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Abstract

Food quality and safety are a great public concern; outbreaks of food-borne illnesses can lead to different health
problems. Consequently, rapid and non-destructive artificial intelligence approaches are required for sensing the
safety situation of foods. As a promising technology, deep learning for hyperspectral imaging (HSI) has the poten-
tial for rapid food safety and quality evaluation and control. Spectral signatures of food substances are sensitive to
water content variation, the extent of hydrogen bonding, geographical origin, harvesting time and the variety of
food under study. Deep learning models have shown great potential in addressing the challenge of sensitivity of
spectral signatures of food substances. After discussing the basics of HSI, this review provides a detailed study
of various deep-learning algorithms that have been put to use via HSI in the determination of sensory and phys-
icochemical properties, adulteration and microbiological contamination of food products. The existing literature
includes HSI for evaluating quality attributes and safety of different food categories like fruits, vegetables, cereals,
milk and meat. This paper presents a practical framework for deep learning-based food quality assessment using
hyperspectral imagery. We demonstrate its versatility across diverse food quality domains and provide a concise
step-by-step guide for researchers. It has been predicted that deep learning for HSI can be considered a reliable
alternative technique to conventional methods in realising rapid and accurate inspection, for testing food quality
and safety.
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Introduction of the hyperspectral camera. Traditional RGB cameras

mimic the recognition capability of the human eye on

Hyperspectral imaging (HSI) is a non-destructive and
non-polluting imaging technique that combines spectro-
scopic technique and imaging technique to be collectively
called ‘Imaging Spectroscopy’ (Jia et al., 2020). In a tradi-
tional colour image, each pixel is categorised into three
colour channels (Red, Green and Blue). However, each
pixel in HSI is categorised by many continuous bands;
the number of bands depends on the spectral resolution

the basis of the shape and colour of the imaged object.
Sun is the ultimate source of all electromagnetic radia-
tion reaching the earth. Out of the total radiation illumi-
nating the scene, human eyes and traditional cameras are
sensitive to the visible (VIS) bands of the electromagnetic
spectrum. To visualise scenes outside the VIS band, the
technique of spectroscopy has been used and has proved
useful in eliminating the limitation of the human eye and
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traditional photography. Imaging spectroscopy captures
intrinsic information in the form of images by revealing
information about the target in the whole electromag-
netic spectrum. The advantage of HSI lies in reliable and
precise identification, classification, detection, charac-
terisation, differentiation, and quantification. HSI spans
every field of study ranging from biomedical imaging,
molecular biology, astronomy, mineralogy, geology, cul-
tural heritage, physics and surveillance to food process-
ing and agriculture (Niedermaier et al., 2019).

HSI is a growing research field in the area of food engi-
neering and has become a valuable tool for food quality
analysis and control. Nowadays, HSI is regarded as a pio-
neer tool for quality control in agri-food products. The
combination of spectroscopic and deep learning technol-
ogies is the strong driving force behind the development
of HSI systems in the evaluation of food quality and to
find out the hidden information non-destructively. In
addition, direct identification of different components
and their spatial distribution in food systems can be car-
ried out (Liu et al., 2014). The objective of this review is
to conduct a comprehensive exploration and extension of
HSI applications in food analysis, emphasising the inte-
gration of advanced deep learning techniques. It seeks to
address current challenges in the application of HSI and
deep learning in the food domain, identify opportuni-
ties for overcoming limitations, and propose avenues for
future interdisciplinary research. This paper is organised
into the following sections. Section 2 deals with materials
and methods that have been consulted for the compre-
hensive review. Section 3 deals with the fundamentals
of HSI. Section 4 provides an overarching introduction
about the state of art in deep learning with an exten-
sion of HSI application of each technique for food anal-
ysis. Section 5 provides extensive application of HSI for
food analysis creating an intuition for future collabora-
tions using HSI and deep learning for enhanced accuracy
and precision. Section 6 lays out a practical framework
for undertaking the task of applying deep learning using
hyperspectral images for food analysis. Section 7 dis-
cusses the conclusion of the study.

Novelty

This review paper represents a pioneering endeavour
in the domain of food quality and safety assessment.
While HSI and deep learning have individually garnered
attention for their applications in various fields, their
convergence in the context of food evaluation is a dis-
tinctive feature of this review. A comprehensive analy-
sis of the cutting-edge synergy between deep learning
algorithms and HSI techniques is presented. The focus
on diverse food categories, spanning fruits, vegetables,
cereals, milk and meat, showcases the breadth of this

Deep learning hyperspectral imaging

review. A step-by-step guide to transforming theory into
actionable practice and facilitating the adoption of deep
learning-based HSI for food quality assessment is dis-
cussed. In essence, the novelty of this work lies in its role
as a trailblazer, bridging the gap between two transforma-
tive technologies and offering a transformative approach
to ensure the safety and quality of our food supply.

Research gap

One notable aspect of our review is the identification
of specific research gaps within the field of deep learn-
ing HSI for food quality and safety assessment. While
our analysis provides valuable insights into the current
state of research, it also illuminates areas where further
investigation is warranted. One such research gap is the
need for more extensive exploration of HIS’s applications
beyond food quality and safety. While our review primar-
ily focuses on this aspect, there are numerous uncharted
territories where HSI could offer innovative solutions.
These include real-time monitoring of food process-
ing, early detection of emerging contaminants and the
assessment of the long-term effects of storage conditions
on food quality. Additionally, the potential for cross-
disciplinary collaboration remains underexplored. The
integration of HSI with emerging technologies like IoT
(Internet of Things) and blockchain could revolutionise
food supply chain management.

Materials and Methods

The methodology adopted for this review is anchored in
the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) framework, as per Page
et al., 2021. Our systematic literature search, conducted
up to 27 November 2023, aimed to rigorously select
articles for review. We utilised keywords such as ‘HIS,
‘deep learning;, ‘machine learning, ‘food technology;,
‘image processing’ and ‘computer vision’ in our search
strategy. Primary databases included Web of Science,
Scopus and Google Scholar, ensuring a comprehensive
and accurate yield of relevant studies. All sourced articles
underwent an initial screening, focusing on relevance
to HSI, deep learning and food technology. Of the 854
research articles initially identified (depicted in Figure 1),
we applied Boolean AND filters to refine the selection.
Consequently, 305 articles, spanning from 2016 to 2023,
were earmarked for in-depth analysis. To enhance the
meta-analysis aspect, each selected article was subjected
to a systematic evaluation based on specific criteria: rel-
evance to the subject, methodological soundness and
contribution to the field. The statistical analysis involved
synthesising data points such as study outcomes, meth-
odologies and results to quantitatively assess trends and
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Figure 1.

common findings among the studies. This meta-analysis
not only compared the results of the authors but also
involved a statistical synthesis of the data, seeking pat-
terns, discrepancies and insights across the literature.
The final phase of our methodology involved reaching a
consensus on the findings, which was achieved through
a rigorous, iterative discussion among the research team.

Hyperspectral Imaging System

HSI is a passive imaging technique and requires the scene
to be illuminated by either the sun or some other source
of light. Once the scene is properly illuminated, it has to
be captured by an optical unit, which involves lenses or
a combination of different lenses to allow for the trans-
port of light and its convergence. The light energy carries
information with it and needs to be captured by a sen-
sory unit. Earlier, a film was used to capture light, but this
approach has been replaced by digital light sensors that
capture/store light energy. The sensory unit deals with
extracting the different colour channels from the VIS
white light. Raw data transforms into useful information
after going through a processing unit which imparts addi-
tional information to the raw data (images) to be revealed
on to the display unit which can take the form of a com-
puter screen or can be printed (print medium). Figure 2
represents various components of image generation.

The point of distinction between hyperspectral images
and traditional images lies in the spectroscopic unit,

2020 2021 2022 2023

Trend of research papers published in the area of Hyperspectral imaging.

which is absent in traditional image processing. The
spectroscopic unit consists of a spectrograph that mea-
sures energy produced by matter on interaction with
electromagnetic radiation in different wavelength bands.
A colour image can be thought of as a cube of pixels
with red, green and blue pixel planes stacked together. A
hyperspectral data cube is also a 3D cube but not limited
to three channels; the number of channels are in hun-
dreds. Any picture element (pixel) of the hyperspectral
data cube is represented by three units (x, y, z) called a
voxel. (x, y) determines the spatial location of a voxel and
z determines the band/channel location. A spatial loca-
tion, for example, [7, 8], would refer to the seventh row
and eighth column of the 2D data matrix (Figure 3). A
series of values such as [7, 8, 0], [7, 8, 1] and [7, 8, 2] ...
[7, 8, 99] would determine values of pixel location [7, 8]
at bands (0, 1, 2 ... 99) of a hyperspectral data cube with
100 bands. Such consecutive values form the spectrum
or spectral signature from a series of voxels (EIMasry and
Nakauchi, 2016). There are three conventional specifi-
cations of the imaging systems to generate a hyperspec-
tral data cube. First specification includes whisk broom
imaging which captures a single pixel in all specified
spectral channels at an instance (Figure 4A). The sec-
ond specification is push broom imaging which scans
an entire line in all specified channels at an instance
(Figure 4B). Area scanners which capture one entire
spectral wave band (scene) at a time are included under
third specification (Figure 4C). There is a surge of hyper-
spectral cameras in the market. However, only a specific
type of industrial/laboratory-based hyperspectral camera
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Figure 3. A hyperspectral data cube.

Figure 4. Acquisition modes of hyperspectral images.
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can be used for a particular application, depending on
the material to be analysed. As such, the various types of
cameras along with their operational range in nanometre
are RedEye 1.7 (950—1700) nm, RedEye 2.2 (1200-2200)
nm, BlackEye (2900-4200) nm, BlueEye (220-380) nm,
GreenEye (400-1000) nm and OrangeEye (580-1000)
nm (Niedermaier et al., 2019).

Hyperspectral image analysis operations

In order to maximise the retrieval of information from
a high-dimensional hyperspectral data cube, there are
certain procedures that should be undertaken to gener-
ate images of high spatial and spectral quality. The the-
oretical background of image analysis phases is beyond
the scope of this article; thus only the listing of the pro-
cedures carried out at each phase is tabulated in Table 1.

Deep Learning Models for Hyperspectral
Imaging

Deep learning belongs to the category of neural net-
works, a biologically inspired programming paradigm
which imparts learning capability to computers that is
naturally present in human beings. Deep learning tech-
niques have multiple layers of neural networks to learn
hidden features from raw data without human inter-
vention. In training, large deep neural networks perfor-
mance continues to increase with more and more data.
It can be said that deep learning models are data hun-
gry. Subsequently, the hyperspectral data cube has high
dimensionality and the interaction of incident radiation
with chemical molecules imparts chemical characteris-
tics to the absorption bands of food samples. Deep learn-
ing has shown great potential in extracting this hidden
information that is impossible to obtain by traditional
imaging. The necessity of using spectral data instead of
traditional imaging arises from the rich chemical infor-
mation embedded within the molecular structure of the

food (Bureau et al., 2019). To establish a relationship
between spectral information and the chemical concen-
tration of food, a variety of linear and non-linear chem-
ical chemometric methods such as Partial Least Squares
(PLS), Artificial Neural Networks (ANN) and Support
Vector Machines (SVM) have been proposed. These
models are robust and accurate but with low sensitivity.
Spectral data presents a challenge of strong correlations
between neighbouring wavelengths and overtones and
among absorption peaks and noise. Linear models fail to
extract complex non-linear features from spectral data.
To overcome this limitation, non-linear machine learning
models such as SVM, ANN and random forest have been
utilised. However, machine learning models are prone to
the risk of over-fitting. Another challenge working with
spectral data is its complex constitution. A minute change
in the geographical origin, harvesting time and variety of
the food affect the physical properties of shape, size and
surface texture, leading to a change in vibration absorp-
tion. As for chemical properties, water content variation
affects spectral data. The extent of hydrogen bonding
also leads to changes in spectra and prediction errors.
Ageing spectrometers cause response shifts, hence a dis-
tinct spectral shape. All these challenges call for the use
of deep learning techniques that are robust to over-fitting
and can extract hidden and sophisticated representations
(linear and non-linear) from raw data without the need
to perform feature engineering (Zhang et al., 2021). The
trend to use deep learning-based spectral analysis in the
field of food science is increasing each day. This paper has
attempted to describe some of the basic architectures of
deep learning models that have been utilised in the field
of HSI of food and agro products to enable the reader to
have a basic knowledge of these models.

Autoencoder
An autoencoder is a classical neural network with a VIS

layer of the inputs, one hidden layer of k units, which
compresses the input data to representative features, and

Table 1. Image analysis phase and corresponding operation performed at each phase.

Analysis phase Operations

Image acquisition

A careful selection of acquisition mode, illumination type and arrangement, spatial and spectral resolution of the camera,

detectors selectivity, scanning speed of the camera, frame rate and exposure time (EIMasry and Nakauchi, 2016).

Image calibration and
pre-processing
2016).

Spectral data extraction
and treatment

Radiometric correction, geometric correction, removal of non-uniform reflection from spherical objects, replacement of
zero values(dead pixels) and spikes, removal of specular reflectance and saturation correction (EIMasry and Nakauchi,

Spectral smoothing, spectral filtering, spectral normalisation, auto-scaling, mean centering, baseline correction, Fourier
transform, differentiation, wavelet transform, orthogonal signal correction, standard normal variate and multiplicative

scatter correction (EIMasry and Nakauchi, 2016).

Post-processing
Nakauchi, 2016).

Formation of data table, binary image, chemical image, classification image and pseudocolor image (EIMasry and
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one reconstruction layer of d units (Figure 5). The pro-
cess of training with an autoencoder has the encoding
part followed by the decoding part. The objective of an
autoencoder is to make the output as similar as possible
to the input. Autoencoders can be stacked together by
attaching the output of one layer to the input of another
layer to be called stacked autoencoders (SAEs). SAE can
be employed for spectral classification of HSI where each
pixel vector can be considered as an input. Autoencoders
are used for feature extraction to learn the internal pat-
tern of non-labelled data (Windrim et al., 2019).

For the first time, autoencoders were put to use by Chen
et al. (2014) for extracting features. As the spectral sig-
nature (vector) of each pixel is fed to the encoder input,
the decoder reconstructs it, imparting an ability to the
encoder to extract spectral features. As HSI image is
characterised by spectral features as well as spatial fea-
tures, to extract spatial features principal component
analysis (PCA) is used which allows for reducing the
dimensionality of the data (hyperspectral image). A vec-
tor is derived by flattening the image patch. Another
autoencoder is used to memorise the spatial features. The
joint spectral and spatial information obtained is used
and classified. The deep stacked sparse autoencoder has
been used by Abdi et al. (2017) for spectral-spatial fea-
ture learning. A stacked denoise autoencoder has been
used for feature extraction and classification of HSI by
Xing et al. (2016). The methods adopted by Abdi et al.
(2017), Xing et al. (2016) and Chen et al. (2014) take
advantage of training the encoder fully in an unsuper-
vised paradigm followed by a supervised paradigm for
fine-tuning the classifier. A variation in the encoder type
or pre-processing method is done for HSI classification

Input layer

Figure 5. Diagrammatic representation of an autoencoders.

Deep learning hyperspectral imaging

in the scenario of the sample size being small. A case of
such variation was employed by Xing et al. (2016), where
the authors have stacked together multiple denoising
units of encoders for performing feature extraction, and
the result of such variation is robustness towards feature
extraction in a noisy scenario. In spectral classification
scenarios, two typical cases arise; one is that two simi-
lar ground objects reveal distinct spectral signatures and
the other is that two distinct ground objects reveal the
same spectral signature leading to poor classification
performance. The spatial classification acts as a remedial
major for overcoming spectral classification problems.
To go for joint spectral-spatial classification, a technique
that combines autoencoders with convolution, neural
networks have been developed by Yue et al. (2016) and
Hao et al. (2017). Spectral features are extracted by auto-
encoders and spatial features are extracted by CNN; the
product is fused leading to final spatial-spectral features.
To examine the joint spectral-spatial features efficiently,
Li et al. (2015) have used the 3D Gabor operator in the
pre-processing phase that allows for joint spatial-spectral
feature extraction; this fused product is given to the auto-
encoder to mine better abstract features. Another varia-
tion to autoencoder was done by Mei et al. (2019) using
a 3D convolution operator for autoencoder construc-
tion, where the model extracts spatial-spectral features
directly. Spectral feature extraction from an HSI data
cube using a SAE has been performed by Yu et al. (2018)
in determining the freshness grades (fresh and stale)
of shrimp. In another study, Yu et al. (2019) used SAEs
to extract 20 deep hyperspectral features from near-
infrared (NIR) hyperspectral images to non-destructively
predict the total viable count (TVC) of peeled Pacific
white shrimp.

Hidden layer

Reconstruction layer
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Convolution neural network

The structure of the visual system has been the motiva-
tion behind convolution neural network (CNN). CNN
uses a group of parameters called kernel function to
extract a specified feature from an image. The reason
behind the vast success of CNN is attributed to the three
characteristic properties that make it very powerful for
feature representation. In a fully connected network, the
full connection between two neural layers lends itself to
unfriendly high-resolution spatial images. The disadvan-
tage of full connected networks is overcome by the local
connection property of CNN by reducing the number of
trainable parameters to a great extent and hence lend-
ing itself suitable for processing high-resolution images.
The second characteristic property is to share the same
parameters by the same kernel, which further offers a
reduction in the number of parameters. As in traditional
neural networks, the parameters of the output are inde-
pendent of each other. CNN cuts down on parameters by
using the same parameters for all other outputs, which,
in turn, leads to the third characteristic property of CNN
referred to as shift-invariance. CNN models capture fea-
tures irrespective of the position of the features in the
space. The architecture of the CNN has an alternating
convolution layer and pooling layer followed by a number
of fully connected layers (Figure 6). Convolution layers
perform convolution operations between image patches
and kernels, generating feature maps. These feature maps
are reduced in size by pooling layers creating more gen-
eral and abstract features. The final stage involves trans-
forming feature maps to feature vectors (Li et al., 2019).
A description of each layer is as follows:

a) Convolution Layers: The most important aspect of
CNN is the layers. Convolution function involves
convolving input cube with a number of learnable fil-
ters leading to a generation of multiple feature maps.

b) Pooling Layers: To eliminate the information
redundancy prevalent in images, pooling layers are
deployed periodically after many convolution layers
in the CNN architectural layers tend to decrease the
spatial size of feature maps along with the reduction
in computational cost and number of parameters.

Input C1 P1

Figure 6. Architecture of a convolution neural network.

The feature maps become more abstract because of
suffering from shrinkage in size.

c) Fully Connected Layers: Feature maps generated
from convolution and pooling layers are flattened to
be fed to fully connected layers. They connect every
neuron in the current layer to every other neuron in
the next layer.

In applying CNN for HSI classification, 2D-CNN has
displayed wide applicability in extracting spatial features
(Yu et al., 2017). Due to redundancy in the hyperspec-
tral cube, the convolution kernel size tends to enlarge.
This limitation was removed by using a combination of
1D convolution and 2D convolution. Using a mixture of
1D and 2D convolution allows for spectral and spatial
feature extraction. A fusion of these features forms an
input for the classifier. Apart from collaboration between
1D and 2D convolution, 3D-CNNs have recently found
applicability in the HSI classification with significant
spatial-spectral fusion capability (Liu et al., 2018). The
small sample size of hyperspectral cube leads to poor
performance of 3D-CNN because of the involvement
of the excessive number of parameters in the super-
vised paradigm. Fang et al. (2020) proposed 3D separa-
ble convolution to decrease parameters, whereas Mou
et al. (2017) solved the excessive parameter problem by
utilising autoencoders in the 3D convolution operation.
This particular autoencoder is trained in an unsupervised
way with the replacement of the classifier at the decoder
module. Models that have been successful in extracting
complex features from labelled samples of small size uti-
lise convolution residuals and ResNet (Mou et al., 2017).
The problem of small sample size has been handled by
Yu et al. (2017) using the technique of augmentation. The
authors have enlarged the dataset by rotating and flipping
the images. This approach served two purposes: one, it
increased the diversity within the data cube, and second,
it helped the model to achieve rotational invariance. A
variation in the augmentation technique was put forth
by Li et al. (2018) which mines the difference between
the images in pairs and hence increases the diversity
of the dataset. Some other variations of CNNs include
the use of dense connections for extracting sample fea-
tures (Paoletti et al., 2018). As hyperspectral images are

pooling ﬂlﬁi‘] FC FC z-"(Jsoftma%
i / 7

=

P2 F1 F2  Output: class labels
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characterised by low spatial resolution, using the tech-
nique by Paoletti et al. (2018) gives rise to a mixed pixel
problem. Combining data from two separate modalities
such as HSI and light detection and ranging (LIDAR),
a variation in the sample features is introduced which
overcomes mixed pixel problems (Feng et al., 2019a).
In the domain of food technology and HSI, deep learn-
ing has found applicability in detecting subtle bruises
on winter jujube using a CNN. Pixel-wise spectra have
been extracted from the hyperspectral image cube and
after pre-processing, fed to a CNN to build pixel-wise
classification model. The study has shown great potential
for use in real-time application due to short prediction
time (Feng et al. 2019b). Laborious and time-consuming
tasks of classifying hybrid progeny of okra seeds and
loofah seeds have been done by Nie et al. (2019) using a
deep convolution neural network (DCNN) with an effi-
ciency of 95%, suggesting acceleration towards the prog-
ress of related research. Deep learning along with HSI
has replaced the traditional authenticity measures for
the classification of meat (Al-Sarayreh et al., 2020). The
authors have utilised 3D-CNN approach to classify red
meat suggesting future scope of real-time meat authen-
ticity. Visual Geometry Groupl6 (VGG16) CNN has
been used to detect the freshness of fruits such as apples,
bananas, guava and oranges, yielding an accuracy of 99%
(Mehta et al., 2021). Various architectures of convolu-
tional neural network such as ResNet18, MobileNetV2,
MobileNetV3-Small and MobileNetV3-Large have
been employed for freshness detection of hog plum
(Arunachalaeshwaran et al., 2022). A tabulated struc-
ture showing various types of deep learning techniques
and the results achieved has been given in Table 2. Apart
from studies on Classification, there have been numerous
studies on prediction as well using deep learning. One
such study has been performed by Zhang et al. (2022)
obtaining a large number of oil content reference values
of maize kernels is time-consuming and expensive, and
the limited data set also leads to low generalization abil-
ity of the model. Here, hyperspectral imaging technology
and deep convolutional generative adversarial network
(DCGAN. The authors utilised deep convolutional gen-
erative adversarial network (DCGAN) combined with
partial least squares regression (PLSR) and support vec-
tor regression (SVR) to predict the oil content of single
maize kernel. Due to limitations in the dataset, augmen-
tation by DCGAN expanded the spectral data and oil
content data, respectively, which proved advantageous
for regression model improvisation and furnishing a
large amount of data for model training. The regression
results have been tabulated in Table 3. To meet the grow-
ing demand for food, there has to be an average increase
in crop yield by 2.4% annually, with the current rate at
1.3%. These facts point out the urgency in crop produc-
tion efficiency to meet food security concerns. In this
regard, Moghimi et al. (2020) have utilised deep neural

Deep learning hyperspectral imaging

networks for selecting advanced varieties of wheat. The
authors have divided the study area into plot scale and
sub-plot scale. A produce of thousands of wheat plots
was harvested and recorded as ground truth over two
growing seasons along with aerial hyperspectral image
acquisition of the fields. Deep neural networks were
trained to extract features from the aerial images to esti-
mate wheat yield. The coefficient of determination at plot
scale and sub-plot scale was 0.41 and 0.79, respectively,
which reveals that the study can facilitate remote visual
inspection for high-throughput yield phenotyping.

Recurrent neural networks

Recurrent neural networks (RNN) can extract patterns
in sequences of data that are dynamic and temporal in
nature. The ability to extract patterns from sequences is
provided by recurrent hidden states. One disadvantage of
conventional RNN is the vanishing gradient or exploding
gradient due to long-term sequential data which down-
grades performance of RNN. To overcome this issue,
Long Short-Term Memory (LSTM) (Graves, 2013) and
Gated Recurrent Unit (GRU) (Chung et al., 2014) were
introduced.

A hyperspectral data cube is a 3D dataset; each sample
of the data cube serves as sequential data for the RNN.
LSTM has been employed for HSI spectral classifica-
tion by Mou et al. (2017). Corresponding to a sam-
ple pixel vector, each band forms a sequential input to
the LSTM model. To fuse spatial information into the
spectral classification, Liu et al. (2018) proposed multi-
layer LSTM for spatial-spectral feature extraction. Pan
et al. (2020) offered single gate recurrent unit GRU for
combined spectral-spatial feature extraction in the HSI
classification task. A combination of 1D convolution
operation and RNN have been used by Wu and Prasad
(2017), primarily for extracting spectral feature vectors,
the 1D convolution operation is employed and then the
spectral feature sequences are fed to RNN along with
the support of fully connected layers and SoftMax func-
tion to achieve HSI classification. The reason behind the
collaboration between 1D convolution and RNN is that
individually each of these does not cater to the extraction
of spectral-spatial features in an efficient manner. Other
works mentioning collaboration between convolution
operation and RNN is proposed by Hao et al. (2020). The
authors extracted features using U-Net and then fed the
input to LSTM to explore contextual information within
features. A peculiar collaboration between techniques
has been shown by Zhou et al. (2017) by employing PCA
to extract spatial information. The first principle compo-
nent (PC)) lends itself in a sequential form in terms of
several lines to the LSTM network. LSTM has been used
by Kang et al. (2021) for the identification of food-borne
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Table 3. Deep learning-based regression analysis of food products.

Deep learning hyperspectral imaging

Purpose Food item Wavelength Deep learning Determination Root mean square  Source
range model coefficient of error estimated
prediction (R2) by prediction
(RMSEP)
Detection of Lettuce 400.68-1001.61 Wavelet transform  0.9319 0.04988 Zhou et al.
compound heavy (Cadmium Stacked (2020)
metals content convolution
prediction) autoencoder(\WT-
SCAE)
Lettuce (lead 400.68-1001.61 Wavelet transform ~ 0.9418 0.04123 Zhou et al.
content Stacked (2020)
prediction) convolution
autoencoder
(WT-SCAE)
High throughput Wheat (sub- 400-900 Deep Neural 0.79 0.41 Moghimi et al.
yield phenotyping plot) Network (2020)
Wheat (plot) 400-900 Deep Neural 0.24 0.14 Moghimi et al.
Network (2020)
Total volatile Fish fillets 430-1000 LDNN 0.853 3.159 Moosavi-
nitrogen content Nasab et al.
(2021)
Fish fillets 430-1000 Least squares 0.897 2.63 Moosavi-
support vector Nasab et al.
machine (2021)
Prediction of oil Maize kernels 866.4-1701 DCGAN, 0.9158 0.4620 Zhang et al.
content (Zhengdon958) SVM (2022)
Maize kernels 866.4-1701 DCGAN, 0.934 0.4183 Zhang et al.
(Zhengdon958) PLSR (2022)
Maize kernels 866.4-1701 DCGAN, 0.9309 0.3661 Zhang et al.
(Nongda616) SVM (2022)
Maize kernels 866.4-1701 DCGAN, 0.9299 0.3673 Zhang et al.
(Nongda616) PLSR (2022)

pathogens from chicken carcass rinse. The authors have
employed three LSTM blocks and achieved an accuracy
of 90.4%, 92.6% and 92.9% for different types of identifi-
cation (Table 2). A tabular representation showcasing the
comparison and limitations among the three techniques
of deep learning have been organised in Table 4.

Application of Hyperspectral Imaging in Foods
Sensory analysis of foods

Sensory properties of food, including appearance (shape,
colour and physical defects), taste and texture (hardness,
chewiness and cohesiveness) constitute the first impres-
sion of a food product perceived by the consumer. The
sensory analysis includes the evaluation of the signals
which are received through the sense of sight, taste, smell
and touch. Determination of the sensory properties of a
food item is important for satisfying the needs of con-
sumers and providing them with quality and wholesome

food products. Moreover, sensory analysis is import-
ant to determine the food quality after processing such
as cooking, drying and freezing. Nowadays, in the food
industry, sensory evaluation of foods finds a wider appli-
cation as consumer’s desire to purchase foods that can
assure acceptance and satisfaction. In this regard, food
manufacturers have to evaluate the overall acceptability
and specify the sensory attributes that are crucial for a
food item (Ozdogan et al., 2021).

Traditionally, the assessment of the sensory quality
of food products is done by trained human panellists.
However, sensory evaluation by a trained panel is subjec-
tive and is found unsuitable for instant application when
required. Instrumental methods like texture profile analy-
sis using a texture analyser for determining textural attri-
butes, colourimeters for colour analysis and GC-MS for
determination of flavour compounds are also available,
but these techniques are also time-consuming, destruc-
tive and applicable on a small scale. Therefore, there is a
need to develop rapid and reliable methods for assessing
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Table 4. Comparative analysis of deep learning techniques and their limitations.

Aspect Autoencoders Convolution neural networks Recurrent neural network
Architecture Encoder-decoder based Convolutional layers, pooling layers, Recurrent connections

fully connected layers
Input type Unstructured data Grid-like data (images) Sequential data (time-series, text)
Layer operation Symmetric encoding-decoding Localised feature extraction Sequential memory processing

Data efficiency
Application of the tool

Limitations

Training data
dependency

Interpretability of learned
features

Use case specificity
Decoding imperfection

Dimensionality reduction

Learning time

Efficient for dense data

Determining the freshness grades
(fresh and stale) of shrimp, predict
the total viable count (TVC) of
peeled Pacific white shrimp

Sensitive to insufficient data
Complex and non-interpretable

Limited to data compression/
generation

May result in imperfect decoding

Efficient for dimensionality
reduction

Generally faster learning time

Efficient for grid-like structures

Detecting bruises on winter jujube,
classifying hybrid progeny of okra
seeds and loofah seeds, classifying
red meat

Requires large datasets, data hungry

Feature hierarchies might lack
intuitiveness

Primarily applied to image-related
tasks

Loss of spatial information in
down-sampling

Naturally handles grid-like data
structures

Moderate learning time for image data

Efficient for sequential dependencies

Identification of food-borne pathogens
from chicken carcass rinse

Challenged by limited data for effective
training

Struggles with capturing long-term
dependencies

Effective for sequential data, less for
static features

Memory fading and gradient vanishing
issues

Limited capability for high-dimensional
data

Slower learning due to sequential

processing
Complexity in Might represent data in complex Hierarchical and spatial feature Captures sequential dependencies, but
representation ways representations complexity

of sensory properties of food products. Various imaging
and spectroscopic technologies have emerged as alter-
native methods to be used in the food industry for the
sensory assessment of food items. In recent times, HSI
technology has gained prime importance as a novel rapid
and non-invasive technique for the sensory evaluation of
foods (Liu et al., 2017). HSI is less time-consuming and
a non-destructive technique to determine the sensory
properties of a diverse range of food products. The VIS-
NIR (400—-1000 nm) HSI is the most used method for the
evaluation of sensory attributes (Ozdogan et al., 2021).
Table 5 summarises the recent studies done to evaluate
the sensory properties of food products using the HSI
technique. HSI principally depends on chemometric
analysis for evaluating sensory quality, and the relation-
ship between molecular bonds and wavebands is very
important to understanding the chemistry behind the
models (Lin and Sun, 2020).

HSI as a powerful tool to check adulteration of foods
Over the vyears, several analytical methods have
been considered to detect adulterants in food prod-
ucts. Unfortunately, these procedures are disruptive,
time-consuming, labour-intensive and expensive and
they necessitate specific sample preparation. Alternative

analytical approaches for speedy, accurate and reliable
quality control systems for determining food adulterants
and preventing fraudulent practices involving food adul-
teration are becoming increasingly important in order to
assure food safety. In this context, the combined use of
optical imaging and spectroscopic techniques for exam-
ining food safety and quality analysis is gaining popu-
larity as it provides non-destructive detection, chemical
information and visualisation, all at the same time. HSI
is a technology that combines both spectroscopic and
photography approaches into a single system, allowing it
to gather both spectral and spatial information about the
studied

object. HSI is a promising technology that enables the
rapid and accurate detection of spectral and spatial infor-
mation. To derive spectral, textural and morphological
information from high-dimensional HSI data, chemom-
etric approaches are necessary (Temiz and Ulas, 2021).
In this regard, the combined use of non-destructive opti-
cal imaging and spectroscopic techniques for evaluating
food safety and quality analysis is gaining popularity.

Shafiee et al. (2016) investigated the use of HSI sys-
tem and data mining-based classifiers to detect honey
adulteration. A VIS-NIR hyperspectral camera (400—
1000 nm) was used to take hyperspectral images of
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Table 5. Sensory evaluation of foods using hyperspectral imaging.

Deep learning hyperspectral imaging

Type of Food Product Name Sensory Parameter Wavelength (nm) References
Fruits Apple Flavour (sweetness and sourness) 380-1040 Liu et al. (2020)
Firmness 400-1000 Zhu et al. (2013)
Banana Colour and firmness 380-1023 Xie et al. (2018)
Cherry Maturity 874-1734 Li et al. (2018a)
Firmness 500-1600 Pullanagari and Li (2021)
Peach Chilling injury 400-1000 Pan et al. (2016)
Plum Colour 600-975 Li et al. (2018c)
Mango Firmness 450-1000 Rungpichayapichet et al. (2017)
Orange Maturity 390-1055 Wie et al. (2017)
Vegetables Tomato Colour 400-1000 Van Roy et al. (2017)
Flavour and firmness 1000-1550 Rahman et al. (2018a)
Potato Bruises 400-1000 Jietal (2019)
Garlic Flavour 1000-1700 Rahman et al. (2018b)
Spinach Freshness 380-310 Zhu et al. (2019).
Green pepper Flavour 1000-1700 Rahman et al. (2018c)
Mushroom Bruise 880-1720 Esquerre et al. (2012)
Cereals Wheat Kernel Hardness 1000-1500 Erkinbaev et al. (2019)
Maize seeds Hardness, springiness and resilience 400-1000 Wang et al. (2015)
Milk Cheese Maturity 1000-2400 Priyashantha et al. (2020)
Meat Chicken Freshness 328-1115 Xiong et al. (2015a)
Red meet Colour 400-1000 Kamruzzaman et al. (2016)
Mutton Freshness 400-100 Zhu et al. (2021)
Pork Tenderness 910-1700 Barbin et al. (2012)
Beef Freshness Red, green and blue Sharma et al. (2023)
channels

pure and adulterated samples. After pre-processing the
images, supervised image classification was performed
using five distinct data mining-based techniques: ANN,
SVM, linear discriminant analysis (LDA), Fisher and
Parzen classifiers. The ANN classifier showed maxi-
mum classification accuracy of 95%, according to classi-
fier test results. Other classifiers with acceptable results
included SVM with radial basis kernel function, LDA,
Fisher and Parzen having classification rate of 92%,
90%, 89% and 84%, respectively. This study highlights
the potential of HSI in honey authentication. Verdu
et al. (2016) examined the efficacy of a SW-NIR hyper-
spectral image approach to detect adulteration in wheat
flour and bread with low-cost grains like sorghum, oats
and corn. Hyperspectral information was also used to
interpret the change in physicochemical properties. The
SW-NIR imaging approach was fully able to detect adul-
teration, and substantial correlation significances were
found between wavelengths from specific spectra zones
and physicochemical attributes of sample. Adulterants
(soda, water, urea and detergents) have been success-
fully detected in milk using hyperspectral radiometry

coupled with machine learning techniques, as observed
by Kimbahune ef al. (2016). The spectral irradiance was
recorded over a range of wavelengths from VIS to NIR
(350-1050 nm). For quantitative detection of adulteration
of limestone powder in tapioca starch, Khamsopha et al.
(2021) used near-infrared HSI at wavelengths ranging
from 935-1720 nm. Chemometrics was studied and used
to develop a calibration model for predicting adulterant
concentrations using PLSR. With a correlation coefficient
(R) of 0.996 and a root mean square error of prediction
(RMSEP) of 2.47%, the model’s prediction accuracy was
found excellent. With the help of the model, images of
pure tapioca starch, adulterated tapioca starch and pure
adulterant were then created. Depending on the amount
of adulterant present, various colours were displayed.
Barreto et al. (2018) predicted that the HSI approach
could detect the presence of starch in fresh cheese that
has been added as an adulterant. The PLSR method was
used in the modelling of starch content present in cheese.
For a reduced model, a level of predictability of the starch
content of 83.21% was achieved. The model also showed
a high degree of precision, even with values of 6.65 mg

Quality Assurance and Safety of Crops & Foods 16 (1)

89



Gul N et al.

starch per gramme of cheese on a dry basis (3.19 mg g-1
on a wet basis). The wavelengths of 584 nm and 976-
1000 nm were found most preferable for detecting and
predicting starch in fresh cheese. It was also predicted
that a sample’s light intensity for a given wavelength is
inversely proportional to its starch content. Black pepper
adulterated with common adulterant papaya seeds could
be identified using NIR-HSI coupled with multivariate
analysis (Orrillo et al., 2019). Principal component anal-
yses (PCA) and soft independent modelling of class anal-
ogy (SIMCA)-based classification models achieved 100%
accuracy for berry samples and sensitivity of more than
90% for ground samples.

Assessment of physicochemical properties

HSI can be used to determine various physicochemical
properties like moisture content, pH, acidity, total soluble
solids (TSS), polyphenol content and antioxidant activity
of food commodities. Efficiency of HIS in determining
internal quality (TSS and pH) of mulberry was explored
by Huang et al. (2011). Rungpichayapiche et al. (2017) also
found that HSI could be used to determine the TSS and
the titratable acidity of mango. Potential of HSI for deter-
mination of pH, total acidity and soluble solid content of
table grapes was explored by Baiano et al. (2017). A HSI
system was used to obtain the reflectance spectra of ber-
ries and a good correlation was found between each of the
properties and the spectra information. Ma et al. (2018)
applied NIR-HSI to assess the soluble solids content
(SSC) of apples. The relationship between SSC reference
data and NIR spectral data taken from each sample was
determined using PLS regression analysis. HSI can also
be used to determine polyphenol oxidase (PPO) activity,
which is important for controlling the quality of the fin-
ished product. For indirect measurement of PPO activity
in fresh-cut apple slices, Shrestha et al. (2020) employed
the VIS-NIR. The authors found that HSI could be used
as an alternative for conventional chemical evaluation of
PPO enzyme activity. Lu et al. (2017) proposed that HIS
technology could be used to determine the quantitative
amount of starch in rice. The hyperspectral pictures of
100 rice samples of 10 starch grades were collected using
a HSI device within a spectral range of 871-1766 nm.
Using full wavelength spectra data, the SVR model was
developed to determine the starch percentage. According
to the authors, HSI technique for starch detection in rice
is viable, and it can measure rice starch fast, effectively
and non-destructively. EIMasry Sun and Allen (2011)
applied NIR-HSI to assess water holding capacity (WHC)
in fresh beef. The spectral characteristics of various beef
samples from various breeds and muscles were recov-
ered from hyperspectral pictures. To get an overview of
the systematic spectral variations and to link spectral
data of beef samples to its WHC determined by the drip

loss method, both PCA and PLSR models were created.
Xuan et al. (2021) confirmed that maturity index of okra
fruit can be assessed using VIS-NIR HSI, which could be
important for farmers to optimise harvest dates for good
taste and economic return. Effective wavelengths, texture
features and their fusion were used to create a library for
support vector machines (LIBSVM) model. The LIBSVM
model with the fused dataset showed highest total matu-
rity classification accuracy of okra fruit, with a cross-val-
idation accuracy of 91.7%. The fermentation index, total
polyphenol content and antioxidant activity of individual
dry fermented cocoa beans can be quantitatively pre-
dicted using HSI in the spectral region of 1000-2500 nm
(Caporaso et al., 2018). The concentration of soluble sol-
ids, organic acids, sugars, polyphenols and antioxidant
activity of fennel heads predicted using HSI in the VIS-
NIR spectral range in relation to the difference in sheath
layers and harvest periods (Amodio et al, 2017). The
study showed that HSI in the VIS-NIR spectral range has
greater potential for predicting interior constituents than
HSI in the NIR spectral range. NIR-HSI was applied to
quantify 27 distinct phenolic compounds in freeze-dried
grape marc components. When PLSR was applied to the
spectral data, coefficient of determination values of up
to 0.98 were found, even when estimating minor com-
pounds. Because of its speed and simplicity, this technol-
ogy emerges as an appealing alternative for analysing the
phenolic components in grape marc (Jara-Palacios et al.,
2016). HSI was used to determine the levels of monoun-
saturated and polyunsaturated fatty acids in processed
hog products. The regression coefficient curves of PLSR
models were used to find optimal wavelengths. The least
squares SVM models used showed a higher coefficient of
determination (greater than 0.81) in the Monte Carlo val-
idation set than the partial least squares regression mod-
els, and the least squares SVM models developed based
on selected optimal wavelengths (Ma and Sun, 2020).

Evaluation of microbial contamination and toxicants

Food quality and safety issues are getting importance
in both developing and developed countries; these
challenges are regularly encountered in our daily lives
because there is an increasing need for safe and quality
food products in today’s marketplaces. The food indus-
try is truly focused on generating harmless products
and needs a continuous commitment to the creation
and implementation of protocols and systems to man-
age numerous parameters in food products. Currently,
existing analytical techniques are extremely slow and
harmful. As a result, developing non-invasive, effective
and rapid testing methods for monitoring food quality
and safety is critical. HSI technology is one of the most
promising alternatives, as it is a non-destructive anal-
ysis technique that may readily engage in productive
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operations (Vejarano et al., 2017). Numerous studies
have demonstrated the significant potential of HSI in
detecting microbiological quality and the presence of
toxicants in food applying distinctive HSI acquisition
methods and wavelengths varying from the VIS spec-
trum to NIR. Barbin et al. (2013) used NIR-HSI to assess
microbial contamination in porcine meat. Plate count
analysis was utilised as a complementary technique to
assess the efficacy of HSI in detecting the microbiolog-
ical quality of pork. Hyperspectral pictures were used
to categorise the pork meat in fresh and spoiled forms.
Appropriate results for spoilage detection with accu-
racy greater than 95% were observed when NIR spectra
was combined with LDA, and thus the adopted tech-
nique could be used to calculate the shelf life of pork.
The NIR hyperspectral pictures used to predict the TVC
and psychrotrophic plate count (PPC) using quantitative
PLS models with coefficients of determination of 0.82
and 0.85 for TVC and PPC, respectively. As a result of
the good regression models between spectral data and
bacterial counts, the NIR hyperspectral system has the
potential to become an alternative tool for rapid and
reliable shelf life determination and microbiological
assessment in the meat sector. Cheng and Sun (2015a)
studied the feasibility of using VIS and NIR-HSI in the
range of 400—1000 nm to determine TVCs for the detec-
tion of microbial deterioration in fish fillets. Models
based on full wavelengths, such as PLSR and least square
SVM, performed well, with the least square SVM model
outperforming others with a higher residual predictive
deviation (RPD) of 3.89, determination coefficient of
0.93 and lower RMSEP of 0.49 log10 CFU/g. Cheng and
Sun (2015b) used HSI in the spectral region of 400—1000
nm to detect E. coli count in grass carp fish for evalu-
ation and visualisation of microbial quality. To create
prediction models between the spectrum data and the
reference E. coli loads obtained by the standard micro-
biological plating method, a PLSR model was used. With
a RPD of 5.47 and a determination coefficient of 0.880,
the PLSR model based on complete wavelengths per-
formed well in predicting E. coli loads. Sricharoonratana
et al. (2021) worked on determination of shelf life and
classify sponge cakes on microbial infections during
storage using NIR-HIS in the range of 935-1720 nm.
NIR-HSI has been used to estimate the average spec-
trum from a region of interest (ROI) in each sample’s
spectral image. The model was created using PLSR to
predict the storage time of the cakes. With a correlation
coefficient (R) of 0.835 and a RMSEP of 1.242 days, the
model proved to be reliable. The classification model
for discriminating between non-expired and expired
sponge cakes was developed using PLS discriminant
analysis (PLS-DA). According to the findings, the accu-
racy of prediction was about 91.3%. HSI has also been
used to detect bacterial contamination in spinach leaves

Deep learning hyperspectral imaging

(Siripatrawan et al., 2011) and lettuce (Yang et al., 2010).
HSI has been found to be efficient in analysing the fun-
gal contamination in apples (Mehl et al., 2004) and dates
(Teena et al., 2014). Microbial toxins are one of the most
common pollutants identified in food products. The pro-
duction of these poisons is carried out by fungi (myco-
toxins) and bacteria (bacterial toxins). Microbial toxins
are detected using a variety of techniques, including
HPLC, TLC, GC, ELISA and fluorescence-based detec-
tion methods. HSI is a new, fast, non-invasive, non-de-
structive, and acceptable approach for detecting toxins
in foods. Wu and Zu (2019) examined the potential of
VIS/NIR HSI in detecting aflatoxin B, (AFB,) in pista-
chio kernels. PCA was used to separate control (unpol-
luted) and all polluted kernels. For samples that were
intentionally contaminated with varying concentrations
of AFB,, LDA yielded accuracies higher than 90.0%
based on spectra from 694 to 988 nm which had been
pre-processed with standard normal variate (SNV) and
Savitzky-Golay (SG) smoothing. The calibration and val-
idation correlation coefficients using stepwise multiple
linear regression (SMLR) models were all greater than
0.9100. Kandpal et al. (2015) reported that aflatoxin con-
tamination on corn kernels can be detected using a short
wave infrared (SWIR) HSI approach. Corn samples were
inoculated with four different concentrations of aflatoxin
B, and SWIR hyperspectral device was used to scan both
infected and control (uncontaminated) samples over the
spectral range of 1100-1700 nm. To categorise control
and infected kernels, a PLS-DA model was developed,
and the maximum overall classification accuracy gener-
ated by the developed model was 96.9%. Due to rise in
concentration of AFB,, spectral divergence was found
between the control and infected samples. Besides, the
contamination map created with the PLS-DA model
showed how contaminated samples appear visually. The
authors concluded that SWIR HSI is a quick, accurate
and non-destructive method for detecting hazardous
metabolites in grains and that it could be used as an
alternative to conventional methods. Using a NIR-HSI
approach, the feasibility of detecting Aflatoxin B, in
maize kernels inoculated with Aspergillus flavus conidia
was investigated by Wang et al. (2015). The frequencies
1729 and 2344 nm have been found as key wavelengths
for detection of AFB,. Based on NIR spectral features,
a full approach for detecting ergot bodies in cereals
was conducted by Vermeulen et al. (2013). The results
obtained utilising two NIR-HSI cameras were quite
consistent and repeatable. Furthermore, the estimated
values produced by NIR-HSI and those provided by the
stereo-microscopic approach (reference method) had a
correlation of greater than 0.94. The method’s transfer-
ability was demonstrated by the validation of the trans-
ferred process on blind samples, which revealed that it
could detect and quantify ergot contamination.
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Practical Framework for Applying Deep
Learning to Quality Analysis Using
Hyperspectral Imagery

In Section 4, we detail the framework of deep learning
algorithms and highlighted studies achieving remarkable
accuracies with advanced techniques. The subsequent
section explores applications across various food qual-
ity domains, demonstrating deep learning’s potential in
sensory analysis, adulteration detection, physicochemical
property assessment, microbial contamination evalua-
tion and toxicant identification. To aid researchers, we
present a step-by-step guideline for conducting research
in these phases:

Step 1: Data preparation phase

Step 2: Image acquisition phase

Step 3: Manual testing phase

Step 4: Development of deep learning models

Step 5: Comparative analysis and model deployment
phase

Data preparation phase

The creation of a high-quality dataset is imperative. This
involves meticulous sample selection, sample inspection
and the removal of any samples exhibiting anomalies such
as detrimental disorders, abnormal coloration, microbial
growth or insect damage (Nogales-Bueno et al., 2021).

Image acquisition phase

The food material under examination must be captured
using a hyperspectral camera with a spectral range of
900-1700 nm. During imaging, several factors require
careful consideration, including source light intensity,
exposure time and the distance between the food mate-
rial and the lens. If the experiment necessitates a moving
surface, the speed of this surface becomes a crucial factor
(Nogales-Bueno et al., 2021). Once the hyperspectral cam-
era captures the images of the food material, it generates
a hypercube with dimensions x*y*z, where x denotes the
number of lines in the image, y represents the number of
columns in the image and z signifies the number of images
captured for each sample. This hypercube subsequently
undergoes pre-processing steps outlined in Table 1.

Manual testing phase

The nature of the study dictates the type of manual test-
ing to be conducted. For research focused on estimating
specific components in the food material, such as regres-
sion analysis, each imaged sample undergoes chemical

analysis to determine the concentration of the target
component. This process is repeated for all samples,
forming a matrix where each row represents the spec-
tral signature of a sample, with the last column indicat-
ing the component’s concentration (Mishra et al., 2022).
Conversely, if the study aims to automate the classifica-
tion of different food material varieties or distinguish
between good and bad quality products, manual labeling
of all considered samples is necessary. This results in a
matrix where each row represents the spectral signature
of a sample, with the final column denoting the sample’s
assigned class (Nogales-Bueno et al., 2021).

Development of deep learning models

Numerous state-of-the-art models are available, and the
choice depends on the problem’s nature and the cod-
er’s expertise. For regression-based problems, a suitable
approach may involve using machine learning algo-
rithms or a combination of machine learning and deep
learning techniques. Similarly, classification tasks can be
tackled using either machine learning or deep learning.
It is widely acknowledged that deep learning algorithms
outperform machine learning when provided with exten-
sive datasets. Advanced augmentation techniques have
expanded the horizons, making dataset size less of an
obstacle. Section 4 outlines some of the deep learning
techniques.

Comparative analysis and model deployment phase

Refinement and validation take centre stage. The devel-
oped models undergo critical comparisons with previ-
ous studies to fine-tune their performance and achieve
high-quality metric scores. Metrics for regression stud-
ies encompass the Coefficient of Prediction, Root Mean
Square Error and more. For classification studies, key
metrics include Total Accuracy, Precision, Recall and
F1 Score. While impactful research can transform lives,
transitioning from the lab to practical applications pres-
ents challenges. Direct transfer of deep learning models
is rarely feasible, given the bulkiness of hyperspectral
image datasets. Practical use necessitates dimensionality
reduction techniques to retain essential features while
reducing time complexity. This critical step facilitates
knowledge transfer from the lab to practical applications.

Conclusion

In conclusion, this paper provides a comprehensive over-
view of the utilisation of deep learning in HSI for food
quality and safety assessment. HSI, which amalgamates
spectroscopy and computer vision, offers a swift and
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non-destructive means of evaluating the quality and
safety of food products by simultaneously capturing sur-
face and internal information.

Our review has primarily focused on recent advance-
ments in HSI technology concerning food quality and
safety. However, it’s worth noting that the potential of HSI
extends far beyond this scope. To harness its full capabil-
ities, future research endeavours should explore its appli-
cation in various other facets of food quality and safety.
By doing so, HSI has the potential to play a pivotal role
in proactively averting food safety crises and minimising
associated losses. Its versatility and non-invasive nature
make it a valuable tool in ensuring the integrity and safety
of our food supply chain. As we continue to delve into
its possibilities, we open doors to enhanced food quality
assessment and a safer, more secure food industry.
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