
Biofilm formation, antibiotic resistance, and genome sequencing of a unique isolate Salmonella Typhimurium M3

Lei Yuan^{1,2}, Yang Liu¹, Luyao Fan¹, Caowei Chen¹, Zhenguan Yang^{1*}, Xin-an Jiao^{2*}

 1 College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China; 2 Jiangsu Key Laboratory of Zoonoses, Yangzhou, PR China

*Corresponding authors: Zhenguan Yang, Yangzhou University, 196 Huayang West Road, Yangzhou, Jiangsu 225127, PR China. Email: yangzq@yzu.edu.cn; Xinan Jiao, Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009, PR China. Email: jiao@yzu.edu.cn

> Received: 19 October 2022; Accepted: 4 January 2023; Published: 13 January 2023 © 2023 Codon Publications

RESEARCH ARTICLE

Abstract

Salmonella Typhimurium is a zoonotic bacterium that can cause salmonellosis, and the major concerns of S. Typhimurium for the food industry are its ability to obtain multidrug resistance and form biofilms on foodcontact surfaces. In the current study, the antimicrobial resistance of a strong biofilm former S. Typhimurium M3 was assessed by the diffusion method. Genome sequencing was also applied to obtain the genes related to antibiotic resistance, and biofilm formation of S. Typhimurium M3. Biofilm-forming capacity of S. Typhimurium M3 was found to be strain dependent, and a high number of isolates were strong biofilm formers. The high biofilm-forming isolate S. Typhimurium M3 was resistant to oxacillin, lincomycin, rifampicin, tetracycline, and clindamycin, with the MIC values of 512 µg/mL, 32 µg/mL, 16 µg/mL, 64 µg/mL, and 64 µg/mL, respectively. Genomic annotation of S. Typhimurium M3 showed the presence of genes involved in cellulose biosynthesis, curli production, fimbriae biosynthesis, flagellar assemble, quorum sensing, chemotaxis, and some transcriptional regulators. Antibiotic efflux conferring antibiotic resistance genes, antibiotic inactivation genes, and antibiotic target alteration genes were also identified. The results expand scientific understanding on how Salmonella isolates with high biofilm-forming capacity and multidrug resistance survive in stressful conditions in the industry.

Keywords: biofilm; genome sequencing; multidrug resistance; Salmonella Typhimurium

Introduction

Salmonella Typhimurium is one of the major zoonotic bacteria that can cause serious gastroenteritis, typhoid fever, diarrhea, and sepsis (Taylor and Winter, 2020). This bacterium is usually transmitted to humans via the consumption of poultry products, or sometimes by contaminated surfaces (Shen et al., 2022). Although Chinese official data for Salmonella contamination in foods is not available, many studies have indicated that the prevalence of Salmonella was found to be 10.7-71.8%, with S. Typhimurium being one of the most predominant serovars (Zhou et al., 2018). In addition, studies have declared that the major concerns of S. Typhimurium in the food industry are the ability to acquire antimicrobial resistance and form biofilms on surfaces (Merino et al., 2019; Wang et al., 2022).

Antibiotics are used to both control the animal infections caused by Salmonella, and alleviate the widespread of salmonellosis among humans. Unfortunately, with the overuse of antibiotics in agriculture, S. Typhimurium is becoming highly resistant to a variety of antibiotics including lincomycin, tetracycline, quinolones, sulfamethoxazole, and oxytetracycline (Ingle *et al.*, 2021; Tian *et al.*, 2021). The occurrence of multidrug-resistant *S.* Typhimurium could cause treatment failure in animal husbandry and constitute huge threats to public health.

Biofilm formation has been proved to be a key factor that contributes to the ineffectiveness of antibiotics, which allows for the persistence of S. Typhimurium in the food industry (Yuan et al., 2021). Defined as the assemblage of microbes within the self-produced extracellular polymeric substances (EPS), biofilms are a regular mode for bacterial growth in nature, which account for around 80% of bacterial infections globally (Yuan et al., 2020). Many studies have indicated the occurrence of S. Typhimurium on meat products, glasses, plastics, stainless steel, and rubber in poultry processing environments, and the presence in the above environs is strongly linked to its biofilm-forming capacity (Lee et al., 2020). Once formed, S. Typhimurium biofilms are believed to show much higher resistance to antibiotics compared to their free-living counterparts, leading to the continuous transmission of foodborne diseases in the food industry (Yuan et al., 2020).

In this study, the biofilm-forming capacity and antibiotic resistance profiles of *S.* Typhimurium isolates from a swine slaughterhouse were evaluated. In addition, genome sequencing was performed to determine the genes of a unique *S.* Typhimurium isolate with multi-characteristics of high biofilm-forming ability and multidrug resistance. The results could provide new insights into the persistence of *S.* Typhimurium in the food industry, which would be valuable to effectively control *Salmonella* contamination in the food industry.

Materials and Methods

Bacterial strain and culture conditions

In this study, 39 *S.* Typhimurium isolates were isolated from a swine slaughterhouse in Jiangsu, China, from October 2016 to April 2017 (Zhou *et al.*, 2018). The cultures of *S.* Typhimurium were stored at -80° C in tryptic soy broth (TSB, Difco, USA), which contained 20% (v/v) glycerol.

Biofilm formation by S. Typhimurium

Biofilm formation by *S.* Typhimurium was determined according to the crystal violet staining assay described by Yuan *et al.* (2018). In brief, aliquots of 200 μ L bacterial culture at a concentration of 10^4 CFU/mL in TSB were

added into six wells of a 96-well plate (Costar, Corning, USA). Six negative controls with only TSB were also included. After incubation for 24 h at 37°C, the medium was gently poured, and each well was washed with sterile phosphate buffer saline (PBS), followed by fixing with methanol. Each well was stained by 200 µL of 0.05% (w/v) crystal violet solution (Sigma, USA) for 10 min, and washed with PBS. Adhered crystal violet in each well was then solubilized in 200 µL of 33% (v/v) acetic acid. The microplate reader (Thermo Fisher, USA) was used to measure optical density (OD) of the solution in wells at 594 nm. Biofilm-forming ability of each S. Typhimurium isolate was expressed by cut-off OD (ODc), which was defined as the mean OD of negative control plus three standard deviations (SD). Biofilm-forming capacity of each S. Typhimurium isolate was classified as the following groups: strong biofilm former (OD > 4ODc), moderate biofilm former (4ODc ≥ OD > 2ODc), weak biofilm former (2ODc ≥ OD > ODc), and no biofilm former (ODc ≥ OD) (Diaz et al., 2016). All results are expressed as mean ± SD obtained from assays with three replicates.

Biofilm formation of S. Typhimurium isolates on stainless steel surface was measured by following the assay as described by Yuan et al. (2018). Stainless steel coupons (with a square size of 1 × 1 cm) were immersed in acetone, washed with 75% (v/v) ethanol, rinsed with water, and then autoclaved before use. The overnight culture of each S. Typhimurium isolate was inoculated in 100 mL TSB in a flask containing coupons to obtain the final bacterial concentration of 10⁴ CFU/mL. After the incubation at 37°C for 24 h, stainless steel coupons were removed, washed with sterile PBS (pH 7), and transferred to a tube containing 10 g of glass beads and 10 mL of sterile PBS (pH 7). Adhered cells were detached from stainless steel surface by vortex mixing for 120 s. Each bacterial suspension was decimally diluted and plated onto TSA plates, followed by the incubation for 48 h at 28°C. All results are expressed as mean ± SD obtained from assays with three replicates.

Antimicrobial resistance of the high-biofilm former S. Typhimurium M3

Antibiotic resistance of the high-biofilm former S. Typhimurium M3 was assessed based on the diffusion method of Clinical Laboratory Standards Institute (CLSI) guidelines (2016). Commercial antibiotic discs (HiMedia, India) contain 22 antibiotics (Table 1). In brief, 100 μ L of overnight S. Typhimurium M3 culture was spread onto TSA plates. Then, antibiotic discs were placed on plates, followed by the incubation for 20 h at 37°C. Inhibition zones (mm) were measured and categorized as susceptible (S), intermediate (IR), and resistant (R)

Table 1. Antibiotic susceptibility of Salmonella Typhimurium M3.

	Antimicrobial		Antimicrobial
Antibiotics	resistance	Antibiotics	resistance
Oxacillin (1 μg)	R	Doxycycline (30 μg)	I
Amoxicillin (20 μg)	S	Enrofloxacin (10 μg)	S
Gentamicin (10 μg)	I	Azithromycin (15 μg)	I
Streptomycin (10 μg)	I	Norfloxacin (10 μg)	S
Penicillin (10 μg)	S	Lomefloxacin (10 μg)	S
Cefotaxime (30 μg)	S	Nitrofurantoin (300 μg)	S
Cotrimoxazole (1.25 μg)	S	Ampicillin (10 μg)	S
Polymyxin B (10 μg)	I	Rifampicin (5 μg)	R
Amikacin (30 μg)	S	Clindamycin (10 μg)	R
Novobiocin (10 μg)	I	Erythromycin (15 μg)	I
Lincomycin (10 μg)	R	Tetracycline (30 μg)	R

R, Resistant (≤14 mm); IR, Intermediate resistant (15–19 mm); S, Susceptible (≥20 mm).

according to each zone diameter of \geq 20, 15–19, and \leq 14 mm, respectively.

Defined as the lowest concentration of antibiotics that can inhibit bacterial growth, the MIC of antibiotics in *S.* Typhimurium M3 was assessed by the broth microdilution method (Dawan and Ahn, 2020). In brief, different dilutions of antibiotics and *S.* Typhimurium M3 were inoculated in 96-well plates at 37°C for 24 h.

Genome sequencing of S. Typhimurium M3

Genomic DNA of *S.* Typhimurium M3 was extracted by E.Z.N.A.® Bacterial DNA Kit (Omega, USA) according to the instructions. DNA quality was assessed by NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, USA). Preparation for library was performed based on Illumina's TruSeq Nano DNA Sample Prep Kit. Whole genome of *S.* Typhimurium M3 was sequenced by Illumina novaseq 6000 (Illumina Inc, San Diego, USA). Raw paired-end reads were trimmed and filtered using Trimmomatic, and sequences were assembled by ABySS. Genes in the genome of *S.* Typhimurium M3 were predicted with GeneMarkS. All gene models were blastp against nonredundant (NR) database, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO),

and Cluster of Orthologous Group (COG) for functional annotation. A circular map of *S.* Typhimurium M3 genome was drawn using Circos. Antibiotic resistance genes in the *S.* Typhimurium M3 genome were predicted by Resistance Gene Identifier against the Comprehensive Antibiotic Resistance Database (CARD).

Results and Discussion

Biofilm formation by S. Typhimurium isolates

Biofilm formation by S. Typhimurium in food industry may cause huge economic losses and serious safety issues globally. In this study, the biofilm-forming capacity of each S. Typhimurium isolate was quantified by the crystal violet staining assay. The ${\rm OD}_{594}$ values of *S.* Typhimurium isolates ranged from 0.017 to 1.098, and the highest OD₅₀₄ value was obtained from S. Typhimurium M3. Biofilmforming ability was proved to be in a strain-dependent way, as 9, 12, and 18 isolates were classified as weak, moderate, and strong biofilm formers, respectively (Figure 1A). High biofilm-forming ability of S. Typhimurium was also observed in previous studies, providing them survival strategies against antibiotics (Lee et al., 2020). Characteristics of different food-contact surfaces could influence bacterial attachment and biofilm formation of microorganisms. In this work, isolates belonging to S. Typhimurium were also measured for their biofilmforming capacity on stainless steel surface to simulate the real situation in the food industry. Cell counts recovered from biofilms of all S. Typhimurium isolates were in a range from 2.96 to 8.06 log CFU/cm² (Figure 1B). High biofilm-forming capacity (7.95 log CFU/cm²) of S. Typhimurium M3 on stainless steel coupon was also found. A previous study proved that Salmonella could be transferred from biofilms formed on stainless steel coupons to poultry products, posing safety issues to consumers (Wang et al., 2015). Therefore, the high biofilm-forming ability of S. Typhimurium observed in this study indicates the need to optimize the cleaning and disinfection procedures to avoid Salmonella biofilm contamination.

Antibiotic resistance of S. Typhimurium M3

The wide spread of multidrug-resistant *Salmonella* has made it a threat to public health. The high biofilm-forming isolate *S.* Typhimurium M3 was selected to test its susceptibility to 22 antibiotics by the diffusion method (Table 1). *S.* Typhimurium M3 was resistant to oxacillin, lincomycin, rifampicin, tetracycline, and clindamycin, and intermediate resistant to gentamicin, streptomycin, polymyxin B, novobiocin, doxycycline, azithromycin, and erythromycin. Furthermore, the MICs

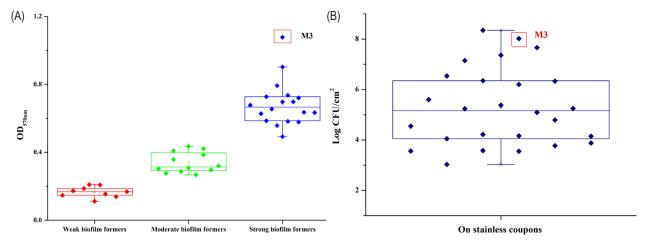


Figure 1. Biofilm formation of 39 Salmonella Typhimurium isolates on both polystyrene (A) and stainless steel coupons (B).

of oxacillin, lincomycin, rifampicin, tetracycline, and clindamycin were 512, 32, 16, 64, and 64 ug/mL, respectively. Occurrence of resistance to these antibiotics of *S.* Typhimurium have already been proved in different countries (Dawan and Ahn, 2020; Harb *et al.*, 2018). It is speculated that the resistance to multiple antibiotics may be caused by several mechanisms, including altering the cell membrane permeability, modifying the site of drug action, interfering with DNA synthesis, and affecting the structure of cell wall (Enrique *et al.*, 2020).

Genome properties of S. Typhimurium M3

This work also aims to determine the genome properties of *S.* Typhimurium M3 with unique multi-characteristics of high biofilm-forming and multidrug resistance. The draft genome sequence of *S.* Typhimurium M3 had a length of 4881503 bp, a GC content of 52.17%, which contained 4579 coding sequences, 81 tRNAs, 8 rRNAs (6 of 5S rRNA, 1 of 16S rRNA, and 1 of 23S rRNA) (Table 2). The circular representation of *S.* Typhimurium M3 draft genome is shown in Figure 2.

The proteins with functional assignments of *S.* Typhimurium M3 included 2276 with GO assignments,

Table 2. Genome properties of Salmonella Typhimurium M3.

Attributes	Salmonella Typhimurium M3
Genome size	4881503 bp
00.101.1001.20	'
Protein coding genes	4579
G-C content	52.17%
rRNA encoding genes	8
tRNA encoding genes	81
Total scaffolds	80
Scaffold N50	208949 bp
Scaffold N90	47339 bp

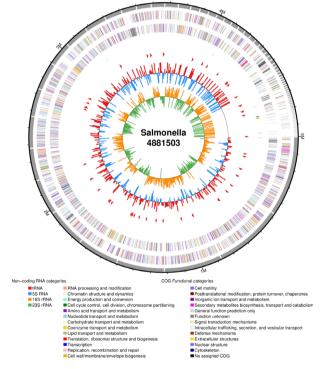


Figure 2. Genomic circle map of Salmonella Typhimurium M3.

3882 with eggNOG, 138 with CARD, and 3171 with KEGG pathway mapping. The COG protein database was generated by the comparison of predicted and known proteins in completely sequenced microbial genomes to infer sets of orthologs (Figure 3). In this study, the COG annotation showed that transcription, carbohydrate transport and metabolism, energy production and conversion, and amino acid transport and metabolism were the most abundant categories. Furthermore, KEGG annotation showed that 2003, 485, 263, and 245 genes were participated in overview maps, carbohydrate metabolism, amino acid metabolism, and membrane transport, respectively (Figure 4).

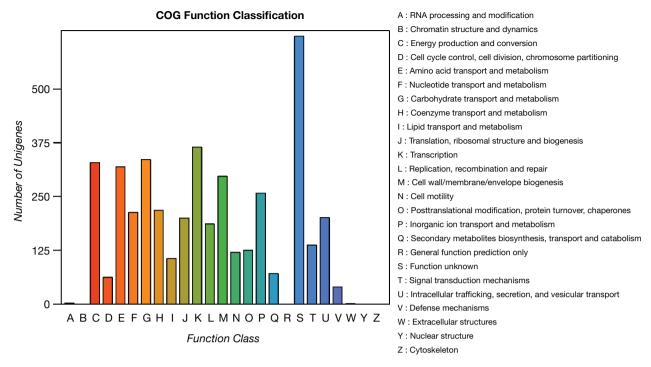


Figure 3. Cluster of orthologous group annotation of genes in Salmonella Typhimurium M3.

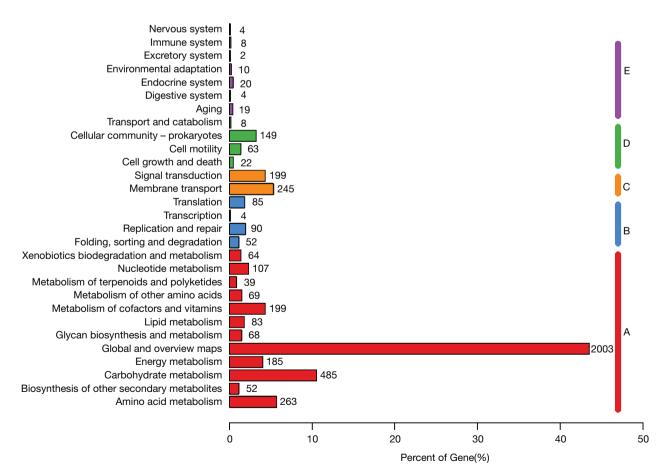


Figure 4. Kyoto encyclopedia of genes and genomes pathway enrichment results of genes in Salmonella Typhimurium M3.

The genome analysis of *S.* Typhimurium M3 showed several genes related to antibiotic resistance by antibiotic efflux, antibiotic target alteration, and antibiotic inactivation (Table 3). Antimicrobial resistance genes were predicted based on the CARD database, and

Table 3. Genes essential for antibiotic resistance in genome of *Salmonella* Typhimurium M3.

Gene identified	урпіmurium м.з. General function	Resistance mechanism
aac6-l	Cryptic aminoglycoside N-acetyltransferase AAC(6')-ly/laa	Antibiotic inactivation
acrA	Multidrug efflux RND transporter periplasmic adaptor subunit AcrA	Antibiotic efflux
acrB	Multidrug efflux pump subunit AcrB	Antibiotic efflux
acrD	Multidrug efflux RND transporter permease AcrD	Antibiotic efflux
acrE	Efflux RND transporter periplasmic adaptor subunit	Antibiotic efflux
acrF	Multidrug efflux RND transporter permease subunit	Antibiotic efflux
acrR	Multidrug efflux transporter transcriptional repressor AcrR	Antibiotic efflux
атрН	D-alanyl-D-alanine-carboxypeptidase/ endopeptidase AmpH	Antibiotic inactivation
baeR	Two-component system response regulator BaeR	Antibiotic efflux
baeS	Two-component system sensor histidine kinase BaeS	Antibiotic efflux
срхА	Envelope stress sensor histidine kinase CpxA	Antibiotic efflux
crp	cAMP-activated global transcriptional regulator CRP	Antibiotic efflux
cyaA	Adenylate cyclase	Antibiotic target alteration
emrA	Multidrug efflux MFS transporter periplasmic adaptor subunit EmrA	Antibiotic efflux
emrB	Inner membrane component of tripartite multidrug resistance system	Antibiotic efflux
emrR	Transcriptional repressor MprA	Antibiotic efflux
fabl	Enoyl-ACP reductase Fabl	Antibiotic target alteration
folP	Dihydropteroate synthase	Antibiotic target alteration
glpT	Glycerol-3-phosphate transporter	Antibiotic target alteration
golS	MerR family transcriptional regulator	Antibiotic efflux
gyrA	DNA gyrase subunit A	Antibiotic target alteration
gyrB	DNA gyrase subunit B	Antibiotic target alteration
hns	DNA-binding transcriptional regulator H-NS	Antibiotic efflux
kdpE	Two-component system response regulator KdpE	Antibiotic efflux

(Continues)

Table 3. Continued.

Table 3. Co	ntinued.	
Gene identified	General function	Resistance mechanism
marA	MDR efflux pump AcrAB transcriptional activator MarA	Antibiotic efflux
marR	Multiple antibiotic resistance protein MarR	Antibiotic efflux
mdtA	Multidrug resistance protein MdtA	Antibiotic efflux
mdtB	Multidrug resistance protein MdtB	Antibiotic efflux
mdtC	Multidrug efflux RND transporter permease subunit MdtC	Antibiotic efflux
mdtG	Multidrug efflux MFS transporter MdtG	Antibiotic efflux
mdtH	Multidrug efflux MFS transporter MdtH	Antibiotic efflux
mdtK	Multidrug efflux MATE transporter MdtK	Antibiotic efflux
mdtM	Multidrug resistance protein MdtM	Antibiotic efflux
mdsA	Multidrug efflux RND transporter periplasmic adaptor subunit MdsA	Antibiotic efflux
mdsB	Multidrug efflux RND transporter permease subunit MdsB	Antibiotic efflux
mdsC	Efflux pump outer membrane protein	Antibiotic efflux
msbA	Lipid A ABC transporter ATP- binding protein/permease MsbA	Antibiotic efflux
murA	UDP-N-acetylglucosamine 1-carboxyvinyltransferase	Antibiotic target alteration
nfsA	Nitroreductase A	Antibiotic target alteration
parC	DNA topoisomerase IV subunit A	Antibiotic target alteration
parE	DNA topoisomerase IV subunit B	Antibiotic target alteration
phoP	Two-component system response regulator PhoP	Antibiotic target alteration
ptsl	Phosphoenolpyruvate-protein phosphotransferase Ptsl	Antibiotic target alteration
ramA	RamA family antibiotic efflux transcriptional regulator	Antibiotic efflux
sdiA	Transcriptional regulator SdiA	Antibiotic efflux
гроВ	DNA-directed RNA polymerase subunit beta	Antibiotic target alteration
soxS	Superoxide response transcriptional regulator SoxS	Antibiotic target alteration
soxR	Redox-sensitive transcriptional activator SoxR	Antibiotic target alteration
tetA	Tetracycline resistance protein	Antibiotic efflux
toIC	Outer membrane channel protein TolC	Antibiotic efflux
tuf	Elongation factor Tu	Antibiotic target alteration
uhpA	DNA-binding transcriptional activator UhpA	Antibiotic target alteration
uhpT	Hexose-6-phosphate:phosphate antiporter	Antibiotic target alteration
yojl	Multidrug ABC transporter permease/ATP-binding protein	Antibiotic efflux

S. Typhimurium M3 contained 18 genes connected with resistance to tetracycline (tetA), fluoroquinolone (gyrB, parC, parE), triclosan (gyrA), sulfonamide (folP), nitrofuran (nfsA), elfamycin (tuf), aminoglycoside (AAC6), rifamycin (rpoB), fosfomycin (uhpA, uhpT, ptsI, murA, cyaA, glpT), cephalosporin (ampH), and isoniazid (fabI). Remarkably, in this study, 36 genes belonged to several gene families, including ATP-binding cassette (ABC) antibiotic efflux pumps (soxS, soxR, phoP, msbA, tolC, voil), resistance-nodulation-cell division (RND) antibiotic efflux pumps (acrA, acrE, acrR, baeR, baeS, cpxA, golS, marR, mdsA, mdsB, mdsC, sdiA, crp, marA, acrB, acrD, acrF, mdtA, mdtB, mdtC, ramA), major facilitator superfamily (emrA, emrB, emrR, hns, mdtG, mdtH, mdtM), multidrug and toxic compound extrusion (MATE) transporters (mdtK), and KdpDE (kdpE) identified in the genome of *S.* Typhimurium M3. The presence of efflux pumps makes S. Typhimurium isolates insensitive to tetracycline, oxacillin, lincomycin, rifampicin, streptomycin, clindamycin, kanamycin, ciprofloxacin, norfloxacin (Ge et al., 2022; Zwama and Nishino, 2021).

In this study, key genes encoding for chemotaxis, motility, surface attachment, quorum sensing (QS), matrix protein-encoding genes, biofilm transcriptional regulators, and matrix polysaccharide synthesis genes were also identified (Table 4). Some of the adhesion factors, such

Table 4. Genes essential for biofilm formation in the genome of Salmonella Typhimurium M3.

Gene identified	General function	Biofilm regulation mechanism
cheV	Involved in the transmission of sensory signals from the chemo-receptors to the flagellar motors	Chemotaxis
luxS	S-ribosylhomocysteine lyase	Quorum sensing
flgA	Flagellar basal body P-ring formation protein FlgA	Flagellar
flgB	Flagellar basal body rod protein FlgB	Flagellar
flgC	Flagellar basal body rod protein FlgC	Flagellar
flgD	Flagellar hook assembly protein FlgD	Flagellar
flgE	Flagellar hook protein FlgE	Flagellar
flgF	Flagellar basal body rod protein FlgF	Flagellar
flgG	Flagellar basal body rod protein FlgG	Flagellar
flgH	Flagellar basal body L-ring protein FlgH	Flagellar
flgl	Flagellar basal body P-ring protein Flgl	Flagellar

(Continues)

Table 4. Continued.

Table 4.	Continued.	
Gene identified	d General function	Biofilm regulation mechanism
flgJ	Flagellar assembly peptidoglycan hydrolase FlgJ	Flagellar
flgK	Flagellar hook-associated protein FlgK	Flagellar
flgL	Flagellar basal body–associated protein FliL	Flagellar
flgM	Flagellar motor switch protein FliM	Flagellar
flgN	Flagellar motor switch protein FliN	Flagellar
flgO	Flagellar type III secretion system protein FliO	Flagellar
flgP	Flagellar type III secretion system pore protein FliP	Flagellar
flgQ	Flagellar biosynthesis protein FliQ	Flagellar
bcsA	UDP-forming cellulose synthase catalytic subunit	Cellulose biosynthesis
bcsB	Cellulose biosynthesis cyclic di-GMP- binding regulatory protein BcsB	Cellulose biosynthesis
bcsC	Cellulose biosynthesis protein BcsC	Cellulose biosynthesis
bcsE	Cellulose biosynthesis protein BcsE	Cellulose biosynthesis
bcsF	Cellulose biosynthesis protein BcsF	Cellulose biosynthesis
bcsG	Cellulose biosynthesis protein BcsG	Cellulose biosynthesis
bcsQ	Cellulose biosynthesis protein BcsQ	Cellulose biosynthesis
csgA	Major curlin subunit	Curli production
csgB	Minor curlin subunit	Curli production
csgE	Curli production assembly/ transport protein CsgE	Curli production
csgF	Curli production assembly/ transport protein CsgF	Curli production
csgG	Curli production assembly/ transport protein CsgG	Curli production
fimA	Type-1 fimbrial protein subunit	Biogenesis of fimbriae
fimC	Fimbrial chaperone protein FimC	Biogenesis of fimbriae
fimF	Fimbrial-like protein FimF	Biogenesis of fimbriae
fimH	Fimbrial protein FimH	Biogenesis of fimbriae
fimW	Fimbria biosynthesis transcriptional regulator FimW	Biogenesis of fimbriae
fimY	Fimbria biosynthesis regulator FimY	Biogenesis of fimbriae
lpfB	Fimbrial assembly chaperone	Biogenesis of fimbriae
yhcD	Fimbrial biogenesis outer membrane usher protein	Biogenesis of fimbriae

(Continues)

Table 4. Continued.

Gene identified	General function	Biofilm regulation mechanism
yhcA	Fimbrial chaperone protein	Biogenesis of fimbriae
mrkB	Fimbrial assembly chaperone	Biogenesis of fimbriae
csgD	Transcriptional regulator CsgD	Transcriptional regulator
adrA	Diguanylate cyclase AdrA	Transcriptional regulator
sdiA	transcriptional regulator SdiA	Transcriptional regulator
flk	Flagella biosynthesis regulator Flk	Flagellar regulator
bapA	Biofilm-associated protein BapA	Cell-surface protein
bssS	Biofilm formation regulatory protein BssS	Biofilm regulator
bsmA	Lipoprotein BsmA	Biofilm stress and motility protein
bdcA	SDR family oxidoreductase	Increases biofilm dispersal
yehA	Putative fimbrial-like adhesin protein	Contributes to adhesion to various surfaces in specific environmental niches

as flagella and pili, are vital for biofilm formation (Yuan et al., 2020). Genes related to flagellar (flgA, flgB, flgC, flgD, flgE, flgF, flgG, flgH, flgI, flgJ, flgK, flgL, flgM, flgN, flgO, flgP) identified in this study are essential for attachment but can serve different roles during Salmonella biofilm formation. Gene coding for chemotaxis (cheV) in this study is involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. QS is the bacterial cell-to-cell communication signaling mechanism, which can regulate bacterial motility and biofilm formation (Yuan et al., 2018). The luxS gene detected in this study is responsible for the production of QS signaling molecule by converting S-ribosyl-L-homocysteine into homocysteine and DPD. EPS of S. Typhimurium biofilms is composed of cellulose, curli, and biofilmassociated protein, and can support the adherence and surface attachment of S. Typhimurium onto different surfaces (Maruzani et al., 2019). In this study, the genes for cellulose biosynthesis (bcsA, bcsB, bcsC, bcsE, bcsF, bcsG, bcsQ), curli production (csgA, csgB, csgE, csgF, csgG), fimbriae biogenesis (fimA, fimC, fimF, fimH, fimW, fimY, lpfB, yhcD, yhcA, mrkB) were identified. Biofilm formation by Salmonella has proved to be regulated by a complex genetic network involving interactions between regulators, and the major regulators including *csgD*, *adrA*, and *flk* were identified in this study. CsgD encoded by *csgD* is the biofilm control center to regulate expressions of major *Salmonella* biofilm constituents, control the transition between planktonic and biofilm cells, and even maintain the 3-D structure of biofilms (Chen *et al.*, 2021). AdrA regulates genes encoding cellulose biosynthesis of *Salmonella* by changing cellular levels of c-di-GMP during biofilm formation (Chen *et al.*, 2021). The large protein BapA (encoded by *bapA*) of *S.* Typhimurium was shown to be necessary for bacterial aggregation and pellicle formation by interconnecting individual cells.

Conclusion

In summary, the high biofilm-forming capacity and multi-drug resistance of *S.* Typhimurium from swine slaughterhouse evidenced by *in vitro* and genomic sequencing tests confirmed their persistence in the food industry. The results have significant implications for the food safety and public health globally, highlighting the importance of good hygienic practices and appropriate use of antibiotics in the industry. Furthermore, the development of more appropriate and effective approaches for control of *Salmonella* contamination control in the food industry are also critical.

Acknowledgments

This research was financially supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province (21KJB550007), the Natural Science Foundation of Jiangsu Province (BK20210814), and China Postdoctoral Science Foundation (2021TQ0274, 2022M720120).

References

Chen, S., Feng, Z., Sun, H., Zhang, R., Qin, T. and Peng, D., 2021. Biofilm-formation-related genes *csgD* and *bcsA* promote the vertical transmission of *Salmonella* Enteritidis in Chicken. Frontiers in Veterinary Science 7: 625049. https://doi.org/10.3389/fvets. 2020.625049

CLSI (Clinical and Laboratory Standard Institute), 2016.Performance standards for antimicrobial susceptibility testing.Twenty-Second Informational Supplement.

Dawan, J. and Ahn, J., 2020. Assessment of cross-resistance potential to serial antibiotic treatments in antibiotic-resistant *Salmonella* Typhimurium. Microbial Pathogenesis 148: 104478. https://doi.org/10.1016/j.micpath.2020.104478

Diaz, M., Ladero, V., Rio, B.D., Redruello, B., Fernandez, M., Martin, M.C. and Alvarez, M.A., 2016. Biofilm-forming capacity in biogenic amine-producing bacteria isolated from dairy

- products. Frontiers in Microbiology 7: 591. https://doi.org/ 10.3389/fmicb.2016.00591
- Enrique Castro-Vargas, R.E., Herrera-Sanchez, M.P., Rodriguez-Hernandez, R. and Rondon-Barragan, I.S., 2020. Antibiotic resistance in *Salmonella* spp. isolated from poultry: a global overview. Veterinary World 13: 2070–2084. https://doi.org/10.14202/vetworld.2020.2070-2084
- Ge, H.W., Wang, Y.Z. and Zhao, X.H., 2022. Research on the drug resistance mechanism of foodborne pathogens. Microbial Pathogenesis 162: 105306. https://doi.org/10.1016/j. micpath.2021.105306
- Harb, A., Habib, I., Mezal, E.H., Kareem, H.S., Laird, T., O'Dea, M. and Abraham, S., 2018. Occurrence, antimicrobial resistance and whole-genome sequencing analysis of *Salmonella* isolates from chicken carcasses imported into Iraq from four different countries. International Journal of Food Microbiology 284: 84–90. https://doi.org/10.1016/j.ijfoodmicro.2018.07.007
- Ingle, D.J., Ambrose, R.L., Baines, S.L., Duchene, S., da Silva, A.G., Lee, D.Y.J., Jones, M., Valcanis, M., Taiaroa, G. and Ballard, S.A., 2021. Evolutionary dynamics of multidrug resistant *Salmonella enterica* serovar 4,[5],12:i:- in Australia. Nature Communications 12: 4786. https://doi.org/10.1038/s41467-021-25073-w
- Lee, K.H., Lee, J.Y., Roy, P.K., Mizan, M.F.R., Hossain, M.I., Park, S.H. and Ha, S.D., 2020. Viability of *Salmonella* Typhimurium biofilms on major food-contact surfaces and eggshell treated during 35 days with and without water storage at room temperature. Poultry Science 99: 4558–4565. https://doi.org/10.1016/j.psj. 2020.05.055
- Maruzani, R., Sutton, G., Nocerino, P. and Marvasi, M., 2019. Exopolymeric substances (EPS) from *Salmonella enterica*: polymers, proteins and their interactions with plants and abiotic surfaces. Journal of Microbiology 57: 1–8. https://doi.org/10.1007/s12275-019-8353-y
- Merino, L., Procura, F., Trejo, F.M., Bueno, D.J. and Golowczyc, M.A., 2019. Biofilm formation by Salmonella sp. in the poultry industry: detection, control and eradication strategies. Food Research International 119: 530–540. https://doi.org/10.1016/j.foodres.2017.11.024
- Shen, W.W., Chen, H., Geng, J.W., Wu, R.A., Wang, X. and Ding, T., 2022. Prevalence, serovar distribution, and antibiotic resistance of *Salmonella* spp. isolated from pork in China: a systematic review and meta-analysis. International Journal of Food Microbiology 361: 109473. https://doi.org/10.1016/j.ijfoodmicro.2021.109473
- Taylor, S.J. and Winter, S.E., 2020. Salmonella finds a way: metabolic versatility of Salmonella enterica serovar Typhimurium

- in diverse host environments. PLoS Pathogens 16: e1008540. https://doi.org/10.1371/journal.ppat.1008540
- Tian, Y., Gu, D., Wang, F., Liu, B., Li, J., Kang, X., Meng, C., Jiao, X.N. and Pan, Z.M., 2021. Prevalence and characteristics of *Salmonella* spp. from a pig farm in Shanghai, China. Foodborne Pathogens and Disease 18: 477–488. https://doi.org/10.1089/ fpd.2021.0018
- Wang, H., Zhang, X., Zhang, Q., Ye, K., Xu, X. and Zhou, G., 2015.
 Comparison of microbial transfer rates from *Salmonella* spp. biofilm growth on stainless steel to selected processed and raw meat. Food Control 50: 574–580. https://doi.org/10.1016/j. foodcont 2014.09.049
- Wang, Y.Z., Ge, H.W., Wei, W.Y. and Zhao, X.H., 2022. Research progress on antibiotic resistance of *Salmonella*. Food Quality and Safety 6: fyac035. https://doi.org/10.1093/fqsafe/ fyac035
- Yuan, L., Burmølle, M., Sadiq, F.A., Wang, N. and He, G., 2018a. Interspecies variation in biofilm-forming capacity of psychrotrophic bacterial isolates from Chinese raw milk. Food Control 91: 47–57. https://doi.org/10.1016/j.foodcont. 2018.03.026
- Yuan, L., Hansen, M.F., Røder, H.L., Wang, N., Burmølle, M. and He, G., 2020. Mixed-species biofilms in the food industry: current knowledge and novel control strategies. Critical Reviews in Food Science and Nutrition 60: 2277–2293. https://doi.org/ 10.1080/10408398.2019.1632790
- Yuan, L., Sadiq, F.A., Burmølle, M., Liu, T. and He, G., 2018b. Insights into bacterial milk spoilage with particular emphasis on the roles of heat-stable enzymes, biofilms, and quorum sensing. Journal of Food Protection 81: 1651–1660. https://doi.org/ 10.4315/0362-028X.JFP-18-094
- Yuan, L., Sadiq, F.A., Wang, N., Yang, Z. and He, G., 2021. Recent advances in understanding the control of disinfectant-resistant biofilms by hurdle technology in the food industry. Critical Reviews in Food Science and Nutrition 61: 3876–3891. https://doi.org/10.1080/10408398.2020.1809345
- Zhou, Z., Jin, X., Zheng, H., Li, J., Meng, C., Yin, K., Xie, X.L., Huang, C.Y., Lei, T.Y., Sun, X.Y., Xia, Z.M., Zeng, Y., Pan, Z.M. and Jiao, X.N., 2018. The prevalence and load of *Salmonella*, and key risk points of *Salmonella* contamination in a swine slaughterhouse in Jiangsu province, China. Food Control 87: 153–160. https://doi.org/10.1016/j.foodcont.2017.12.026
- Zwama, M. and Nishino, K., 2021. Ever-adapting RND efflux pumps in Gram-negative multidrug-resistant pathogens: a race against time. Antibiotics 10: 774. https://doi.org/10.3390/ antibiotics10070774