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Abstract

Neuropathic pain is a very troublesome disease that seriously affects human life. Eriocalyxin B (EriB) has been 
revealed to attenuate various diseases through its anti-inflammatory effects, but its regulatory effects on neuro-
pathic pain remains unclear. The paw withdrawal threshold and paw withdrawal thermal latency were detected 
through mechanical allodynia and thermal hyperalgesia tests. The spinal injury was assessed through hematox-
ylin and eosin staining. The cell apoptosis was measured through terminal deoxynucleotide transferase-medi-
ated dUTP nick end-labeling assay. The protein expressions were examined through Western blot analysis. The 
mRNA expression was examined through reverse transcription-quantitative polymerase chain reaction. The ion-
ized calcium-binding adaptor molecule 1 level in the spinal cord was evaluated through immunofluorescence 
assay. The levels of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 were measured through enzyme-linked- 
immunosorbent serologic assay. The chronic constriction injury (CCI) rat model was constructed for the study. 
Our results demonstrated that EriB relieved CCI-stimulated neuropathic pain and nerve damage. In addition, the 
enhanced neural apoptosis mediated by CCI induction was reduced after EriB treatment. In addition, EriB inhib-
ited CCI-induced microglia activity and inflammation. At last, the Janus kinase 2–signal transducer and activator 
of transcription 3 (JAK2/STAT3) and nuclear factor kappa B (NF-κB) pathways were activated in CCI rat model, 
which were attenuated following EriB treatment. Importantly, EriB (10 mg/kg) had a strong effect that was similar 
to the positive control (1-μg/kg dexmedetomidine), suggesting that EriB may be an effective drug for neuropathic 
pain. This study demonstrated that EriB inhibited inflammation caused by CCI-induced microglia activation to 
relieve neuropathic pain through inhibition of JAK2/STAT3 and NF-κB pathways. This study may highlight the 
regulatory functions of EriB in the treatment of neuropathic pain.
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Introduction

Neuropathic pain is a common and persistent disease 
(Baron et al., 2010; Devor, 1991). The International 
Association for the Study of Pain (IASP) has defined neu-
ropathic pain as a disorder of the somatosensory nervous 
system that disrupts the central nervous system (CNS) 
and/or the peripheral nervous system (Bouhassira, 
2019). The pathogenesis of neuropathic pain is complex, 

and some studies have proved that tissue damage is the 
direct consequence of neuropathic pain that influences 
the nervous system and stimulate the ectopic discharge 
phenomenon of bypass conduction (Cohen and Mao, 
2014; Guo et al., 2022). Nevertheless, the mechanism of 
neuropathic pain has not been fully understood; hence, 
most of the current treatments are based on narcotic 
drugs, such as dexmedetomidine, to attenuate discom-
fort (Huang et al., 2017; Mücke et al., 2018; Xu. and 
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All animal experiments were performed in line with the 
guidelines of the Animal Experiments Ethics Committee 
of Changzhou Traditional Chinese Medicine Hospital.

Mice (n = 6 in each group) were randomly separated into 
the following five groups: Sham, CCI, CCI+5-mg/kg EriB, 
CCI+10-mg/kg EriB, and CCI+1-μg/kg dexmedetomi-
dine. The CCI-induced rat model for neuropathic pain 
was created as described by Zhang et al. (2019). After 
anesthetizing with pentobarbital sodium (40 mg/kg), mice 
in the CCI group were subjected to expose sciatic nerves, 
and ligated with 4-0 chromic gut suture (Ethicon Inc., 
Cincinnati, USA), to induce CCI. EriB (5 or 10 mg/kg) or 
dexmedetomidine (1 μg/kg) was injected intraperitoneally 
to CCI mice for 7 days post-operation. Mice in the sham 
group were subjected to the same surgery but no sciatic 
nerve ligation was made. Finally, mice were euthanized 
with pentobarbital sodium (160 mg/kg). The L4–L6 spinal 
cord was removed from euthanized animals for additional 
experiments. EriB (B30248, purity >98%) was bought from 
Shanghai YuanYe Biotechnology Co (Shanghai, China).

Mechanical allodynia and thermal hyperalgesia tests

The paw withdrawal threshold (PWT) was measured 
through von Frey hair stimulation (Stoelting Co.) to 
assess mechanical allodynia (Inoue et al., 2009). von Frey 
filaments were put into the hind paw’s dorsal surface with 
sufficient force. When mice withdrew their paws, PWT 
was recorded in terms of pressure (g). Each trial was 
done for six times at 3-min interval.

The paw withdrawal thermal latency (PWL) was exam-
ined to evaluate thermal hyperalgesia (Zheng et al., 
2019). Briefly, the infrared light beam from a modified 
Hargreaves device (Ugo Basile SRL) was irradiated to 
the hind paw’s plantar surface. Subsequently, when mice 
withdrew their paws, the PWL was recorded. All exper-
imental mice underwent thermal and mechanical pain 
tests at 0, 3, 7, 14, and 21 days post-operation.

Hematoxylin and eosin (H&E) staining

The collected spinal cords were fixed in 4% paraformal-
dehyde. Next, the spinal cords embedded in paraffin and 
dehydrated, and cut into 5-µm sections. All sections were 
stained in H&E solution. Finally, histopathologic changes 
were observed under a light microscope.

The scoring criteria of spinal cord injury were as 
described by Shan et al. (2021) as follows: 

0 = no lesion; 
1 = gray matter containing 1–5 eosinophilic neurons; 

Xu., 2021). Inflammation is a very remarkable feature of 
neuropathic pain; thus, reducing inflammation is the first 
step to relieve this disease. Therefore, seeking drugs that 
are more effective has become crucial.

In recent years, traditional Chinese medicine has 
played an increasingly important role in the treatment 
of neuropathic pain (Feng et al., 2014; Li et al., 2020). 
Eriocalyxin B (EriB) extracted from Isodon eriocalyx var 
is a biologically active ingredient. In traditional Chinese 
medicine, Isodon eriocalyx var has been used as a drug 
for anti-inflammatory treatment, and its extract EriB has 
also been developed as a drug for treating sore throats 
and inflammation (Leung et al., 2006; Niu et al., 2002). 
Studies have illustrated that EriB has anticancer effect, 
which can suppress cell proliferation, migration, inva-
sion, and other malignant phenotypes in colon, pancre-
atic, and breast cancers (Duan et al., 2021; Li et al., 2012; 
Riaz et al., 2019). EriB exerts anti-inflammatory effects 
through inhibiting the differentiation of T helper 1 (Th1) 
and Th17 cells and the enhancement of reactive oxygen 
species (ROC), thereby improving autoimmune encepha-
lomyelitis (Lu et al., 2013). Moreover, EriB exerts anti-in-
flammatory effects through selectively regulating the 
conversion of microglia to M2 phenotype (resolution of 
inflammation and tissue repair) by targeting the nuclear 
factor kappa B (NF-κB) signaling pathway, thereby allevi-
ating Parkinson’s symptoms (Dou et al., 2018). However, 
the effects of EriB in neuropathic pain and its’ regulatory 
mechanism remain unclear.

Both Janus kinase 2–signal transducer and activator 
of transcription 3 (JAK2/STAT3) and NF-κB pathways 
have been revealed to participate into the progression of 
neuropathic pain (Fei et al., 2017; Popiolek-Barczyk and 
Mika, 2016; Song et al., 2021). However, whether EriB 
affects JAK2/STAT3 and NF-κB pathways to relieve neu-
ropathic pain is unclear.

This study aimed to explore the regulatory role of EriB 
in the progression of neuropathic pain. Our study showed 
that EriB inhibited inflammation caused by chronic con-
striction injury (CCI)-induced microglia activation to 
relieve neuropathic pain through inhibition of JAK2/
STAT3 and NF-κB pathways. These findings suggested that 
EriB could be a useful novel drug to treat neuropathic pain.

Materials and methods

CCI rat model

Male Sprague-Dawley (SD) mice (aged 6–8 weeks, n = 
30) were acquired for experiments (Vital River, Beijing, 
China). Free food and water were supplied to animals, 
and they were kept at 25°C into a 12-h light/dark cycle. 
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(IBA1; 0.5 µg/mL, ab178846; Abcam) for 12 h at 4°C. The 
secondary antibodies (1:1,000, ab150080) were mixed 
with sections for 2 h post-washing. Fluorescence micro-
scope (Olympus) was utilized for acquiring fluorescent 
images (Bostani et al., 2020; Rahmati and Rashno, 2021).

Enzyme Linked Immunosorbent Serologic Assay (ELISA)

The levels of tumor necrosis factor-α (TNF-α; ab236712), 
interleukin (IL)-1β (ab255730), and IL-6 (ab234570) in 
serum were examined by using commercial ELISA kits 
(Abcam) in line with the manufacturer’s instructions.

Reverse transcription-quantitative polymerase chain 
reaction (RT-qPCR)

The isolation of RNAs from the spinal cords of mice 
was conducted using the Trizol reagent (Termo Fisher, 
Waltham, MA). The synthesis from RNAs to comple-
mentary DNA (cDNA) was performed through the 
PrimeScript™ RT reagent kit (Takara, Dalian, China), and 
RT-qPCR was executed using the SYBR Green PCR kit 
(Toyobo, Japan). The calculation of mRNA expressions 
was done through the 2−ΔΔCt method, with glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) acting as an inter-
nal control. The primers are listed in Table 1.

Statistical analysis

GraphPad Prism 9.0 (GraphPad Software Inc.) was 
employed for statistical analysis. The data were pre-
sented as mean ± standard deviation (SD). Comparisons 
in the groups (two or multiple) were evaluated through 
the Student’s t-test or one-way ANOVA with Tukey’s 
post hoc test. Normality and variance homogeneity was 
checked for all cases. P < 0.05 was considered as statisti-
cally significant.

2 = gray matter containing 6–10 eosinophilic neurons; 
3 = gray matter containing >10 eosinophilic neurons; 
4 = infarction of <1/3 of the gray matter area; 
5 = infarction of 1/3–1/2 of the gray matter area; and 
6 = infarction of >1/2 of the gray matter area.

Terminal deoxynucleotide transferase-mediated dUTP 
nick end-labeling (TUNEL) assay

The in situ cell death detection kit (Cat. No. 11684817910; 
Roche, Basel, Switzerland) was applied for measuring 
cell apoptosis. Sections of the spinal cord were permea-
bilized through Triton X-100 (0.1%) and sodium citrate. 
The sections were then incubated with TUNEL stain-
ing solution at 37°C in darkness for 1 h. After wash-
ing, incubation with converter-peroxidase (POD) and 
diaminobenzidine (DAB) was performed for spinal cord 
sections. 4′,6-Diamidino-2-phenylindole (DAPI) was 
used for staining of nucleus. Eventually, the fluorescent 
images were developed under fluorescence microscope 
(Olympus, Tokyo, Japan).

Western blot analysis

Proteins were isolated from spinal cords through radio-
immunoprecipitation (RIPA) lysis assay buffer (Thermo 
Fisher Scientific, MA). These proteins were separated 
through 10% sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis (SDS-PAGE), and transferred onto poly-
vinylidene difluoride (PVDF) membranes (Beyotime, 
Shanghai, China). After blocking, the membranes 
were incubated at 4°C for 12 h with the following pri-
mary antibodies: B-cell lymphoma-2 (BCL-2, 1:1,000; 
ab196495; Abcam, Shanghai, China), Bcl-2-associated 
X (BAX 1:2,000; ab182733), cleaved caspase-3 (1:5,000; 
ab214430), cluster of differentiation (CD) 86 cells (1 µg/
mL; ab112490), CD206 (1 µg/ml; ab64693), phospho 
Janus kinase 2 (p-JAK2, 1:1,000; ab32101), (JAK2, 1:5,000; 
ab108596),  p-signal transducer and activator of tran-
scription 3 (STAT3, 1:1,000; ab32143), STAT3 (1:1,000; 
ab68153), and β-actin (1 µg/mL; ab8226). Next, the appro-
priate secondary antibodies (1:2,000; ab7090; Abcam) were 
added to membranes. Ultimately, the chemiluminescence 
detection kit (Thermo Fisher Scientific Inc.) was used for 
evaluating the blots (Rahmati and Taherabadi, 2021).

Immunofluorescence (IF) staining

After washing, sections of the spinal cords were blocked 
in bovine serum albumin phosphate–buffered saline solu-
tion (BSA/PBS, 3%) and fetal bovine serum (FBS)/PBS 
(10%). Next, the sections were incubated with primary 
antibody of ionized calcium-binding adaptor molecule 1 

Table 1. The sequences of primers. 

TNF-α
F: 5’-GAA ACA CAC GAG ACG CTG AA-3’

R: 5’-AGG GAG GCC TGA GAC ATC TT-3’

IL-1β
F: 5’-TAC AGG CTC CGA GAT GAA CAA C-3’

R: 5’-TTT GAG GCC CAA GGC CAC AG-3’

IL-6

F: 5’-CCA GAA ACC GCT ATG AAG TTC C-3’

R: 5’-GTTGGGAGTGGTATCCTCTGTGA-3’

GAPDH

F: 5’-ACC ACA GTC CAT GCC ATC AC-3

R: 5’-TCC ACC ACC CTG TTG CTG TA-3’
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EriB suppressed CCI-mediated neural apoptosis

Cell apoptosis was enhanced in CCI rat model, but it 
was weakened after EriB or dexmedetomidine treatment 
(Figure 2A). In addition, the BCL-2 protein expression 
was decreased, while the BAX and cleaved caspase-3 
protein expressions were increased in CCI rat model, but 
these changes were attenuated by EriB or dexmedetomi-
dine treatment (Figure 2B). The effect of EriB (10 mg/kg) 
was similar to the positive control (1-μg/kg dexmedeto-
midine). Taken together, EriB suppressed CCI-mediated 
neural apoptosis.

EriB inhibited CCI-induced microglia activity

As displayed in Figure 3A, the IBA1 level was enhanced in 
CCI rat model, but this effect was reduced following EriB 
or dexmedetomidine treatment. In addition, the CD86 
protein expression was increased in CCI rat model, but 

Results 

EriB relieved CCI-stimulated neuropathic pain and  
nerve damage

At first, the CCI rat model for neuropathic pain was con-
structed. In Figure 1A, the PWT decreased in CCI rat 
model, but this change reversed after treatment with EriB 
(5 mg/kg or 10 mg/kg) or dexmedetomidine (1 μg/kg). 
Moreover, the PWL demonstrated similar results (Figure 
1B). H&E staining showed that nerve fiber swelling and fiber 
structure disorder were observed in the CCI model group, 
but they were restored after EriB or dexmedetomidine 
treatment (Figure 1C). In addition, histopathology score was 
strengthened in the CCI model group, but it was reduced 
following EriB or dexmedetomidine treatment (Figure 1D). 
Importantly, EriB (10 mg/kg) had a strong effect, which was 
similar to the positive control (1-μg/kg dexmedetomidine). 
These findings indicated that EriB relieved CCI-stimulated 
neuropathic pain and nerve damage.
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mRNA expressions of TNF-α, IL-1β, and IL-6 also had 
similar changes (Figure 4B). The remission effects of EriB 
(10 mg/kg) were similar to the positive control (1-μg/kg 
dexmedetomidine). In short, EriB reduced CCI-triggered 
inflammation.

EriB retarded JAK2/STAT3 and NF-κB pathways

Finally, the effects of EriB were investigated on JAK2/
STAT3 and NF-κB pathways. Figure 5A illustrated that 
p-JAK2/JAK2 and p-STAT3/STAT3 levels were increased 
in CCI rat model, but these effects were relieved after 
EriB or dexmedetomidine treatment. Similarly, the 
p-P65/P65 and p-IκBα/IκBα levels were enhanced in CCI 

this change was weakened after EriB or dexmedetomidine 
treatment. The CD206 protein expression did not change 
after CCI induction and was increased after EriB or dexme-
detomidine treatment (Figure 3B). Compared to the posi-
tive control (1-μg/kg dexmedetomidine), EriB (10 mg/kg) 
had the similar attenuated effects. These data confirmed 
that EriB inhibited CCI-induced microglia activity.

EriB reduced CCI-triggered inflammation

Results from ELISA indicated that the levels of TNF-α, 
IL-1β, and IL-6 were increased in CCI rat model, but 
these changes were attenuated following EriB or dex-
medetomidine treatment (Figure 4A). In addition, the 
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Figure 5. EriB retarded JAK2/STAT3 and NF-κB pathways. Mice were divided into sham, CCI, CCI+5-mg/kg EriB, CCI+10-mg/
kg EriB, and CCI+1-μg/kg dexmedetomidine groups. (A) The protein expressions of p-JAK2, JAK2, p-STAT3, and STAT3 were 
assessed by Western blot analysis. (B) The protein expressions of p-P65, P65, p-IκBα, and IκBα were evaluated by Western 
blot analysis. ***P < 0.001 vs the sham group; ###P < 0.001 vs the CCI group.

rat model, but these changes were reversed after EriB or 
dexmedetomidine treatment (Figure 5B). Among them, 
EriB (10 mg/kg) had similar effect as that of positive con-
trol (1-μg/kg dexmedetomidine) on JAK2/STAT3 and 
NF-κB pathways. To sum up, EriB retarded JAK2/STAT3 
and NF-κB pathways.

Discussion

Neuropathic pain is caused by nerve inflammation, nerve 
damage, virus infection, and other factors (Gierthmühlen 
and Baron, 2016). More and more Chinese herb extracts 

have been investigated to ameliorate neuropathic pain 
(Luo et al., 2020; Xu et al., 2016). EriB was discovered 
to have regulatory effects on some diseases (Dou et al., 
2018; Duan et al., 2021; Leung et al., 2006; Li et al., 2012; 
Lu et al., 2013; Riaz et al., 2019), but its roles in neuro-
pathic pain remained unclear. In this study, a CCI rat 
model was constructed. Our results demonstrated that 
EriB relieved CCI-stimulated neuropathic pain and nerve 
damage. Moreover, the enhanced neural apoptosis medi-
ated by CCI induction was reduced after EriB treatment. 

Microglia are vital glial cells in the spinal cord that con-
tribute to sensitize and maintain chronic pain (Prinz and 
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