3
FHR1
FHR3
FRAP1
GAMOS5
GEFSP2
GGPPS1
GINGF
GLUT1
GLYBP
GPR177
GTBP
H3F3
HAYOS
HF1
HIRIP
HMN7B
HOX4I
HPE9
HPMRS1
HRPT2
IFPS
IL6RQ
IMD37
IRIP
JPO1
KCND3S
KCS
KIAA0042
KIAA0401
KIAA0436
KIAA0461
KIAA1150
KIAA1212
KIAA1685
KIAA2025
KYNUU
LAF4
LDS4
LGN
LH1
LIG2
LMN1
LQT15
MART2
MDA5
MDPS
MGC1203
MINT
MMDS2
MRD27
MRD42
MTDPS6
MTPA
NAG
NEPH1
NFSRA
NHE1
NLS1
NMYC
NPH1
NPHS18
NPHS2
NS14
NSLH2
NTRKR3
ODG1
OFD5
OORS
ORC1L
ORC4L
PARK9
PBS
PEK
PHA
PKBG
PLC
PRAAS3
PRKR
PTHSL2
PVRL4
RAB3GAP150
RADMIS
RBM8B
RING2
RIT
RP39
SCAMC1
SEMDJL1
SERKAL
SESAME
SGS
SK3
SKDEAS
SLB
SLSN4
SMLMOD
SNIBFIS
SOM
ST3GALV
STBM2
STL2
SUCLA1
TBRS
TCS4
TEM8
THH
THPH2
THTR1
TKS
TNFSF6
TTC7
U4ATAC
UHS1
USH1M
VCRL1
VTSIP
VWS1
WARBM1
WASPIP
XIGIS
YAP
ZFHX1B
1D
3MC2
AGS7
AHUS2
AOMS4
APNH
APT1LG1
ARHGAP2
ARVD2
ATR
B120
BBS15
BEFAHRS
BRYLIB1
C1orf124
C1orf28
CJS
CLAN
CMS1B
CMS22
CMT2EE
CMTDID
CRAM
CSS9
DFNA37
DSH
EDSSPD2
EGBRS
EMD2
EVI
EVI9
FCC1
FCU
GAMOS10
GAMOS8
GF1
HCCA2
HESJAS
HFL1
HJCYS
HKRP1
HLF4
HMN7A
HNPCC5
HTLVR
HUS
ICF3
IDDEBF
IL6QTL
IMD14A
IMDSHY
KCND3L
KCS1
KIAA0328
KIAA0464
KIAA0562
KIAA0806
KIAA1140
KIAA1179
KIAA1915
KINS
KRPPD
LEUDEN
LLH
LPS
MDHLO
MDS
MICCAP
MKS12
MMDS1
MMDS3
MOPD1
MPPH2
MRD25
MRD37
MSF
MTDPS3
MTDPS9
MYSPC
NPHS23
NPY3R
NS6
ODED
P130
p150
p68
PERK
PHASK
PHGDHD
PHRINL
PINS
PMGEDSV
PRR4
PSS6
RING1B
ROC1
RPRGL1
SCZD17
SHAPNS
SHARP
SJS
SKCA3
SKI1
SKS
SLSN1
SLSN7
SMADIP1
SMEI
SOPH
SPD1
SPDRS
SRN1
STL5
STROMS
TAR
TFCP2L4
THL
TKT
TMBTS
TRMA
VCRL2
VSCM1
WIP
ALGAZ
ARMD4
ARVC2
BBS16
BDSD
BMFS4
C1DELq21.1
CFHL1
CFHL3
CHDTHP
CMNS
CMS1A
CMS20
CMS7B
DFNB82
DSRAD
DSS
DYT18
DYT33
EDSKCL1
EDSS1
FASL
FCAS1
FEB3A
FPLD2
GANDS
GAPO
GIRDIN
GRNG
HGF
HIAA0929
HIES5
HIPI3
HNPCC1
HRD
ILFS2
IMD14B
IPAF
JBTS25
JBTS4
KIAA0839
KIAA1809
LIKNS
MARTS2
MCPH20
MEPCA
MINAT
MMIHS3
MMIHS5
MMRCS3
MODED
NNMS
NPHS22
NS8
PEOB4
PIT
RHOGAP2
RJALS
RTSC4
SCA19
SGMRT1
SIP1
SJA
SMARCF1
SPG74
SPG78
SRTD10
SZP
TALS
THMD1
TRHY
UFS2
VWS2
WAS2
WHIMS1
WHSUS
WRCN
WRS
ZKS
ZLS1
ZLS3
AHUS1
AIFEC
ALPS1B
APE
CHN2
CMCS
CMD1A
DEE6A
DEL1q21.1
DILOS
DING
DURS2
GIDID
HAPO
IFI4
MMRCS2
MRD14
NALP3
NCMS
NCPH1
NS4
PEAMO
PED
PPS1
RATARS
RFMN
ROCHIS
RP71
SCA22
SJS1
UHS3
VACRDS
WARBM2
BAP1
BBS20
BRGDA9
CSS2
DRVT
FCAS4
G1P1
GIV
GLUT1DS
HGPS
LWS
MARTS1
OFC6
PYPAF1
AGS6
DFNA34
EIG12
FHM3
LUSYAM
PEHOL
DEE6B
DYT9
KEFH
SDCHCN
FBN1
TP53
PTEN
MECP2
FGFR2
ALDH3A2
CDH1
RET
SIL1
COL4A3
COL1A2
POLG
FAS
TGFBR2
PAX6
IL10
INSR
AIRE
AKT1
STAT3
CD40LG
TNFRSF1A
SLC12A3
RELN
C3
CAV3
TNF
PITX2
FOXP3
PDGFRA
SSB
SPTAN1
IL6
ALB
INS
PNPLA6
TREX1
COL11A2
FOXC1
COL18A1
CYLD
BDNF
PRKCD
SMAD3
HLA-B
ELN
CTSC
ERCC5
HLA-DRB1
IL1B
TH
CTLA4
FGF10
PSMB8
LEP
FERMT1
MAPK1
XIAP
KIT
CRP
FLNB
MEFV
STIM1
INPP5K
TRIM21
ZNRD2
IFNG
TNFAIP3
TAP2
XK
TGM5
SCO2
EGFR
MTHFR
H19
TGFB1
ZMPSTE24
APOH
PPARG
TNXB
CFB
CP
B2M
GTF2IRD1
NAGLU
ADIPOQ
GTF2I
SSNA1
CASP8
TAP1
FRAXA
APOE
RO60
MDM2
C4A
IGF1
ITPR1
GNAQ
COLQ
TLR4
LAMA3
IL2RA
CD40
EDN1
PLOD2
VEGFA
NDN
AICDA
SGSH
ACE
TNFSF13B
CXCL8
STAT4
HFE
C1S
ATP6V1B2
KITLG
F2
POMC
CRYAA
BSCL2
CLN3
CYP19A1
CD27
CCL2
IL4
GATA4
CD79A
PRL
NOS3
HLA-DQB1
AMHR2
IL17A
ADA
GDNF
SLC6A4
IL1RN
IL2
SHBG
OPA3
ALDH2
RNF125
NR3C1
CASR
SERPINA1
HLA-A
CYP21A2
MMP9
DHODH
PSMB9
PIK3C2A
CYP17A1
CALR
CA8
CCR6
IL18
BIVM-ERCC5
PTPN22
KRT14
SLC12A2
H2AC18
GAD1
RETN
HCCS
APTX
FLT3
IRF5
CSF3
CD4
SIAE
PLA2G6
PUF60
OCLN
MIR146A
ESR1
C2
EGF
COL7A1
VWF
PRTN3
GMPPB
IL13
IL12A
ELANE
PHF21A
CSF2
FCGR3B
LTF
IL23R
IL7R
MIR155
MPO
HESX1
COG4
IL33
CFTR
STAT1
ICAM1
ETV6
CA2
ACSL4
CXCL13
LPL
HP
PLAG1
FGF3
ISCA1
HLA-C
FN1
CCL5
AQP5
HTR2A
ABHD5
CDKN3
IL1A
DNMT1
GUSB
SLC17A5
CRH
NGF
CHUK
IFNA1
TPO
CASP3
CXCL12
IKZF1
CTDP1
TNFRSF1B
ETS1
SELE
CD55
CD28
SPP1
AMPH
IL7
CCL3
SOD1
SATB1
ENSG00000259505
ENSG00000234586
ENSG00000244429
MSTO1
CYP11A1
CALCA
SELP
ERBB2
COQ8A
MBL2
IL1R1
PHIP
PON1
CCR1
HLA-DQA1
ABCA1
NCF1
VCAM1
CD8A
TLR2
IL5
ALDH3A1
EDA
TG
PDE8B
HIF1A
C4B
FOXP2
AGPAT2
CCN2
CXCL10
VIP
SOCS1
CCL11
GJA8
EYS
SYP
GAST
IL12A-AS1
CCR5
CYCS
TGM1
LIPC
FCGR2A
BCL2
MIF
TLR3
CXCR2
TPH1
LTA
PHYH
ATP1A2
NFKB1
GAD2
TFRC
PERP
FADD
ITGB2
TNFSF4
NOS2
IL3
HLA-DRA
PDPN
BAX
AQP4
BCL6
BMP6
RNPC3
CLN5
MUC1
CCK
DNASE1L3
SELL
GSTM1
NR4A2
LOC110806262
CYP2U1
VDR
LTBP1
NPY
PCNA
HSPA5
CST3
CXCR5
ACE2
OTOA
NR3C2
STS
S100A9
SPTBN2
KIR3DL1
IRF1
CLU
GGT1
CXCR3
MME
BLK
MCAM
ATXN2
SERPINA3
RELA
ITGAM
SAA1
ACP1
ENO2
JUN
FLG
ANXA5
TOR1A
IL15
MMP3
NFKBIA
KRT1
THBS1
ALOXE3
IRAK1
DIABLO
IFNG-AS1
PARP1
CAVIN1
MYD88
HSPD1
CX3CR1
MAPK10
SYK
CXCR2P1
PAX5
LINC00426
LINC02384
HMGB1
FGF7
DDHD2
VIM
CASP1
NFIB
SPTBN1
ICOSLG
FLNC
TLR9
ACADVL
BTNL2
CLDN4
KCND2
TNFRSF13B
IRAK1BP1
DDC
MAG
DNAJC3
TOP1
IL2RB
MERTK
IL17F
XDH
LEF1
DAB1
SFTPD
MIR200B
ITGAL
GSTT1
CD274
IFNB1
SRD5A1
S100A8
SCT
SAR1B
EZR
PPT1
CENPB
LCN2
ATP6AP1
MUC16
CCL4
NTRK1
PDCD1
GZMB
PROP1
XRCC5
MLN
HLA-DPB1
CENPC
MIR145
CTSD
CD44
SUMF1
AQP2
M6PR
STAT5A
XRCC6
ALPP
NCAM1
CYP1A2
FAM167A
HSPB1
ELOVL4
RNASE3
HMGCR
FURIN
ITGA4
CCR7
TGFA
MICB
LAMB1
MUC19
TACR1
KIR2DS4
CAT
GAPDH
ATP7B
CR1
NR1H2
CD70
ATF6
DDHD1
CFLAR
ADCYAP1
MX1
GBA2
TBK1
IRF3
RAX
FA2H
LYZ
GOLGA1
KRT7
CR2
ATP6V1B1
MIA2
ITGA2
ALDH16A1
C5AR1
GRP
ADAM17
BAMBI
FCGR3A
NOS1
RNF170
CD59
TNFRSF10A
CXCL9
KCTD7
MUC5AC
TLR7
HLA-DRB5
FBL
PTGS1
CLN6
C3AR1
CHI3L1
TNFRSF13C
IL23A
DNASE1
EWSR1
IL1RL1
SIGLEC5
COL17A1
TNIP1
MCOLN1
KIR2DL1
KCNC3
AGER
KRT16
ALOX5
EXOSC10
SLC4A1
AGMO
EEF1A1
PLA2G7
CD80
TFEB
IRF7
LCN1
PF4
BCL2L1
TPP1
MAPK8
TRB
CCL17
OGDH
IL12B
ADIPOR1
CATSPER1
MICA
KRT19
SULT1A3
IL17RA
CASP9
PPOX
CA4
CTSG
MASP2
HLA-DMA
TNFSF10
PLIN1
MUC5B
IL22
CYP27B1
IRF4
SPINK1
MIR31
VIPR2
MIR142
CTSB
RORA
TNFRSF4
KLRK1
ADIPOR2
TNFSF13
CLN8
GC
CD244
CYP21A1P
HRH2
LGALS3
AXL
HMCN1
ITGB1
ITSN2
MKI67
TXN
ATG5
GFRA1
ALDH4A1
HYOU1
PRDM1
KRT5
TRAF6
CLDN3
ICA1
HNRNPH1
CTSH
CBX5
SLPI
TRAPPC10
ARHGAP6
TGM2
RAP1A
NFAT5
AQP1
IFNAR1
DNAJC5
FUCA1
CXCL1
KLHL12
ITPR3
TNFRSF8
AMBP
MALT1
PNPLA1
P4HTM
FAM89B
ELAVL4
ALDH1B1
PRRG4
NFKBIL1
NCR3
TNFRSF6B
ARMS2
KRT6B
ARMC8
PPBP
TJP1
ARL9
A2M
EDC4
CA6
TNFSF12
CCL21
ACSL6
RECK
ID3
CCDC174
SEPSECS
SSBL5P
SSBL2P
SSBL3P
TLR1
CLEC7A
KIR2DL3
BANK1
ITGA1
IL9
BRD2
MIR130A
XBP1
TNPO3
MIR125B2
GAL
CX3CL1
IL21
PADI4
AQP3
IL37
ITPR2
CD86
MIR30A
SOCS3
S100A6
CD2
RAB3D
GPI
HLA-DPA1
CCN1
MSMB
HLA-DRB3
GZMA
ACSL3
GLS
ABCA7
MUC4
GAS6
SDR9C7
H2AC4
MIR125B1
GRAP
CXCL11
IFI16
LINC00871
SNRNP70
TNFRSF18
HLA-DQA2
IL1RL2
TYRO3
IL18BP
ATP10B
PTTG1
IGHG1
PLA2G10
PRLR
TNFRSF25
RPLP0
EDA2R
IGHM
CD72
TNFSF15
PRCC
HLA-DMB
GRIP2
HLA-DOA
HCP5
SPDEF
HOOK1
REG1A
B3GAT1
DDIT3
CIDEC
PEAR1
ANO1
HLA-DQB2
ITGAX
MFSD8
PHC1
GADD45A
TLX1
PIP
SUMO4
IMMP1L
KIR3DS1
CCR4
SERPINH1
CCL3L1
FCRL4
TPI1
LTB
TRIM27
CD52
ERLIN1
GOLGA4
KIR2DS5
CASP2
NCOA1
PRRC2A
TLR8
SAFB
DNAJC24
TRAF3IP2
KIR2DS1
KIR2DS3
DEFB1
MUC7
LTBR
CD247
VAV1
CKAP4
CD58
HLA-DOB
MAP2K4
TSLP
AGPAT1
KIR2DL2
EPX
PSMB1
CARD16
CD276
TNRC6A
CXCR6
YIF1A
CCL22
LGALS1
FLNC-AS1
ATP6V1F
BAK1
DEFB4A
MIP
NTRK3
AZGP1
RNY1
ASCL2
CAPN1
ANGPTL2
CD200
TASL
BLVRB
NXF1
IGKC
RBMS3
FABP5
H4C2
ICAM3
TRIM68
CDKL2
DDX39B
APAF1
PRKAB1
H2BC3
WWTR1
AP4B1-AS1
RPS6KA5
RSAD2
PKM
C8B
IL32
MIR744
POLR3K
ATP6V0A4
BLZF1
MIR4695
TFF3
SSRP1
S1PR1
CHRM1
MIR1207
VARS1
PEBP1
B3GALT5
CTSF
MS4A1
HRH1
KIR2DS2
CCL20
PSIP1
TSIX
CLEC4A
TIGIT
SHISA9
PTN
VPS52
AREG
TNFRSF17
DCD
HLA-DRB6
HLA-DQB1-AS1
SPHK1
PRSS2
PINX1
KCNIP3
NAB1
MDK
IGSF10
ALDH9A1
PSME1
SIGLEC1
RAB11FIP5
RBBP4
STK19
LY6G5B
HDGF
CRISP3
AHCYL1
KLRG1
HACL1
IQGAP2
BOD1
TRIM38
CA1
IVL
CCN6
KCP
DHFRP2
EBI3
CCL27
ALDH3B1
FAM98A
CD226
PMVK
BTN2A1
ATF6B
TSBP1-AS1
MTCO3P1
TSSK1B
IL22RA1
ACSL1
ZNF646
MAML2
TSBP1
TCP1
CCL18
OAS1
C4BPA
FPR2
ARHGEF11
RASGRP3
NISCH
DLAT
CTSS
EPSTI1
RPL7
SH2D2A
TSPAN33
HLA-DQB3
lnc-HLA-DQB1-2
HSALNG0049436
LPO
P2RX7
DEFB103B
ALDH3B2
CRTC1
SLU7
SLC20A1
IL27
H1-1
CCL28
HNRNPDL
LILRA3
GRIN3B
AKNA
DGKQ
CPEB4
MIS18BP1
TRIM63
LAMP3
GNL3
IL36A
MRPL24
SULT1A1
LGALS9
RXRB
SLAMF7
PIGR
GPSM3
C3orf80
HCG23
LOC101929290
RNU6-959P
ENSG00000269918
HSALNG0021150
RF00026-588
lnc-IL12A-2
IL34
CLEC2B
INSRR
NR6A1
C4BPB
ZFPM1
CCR9
TPI1P2
CRTC3
FAM228A
IL1F10
DNAJC10
FBLN7
ARHGAP45
ISG20L2
NACC2
BTLA
COIL
PSME3
CREBRF
C3orf20
LRRC71
DEFB136
METTL25B
MIR9-1HG
MIR765
SATB1-AS1
MIR3142HG
LINC01485
LINC01117
WAKMAR2
LINC00562
PTMAP5
LINC02539
ENSG00000269954
ALG1L11P
GNG5P5
ENSG00000223356
ENSG00000271553
ENSG00000257105
COL11A2P1
BTF3L4P3
RN7SL700P
RNU6-187P
lnc-IRF5-3
lnc-LTBP1-1
NONHSAG044958.2
lnc-BTNL2-2
LOC107986649
ENSG00000242162
lnc-PTTG1-5
MN297643
NONHSAG045793.2
lnc-SLC35G5-2
lnc-HLA-DRB1-8
ENSG00000224163
HSALNG0014115
HSALNG0049429
HSALNG0061260
HSALNG0061261
HSALNG0049404
HSALNG0063445
ENSG00000288064
piR-35674-092
MN298231
HSALNG0109667
HSALNG0046729
HSALNG0049428
HSALNG0007635
HSALNG0007636
HSALNG0046730
HSALNG0049427
piR-52910
RF00017-5040
piR-61240-151
LOC105370283
LOC105374329
HSALNG0013607
piR-50437-359
IL25
SLC17A3
IFN1@
ATP6V0D2
DEFA1
WFDC2
SCGB2A1
CCL23
BIRC7
ACSL5
AQP7
CHIA
TRBV16
TNFSF18
ORM2
C2-AS1
ADAD1
SNRPD3
POU2F1
IGK
STATH
ALDH8A1
APOF
BPIFA2
SEPTIN7
DUT
SNRPD1
ATP6V1C2
CCR8
DPP7
F11R
CD6
H1-5
EBF1
VTCN1
GTF2I-AS1
CD180
ACCS
MFSD6
SPRR2A
FOXN2
MIR5100
MIR5572
MIR4524B
MIR5571
H2AC6
IGHV3-71
FGL1
SPRR1B
BHLHA15
HRES1
ASGR2
TXLNA
APOBEC3A
GTF2F1
VGLL3
BTN2A2
CST1
AQP6
BTN3A1
SLC17A2
BTN3A2
BTN3A3
HMGN4
AAK1
H3C2
H2BC4
SOCS6
H1-6
LOC116158548
ST14
E2F1
MAP3K14
HMOX1
RORC
ATN1
RBM45
HT
CNTN2
TRBV20OR9-2
MYDGF
ACR
LINC02605
IFNA13
RTEL1
ISG20
PSPN
IL17D
GSN
PSPH
ITGAE
IGH
RAB4A
RIDA
LOC102723407
CDKN2A
LOC102724971
BTG3
STXBP3
IGHV3-52
SYT1
CD14
CD9
MSC
PTPN2
PVT1
PSS
PLAAT4
MIR146B
NRP1
IL18R1
ABCG2
PRKAA1
IKBKE
CD68
IL17RB
MIR448
NUDT15
NAT10
CD69
MFN2
TET2
PRKAA2
CHST3
ATF7IP
MAP2K7
CLOCK
VAC14
APOBEC3B
TRPM2
TTR
WNK1
GORASP1
UBTF
UVRAG
ROBO3
TPMT
SLC17A1
TAC1
SOAT1
TARBP1
MIR551B
BTK
TSPO
SLC22A1
CLDN5
TRPV1
NT5C1A
SEMA7A
USO1
TP63
MIR483
RPE65
VAMP8
CAST
TAM
NAPB
XBP1P1
LAPTM5
NR1I3
CCL25
DHX40
ASRGL1
MAP1LC3B
TNFSF14
ERV3-1
ALCAM
F9
NR1I4
CUL9
FMR1
EPHB2
CYP1A1
IFNLR1
NUDT10
EDNRA
KCNH3
SEC14L2
AMH
ACAD8
PDLIM3
AMY1A
AMY1B
AMY1C
HEYL
DDX58
FUCA2
ATRNL1
MYCBP
GOT2
TRIM22
SEMA3A
NOD1
PERCC1
CDKN2D
CDK2AP2
MIR1248
MIR4484
SUB1
TMED2
TMEM132D
CNN3
NRSN1
H3P19
H3P8
DSTN
TPPP
RPP14
WDHD1
CHP1
DBA2
SLC26A9
H3P13
MMP2
MS
MIAT
MSH5
MSN
MYC
MIR34C
LY9
MIR181A2
MIR223
ATD
NCL
ATHS
SF3B6
PIK3CA
PIK3CB
PIK3CG
UGT2B28
MIR377
OXTR
PAEP
PAX3
TRAT1
PPARA
HLA-H
HOXC6
HSPA4
LINC01139
IFI27
GSTM2
TRBV6-2
TRBV5-6
GPT
LAMTOR2
GRN
GRIN2A
PYCARD
RBPJ
IRF2
KDR
LEPR
PRAMEF13
ILF3
CXCR1
IL12RB1
TNFRSF9
ILF2

Table S3

Intersection target
CA2
NR3C1
NR3C2
NOS2
PTGS1
NCOA1
PPARG
ESR1
JUN
AKT1
ALB
BCL2
CASP3
CASP8
CASP9
CYP1A2
HMOX1
MMP2
MYC
VEGFA
RELA
XDH
NCF1
BAX
PON1
TGFB1
CHRM1
CHRM3
SLC6A4
APOE
ICAM1
ALOX5
CYP1A1
GSTM1
GSTM2
INSR
MAPK8
SELE
SLPI
STAT1
TNF
VCAM1
NR1I3
ABCA1
HMGCR
CAT
PARP1
BCL2L1
CD40LG
CDKN2A
CHUK
COL3A1
CLDN4
CRP
CTSD
E2F1
EGF
EGFR
ERBB2
HIF1A
HSPA5
HSPB1
IFNG
IL1A
IL1B
IL2
IL6
CXCL8
IL10
CXCL10
IRF1
MMP3
MMP9
MPO
NFKBIA
NOS3
ODC1
PPARA
MAPK1
PTEN
CCL2
CXCL11
SOD1
SPP1
TOP1
TP53
ABCG2