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Abstract

Food quality and safety are a great public concern; outbreaks of food-borne illnesses can lead to different health 
problems. Consequently, rapid and non-destructive artificial intelligence approaches are required for sensing the 
safety situation of foods. As a promising technology, deep learning for hyperspectral imaging (HSI) has the poten-
tial for rapid food safety and quality evaluation and control. Spectral signatures of food substances are sensitive to 
water content variation, the extent of hydrogen bonding, geographical origin, harvesting time and the variety of 
food under study. Deep learning models have shown great potential in addressing the challenge of sensitivity of 
spectral signatures of food substances. After discussing the basics of HSI, this review provides a detailed study 
of various deep-learning algorithms that have been put to use via HSI in the determination of sensory and phys-
icochemical properties, adulteration and microbiological contamination of food products. The existing literature 
includes HSI for evaluating quality attributes and safety of different food categories like fruits, vegetables, cereals, 
milk and meat. This paper presents a practical framework for deep learning-based food quality assessment using 
hyperspectral imagery. We demonstrate its versatility across diverse food quality domains and provide a concise 
step-by-step guide for researchers. It has been predicted that deep learning for HSI can be considered a reliable 
alternative technique to conventional methods in realising rapid and accurate inspection, for testing food quality 
and safety. 
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Introduction

Hyperspectral imaging (HSI) is a non-destructive and 
non-polluting imaging technique that combines spectro-
scopic technique and imaging technique to be collectively 
called ‘Imaging Spectroscopy’ (Jia et al., 2020). In a tradi-
tional colour image, each pixel is categorised into three 
colour channels (Red, Green and Blue). However, each 
pixel in HSI is categorised by many continuous bands; 
the number of bands depends on the spectral resolution 

of the hyperspectral camera. Traditional RGB cameras 
mimic the recognition capability of the human eye on 
the basis of the shape and colour of the imaged object. 
Sun is the ultimate source of all electromagnetic radia-
tion reaching the earth. Out of the total radiation illumi-
nating the scene, human eyes and traditional cameras are 
sensitive to the visible (VIS) bands of the electromagnetic 
spectrum. To visualise scenes outside the VIS band, the 
technique of spectroscopy has been used and has proved 
useful in eliminating the limitation of the human eye and 
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review. A step-by-step guide to transforming theory into 
actionable practice and facilitating the adoption of deep 
learning-based HSI for food quality assessment is dis-
cussed. In essence, the novelty of this work lies in its role 
as a trailblazer, bridging the gap between two transforma-
tive technologies and offering a transformative approach 
to ensure the safety and quality of our food supply.

Research gap 

One notable aspect of our review is the identification 
of specific research gaps within the field of deep learn-
ing HSI for food quality and safety assessment. While 
our analysis provides valuable insights into the current 
state of research, it also illuminates areas where further 
investigation is warranted. One such research gap is the 
need for more extensive exploration of HIS’s applications 
beyond food quality and safety. While our review primar-
ily focuses on this aspect, there are numerous uncharted 
territories where HSI could offer innovative solutions. 
These include real-time monitoring of food process-
ing, early detection of emerging contaminants and the 
assessment of the long-term effects of storage conditions 
on food quality. Additionally, the potential for cross-
disciplinary collaboration remains underexplored. The 
integration of HSI with emerging technologies like IoT 
(Internet of Things) and blockchain could revolutionise 
food supply chain management. 

Materials and Methods

The methodology adopted for this review is anchored in 
the PRISMA (Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses) framework, as per Page 
et al., 2021. Our systematic literature search, conducted 
up to 27 November 2023, aimed to rigorously select 
articles for review. We utilised keywords such as ‘HIS’, 
‘deep learning’, ‘machine learning’, ‘food technology’, 
‘image processing’ and ‘computer vision’ in our search 
strategy. Primary databases included Web of Science, 
Scopus and Google Scholar, ensuring a comprehensive 
and accurate yield of relevant studies. All sourced articles 
underwent an initial screening, focusing on relevance 
to HSI, deep learning and food technology. Of the 854 
research articles initially identified (depicted in Figure 1), 
we applied Boolean AND filters to refine the selection. 
Consequently, 305 articles, spanning from 2016 to 2023, 
were earmarked for in-depth analysis. To enhance the 
meta-analysis aspect, each selected article was subjected 
to a systematic evaluation based on specific criteria: rel-
evance to the subject, methodological soundness and 
contribution to the field. The statistical analysis involved 
synthesising data points such as study outcomes, meth-
odologies and results to quantitatively assess trends and 

traditional photography. Imaging spectroscopy captures 
intrinsic information in the form of images by revealing 
information about the target in the whole electromag-
netic spectrum. The advantage of HSI lies in reliable and 
precise identification, classification, detection, charac-
terisation, differentiation, and quantification. HSI spans 
every field of study ranging from biomedical imaging, 
molecular biology, astronomy, mineralogy, geology, cul-
tural heritage, physics and surveillance to food process-
ing and agriculture (Niedermaier et al., 2019).

HSI is a growing research field in the area of food engi-
neering and has become a valuable tool for food quality 
analysis and control. Nowadays, HSI is regarded as a pio-
neer tool for quality control in agri-food products. The 
combination of spectroscopic and deep learning technol-
ogies is the strong driving force behind the development 
of HSI systems in the evaluation of food quality and to 
find out the hidden information non-destructively. In 
addition, direct identification of different components 
and their spatial distribution in food systems can be car-
ried out (Liu et al., 2014). The objective of this review is 
to conduct a comprehensive exploration and extension of 
HSI applications in food analysis, emphasising the inte-
gration of advanced deep learning techniques. It seeks to 
address current challenges in the application of HSI and 
deep learning in the food domain, identify opportuni-
ties for overcoming limitations, and propose avenues for 
future interdisciplinary research. This paper is organised 
into the following sections. Section 2 deals with materials 
and methods that have been consulted for the compre-
hensive review. Section 3 deals with the fundamentals 
of HSI. Section 4 provides an overarching introduction 
about the state of art in deep learning with an exten-
sion of HSI application of each technique for food anal-
ysis. Section 5 provides extensive application of HSI for 
food analysis creating an intuition for future collabora-
tions using HSI and deep learning for enhanced accuracy 
and precision. Section 6 lays out a practical framework 
for undertaking the task of applying deep learning using 
hyperspectral images for food analysis. Section 7 dis-
cusses the conclusion of the study. 

Novelty

This review paper represents a pioneering endeavour 
in the domain of food quality and safety assessment. 
While HSI and deep learning have individually garnered 
attention for their applications in various fields, their 
convergence in the context of food evaluation is a dis-
tinctive feature of this review. A comprehensive analy
sis of the cutting-edge synergy between deep learning 
algorithms and HSI techniques is presented. The focus 
on diverse food categories, spanning fruits, vegetables, 
cereals, milk and meat, showcases the breadth of this 
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common findings among the studies. This meta-analysis 
not only compared the results of the authors but also 
involved a statistical synthesis of the data, seeking pat-
terns, discrepancies and insights across the literature. 
The final phase of our methodology involved reaching a 
consensus on the findings, which was achieved through 
a rigorous, iterative discussion among the research team. 

Hyperspectral Imaging System

HSI is a passive imaging technique and requires the scene 
to be illuminated by either the sun or some other source 
of light. Once the scene is properly illuminated, it has to 
be captured by an optical unit, which involves lenses or 
a combination of different lenses to allow for the trans-
port of light and its convergence. The light energy carries 
information with it and needs to be captured by a sen-
sory unit. Earlier, a film was used to capture light, but this 
approach has been replaced by digital light sensors that 
capture/store light energy. The sensory unit deals with 
extracting the different colour channels from the VIS 
white light. Raw data transforms into useful information 
after going through a processing unit which imparts addi-
tional information to the raw data (images) to be revealed 
on to the display unit which can take the form of a com-
puter screen or can be printed (print medium). Figure 2 
represents various components of image generation. 

The point of distinction between hyperspectral images 
and traditional images lies in the spectroscopic unit, 

which is absent in traditional image processing. The 
spectroscopic unit consists of a spectrograph that mea-
sures energy produced by matter on interaction with 
electromagnetic radiation in different wavelength bands. 
A colour image can be thought of as a cube of pixels 
with red, green and blue pixel planes stacked together. A 
hyperspectral data cube is also a 3D cube but not limited 
to three channels; the number of channels are in hun-
dreds. Any picture element (pixel) of the hyperspectral 
data cube is represented by three units (x, y, z) called a 
voxel. (x, y) determines the spatial location of a voxel and 
z determines the band/channel location. A spatial loca-
tion, for example, [7, 8], would refer to the seventh row 
and eighth column of the 2D data matrix (Figure 3). A 
series of values such as [7, 8, 0], [7, 8, 1] and [7, 8, 2] … 
[7, 8, 99] would determine values of pixel location [7, 8] 
at bands (0, 1, 2 … 99) of a hyperspectral data cube with 
100 bands. Such consecutive values form the spectrum 
or spectral signature from a series of voxels (ElMasry and 
Nakauchi, 2016). There are three conventional specifi-
cations of the imaging systems to generate a hyperspec-
tral data cube. First specification includes whisk broom 
imaging which captures a single pixel in all specified 
spectral channels at an instance (Figure 4A). The sec-
ond specification is push broom imaging which scans 
an entire line in all specified channels at an instance 
(Figure  4B). Area scanners which capture one entire 
spectral wave band (scene) at a time are included under 
third specification (Figure 4C). There is a surge of hyper-
spectral cameras in the market. However, only a specific 
type of industrial/laboratory-based hyperspectral camera 
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Figure 1.  Trend of research papers published in the area of Hyperspectral imaging.
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Figure 2.  Schematic diagram of hyperspectral imaging system.
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Figure 3.  A hyperspectral data cube. 
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Figure 4.  Acquisition modes of hyperspectral images.
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can be used for a particular application, depending on 
the material to be analysed. As such, the various types of 
cameras along with their operational range in nanometre 
are RedEye 1.7 (950–1700) nm, RedEye 2.2 (1200–2200) 
nm, BlackEye (2900–4200) nm, BlueEye (220–380) nm, 
GreenEye (400–1000) nm and OrangeEye (580–1000) 
nm (Niedermaier et al., 2019).

Hyperspectral image analysis operations

In order to maximise the retrieval of information from 
a high-dimensional hyperspectral data cube, there are 
certain procedures that should be undertaken to gener-
ate images of high spatial and spectral quality. The the-
oretical background of image analysis phases is beyond 
the scope of this article; thus only the listing of the pro-
cedures carried out at each phase is tabulated in Table 1.

Deep Learning Models for Hyperspectral 
Imaging

Deep learning belongs to the category of neural net-
works, a biologically inspired programming paradigm 
which imparts learning capability to computers that is 
naturally present in human beings. Deep learning tech-
niques have multiple layers of neural networks to learn 
hidden features from raw data without human inter-
vention. In training, large deep neural networks perfor-
mance continues to increase with more and more data. 
It can be said that deep learning models are data hun-
gry. Subsequently, the hyperspectral data cube has high 
dimensionality and the interaction of incident radiation 
with chemical molecules imparts chemical characteris-
tics to the absorption bands of food samples. Deep learn-
ing has shown great potential in extracting this hidden 
information that is impossible to obtain by traditional 
imaging. The necessity of using spectral data instead of 
traditional imaging arises from the rich chemical infor-
mation embedded within the molecular structure of the 

food (Bureau et al., 2019). To establish a relationship 
between spectral information and the chemical concen-
tration of food, a variety of linear and non-linear chem-
ical chemometric methods such as Partial Least Squares 
(PLS), Artificial Neural Networks (ANN) and Support 
Vector Machines (SVM) have been proposed. These 
models are robust and accurate but with low sensitivity. 
Spectral data presents a challenge of strong correlations 
between neighbouring wavelengths and overtones and 
among absorption peaks and noise. Linear models fail to 
extract complex non-linear features from spectral data. 
To overcome this limitation, non-linear machine learning 
models such as SVM, ANN and random forest have been 
utilised. However, machine learning models are prone to 
the risk of over-fitting. Another challenge working with 
spectral data is its complex constitution. A minute change 
in the geographical origin, harvesting time and variety of 
the food affect the physical properties of shape, size and 
surface texture, leading to a change in vibration absorp-
tion. As for chemical properties, water content variation 
affects spectral data. The extent of hydrogen bonding 
also leads to changes in spectra and prediction errors. 
Ageing spectrometers cause response shifts, hence a dis-
tinct spectral shape. All these challenges call for the use 
of deep learning techniques that are robust to over-fitting 
and can extract hidden and sophisticated representations 
(linear and non-linear) from raw data without the need 
to perform feature engineering (Zhang et al., 2021). The 
trend to use deep learning-based spectral analysis in the 
field of food science is increasing each day. This paper has 
attempted to describe some of the basic architectures of 
deep learning models that have been utilised in the field 
of HSI of food and agro products to enable the reader to 
have a basic knowledge of these models. 

Autoencoder 

An autoencoder is a classical neural network with a VIS 
layer of the inputs, one hidden layer of k units, which 
compresses the input data to representative features, and 

Table 1.  Image analysis phase and corresponding operation performed at each phase.

Analysis phase Operations

Image acquisition A careful selection of  acquisition mode, illumination type and arrangement, spatial and spectral resolution of  the camera, 
detectors selectivity, scanning speed of  the camera, frame rate and exposure time (ElMasry and Nakauchi, 2016).

Image calibration and 
pre-processing

Radiometric correction, geometric correction, removal of  non-uniform reflection from spherical objects, replacement of  
zero values(dead pixels) and spikes, removal of  specular reflectance and saturation correction (ElMasry and Nakauchi, 
2016).

Spectral data extraction 
and treatment

Spectral smoothing, spectral filtering, spectral normalisation, auto-scaling, mean centering, baseline correction, Fourier 
transform, differentiation, wavelet transform, orthogonal signal correction, standard normal variate and multiplicative 
scatter correction (ElMasry and Nakauchi, 2016).

Post-processing Formation of  data table, binary image, chemical image, classification image and pseudocolor image (ElMasry and 
Nakauchi, 2016).
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in the scenario of the sample size being small. A case of 
such variation was employed by Xing et al. (2016), where 
the authors have stacked together multiple denoising 
units of encoders for performing feature extraction, and 
the result of such variation is robustness towards feature 
extraction in a noisy scenario. In spectral classification 
scenarios, two typical cases arise; one is that two simi-
lar ground objects reveal distinct spectral signatures and 
the other is that two distinct ground objects reveal the 
same spectral signature leading to poor classification 
performance. The spatial classification acts as a remedial 
major for overcoming spectral classification problems. 
To go for joint spectral-spatial classification, a technique 
that combines autoencoders with convolution, neural 
networks have been developed by Yue et al. (2016) and 
Hao et al. (2017). Spectral features are extracted by auto-
encoders and spatial features are extracted by CNN; the 
product is fused leading to final spatial-spectral features. 
To examine the joint spectral-spatial features efficiently, 
Li et al. (2015) have used the 3D Gabor operator in the 
pre-processing phase that allows for joint spatial-spectral 
feature extraction; this fused product is given to the auto-
encoder to mine better abstract features. Another varia-
tion to autoencoder was done by Mei et al. (2019) using 
a 3D convolution operator for autoencoder construc-
tion, where the model extracts spatial-spectral features 
directly. Spectral feature extraction from an HSI data 
cube using a SAE has been performed by Yu et al. (2018) 
in determining the freshness grades (fresh and stale) 
of shrimp. In another study, Yu et al. (2019) used SAEs 
to extract 20 deep hyperspectral features from near-
infrared (NIR) hyperspectral images to non-destructively 
predict the total viable count (TVC) of peeled Pacific 
white shrimp.

one reconstruction layer of d units (Figure 5). The pro-
cess of training with an autoencoder has the encoding 
part followed by the decoding part. The objective of an 
autoencoder is to make the output as similar as possible 
to the input. Autoencoders can be stacked together by 
attaching the output of one layer to the input of another 
layer to be called stacked autoencoders (SAEs). SAE can 
be employed for spectral classification of HSI where each 
pixel vector can be considered as an input. Autoencoders 
are used for feature extraction to learn the internal pat-
tern of non-labelled data (Windrim et al., 2019).

For the first time, autoencoders were put to use by Chen 
et al. (2014) for extracting features. As the spectral sig-
nature (vector) of each pixel is fed to the encoder input, 
the decoder reconstructs it, imparting an ability to the 
encoder to extract spectral features. As HSI image is 
characterised by spectral features as well as spatial fea-
tures, to extract spatial features principal component 
analysis (PCA) is used which allows for reducing the 
dimensionality of the data (hyperspectral image). A vec-
tor is derived by flattening the image patch. Another 
autoencoder is used to memorise the spatial features. The 
joint spectral and spatial information obtained is used 
and classified. The deep stacked sparse autoencoder has 
been used by Abdi et al. (2017) for spectral-spatial fea-
ture learning. A stacked denoise autoencoder has been 
used for feature extraction and classification of HSI by 
Xing et al. (2016). The methods adopted by Abdi et al. 
(2017), Xing et al. (2016) and Chen et al. (2014) take 
advantage of training the encoder fully in an unsuper-
vised paradigm followed by a supervised paradigm for 
fine-tuning the classifier. A variation in the encoder type 
or pre-processing method is done for HSI classification 

h

Input layer Hidden layer Reconstruction layer

wh,bh wy,by

Figure 5.  Diagrammatic representation of an autoencoders. 
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The feature maps become more abstract because of 
suffering from shrinkage in size.

c)	 Fully Connected Layers: Feature maps generated 
from convolution and pooling layers are flattened to 
be fed to fully connected layers. They connect every 
neuron in the current layer to every other neuron in 
the next layer. 

In applying CNN for HSI classification, 2D-CNN has 
displayed wide applicability in extracting spatial features 
(Yu et al., 2017). Due to redundancy in the hyperspec-
tral cube, the convolution kernel size tends to enlarge. 
This limitation was removed by using a combination of 
1D convolution and 2D convolution. Using a mixture of 
1D and 2D convolution allows for spectral and spatial 
feature extraction. A fusion of these features forms an 
input for the classifier. Apart from collaboration between 
1D and 2D convolution, 3D-CNNs have recently found 
applicability in the HSI classification with significant 
spatial-spectral fusion capability (Liu et al., 2018). The 
small sample size of hyperspectral cube leads to poor 
performance of 3D-CNN because of the involvement 
of the excessive number of parameters in the super-
vised paradigm. Fang et al. (2020) proposed 3D separa-
ble convolution to decrease parameters, whereas Mou 
et al. (2017) solved the excessive parameter problem by 
utilising autoencoders in the 3D convolution operation. 
This particular autoencoder is trained in an unsupervised 
way with the replacement of the classifier at the decoder 
module. Models that have been successful in extracting 
complex features from labelled samples of small size uti-
lise convolution residuals and ResNet (Mou et al., 2017). 
The problem of small sample size has been handled by 
Yu et al. (2017) using the technique of augmentation. The 
authors have enlarged the dataset by rotating and flipping 
the images. This approach served two purposes: one, it 
increased the diversity within the data cube, and second, 
it helped the model to achieve rotational invariance. A 
variation in the augmentation technique was put forth 
by Li et al. (2018) which mines the difference between 
the images in pairs and hence increases the diversity 
of the dataset. Some other variations of CNNs include 
the use of dense connections for extracting sample fea-
tures (Paoletti et al., 2018). As hyperspectral images are 

Convolution neural network

The structure of the visual system has been the motiva-
tion behind convolution neural network (CNN). CNN 
uses a group of parameters called kernel function to 
extract a specified feature from an image. The reason 
behind the vast success of CNN is attributed to the three 
characteristic properties that make it very powerful for 
feature representation. In a fully connected network, the 
full connection between two neural layers lends itself to 
unfriendly high-resolution spatial images. The disadvan-
tage of full connected networks is overcome by the local 
connection property of CNN by reducing the number of 
trainable parameters to a great extent and hence lend-
ing itself suitable for processing high-resolution images. 
The second characteristic property is to share the same 
parameters by the same kernel, which further offers a 
reduction in the number of parameters. As in traditional 
neural networks, the parameters of the output are inde-
pendent of each other. CNN cuts down on parameters by 
using the same parameters for all other outputs, which, 
in turn, leads to the third characteristic property of CNN 
referred to as shift-invariance. CNN models capture fea-
tures irrespective of the position of the features in the 
space. The architecture of the CNN has an alternating 
convolution layer and pooling layer followed by a number 
of fully connected layers (Figure 6). Convolution layers 
perform convolution operations between image patches 
and kernels, generating feature maps. These feature maps 
are reduced in size by pooling layers creating more gen-
eral and abstract features. The final stage involves trans-
forming feature maps to feature vectors (Li et al., 2019). 
A description of each layer is as follows:

a)	 Convolution Layers: The most important aspect of 
CNN is the layers. Convolution function involves 
convolving input cube with a number of learnable fil-
ters leading to a generation of multiple feature maps. 

b)	 Pooling Layers: To eliminate the information 
redundancy prevalent in images, pooling layers are 
deployed periodically after many convolution layers 
in the CNN architectural layers tend to decrease the 
spatial size of feature maps along with the reduction 
in computational cost and number of parameters. 

convolution convolutionpooling

Input C1 P1 C2 P2 F2 Output: class labelsF1

pooling FC FC softmax

Figure 6.  Architecture of a convolution neural network.



Quality Assurance and Safety of  Crops & Foods 16 (1)� 85

Deep learning hyperspectral imaging

characterised by low spatial resolution, using the tech-
nique by Paoletti et al. (2018) gives rise to a mixed pixel 
problem. Combining data from two separate modalities 
such as HSI and light detection and ranging (LIDAR), 
a variation in the sample features is introduced which 
overcomes mixed pixel problems (Feng et al., 2019a). 
In the domain of food technology and HSI, deep learn-
ing has found applicability in detecting subtle bruises 
on winter jujube using a CNN. Pixel-wise spectra have 
been extracted from the hyperspectral image cube and 
after pre-processing, fed to a CNN to build pixel-wise 
classification model. The study has shown great potential 
for use in real-time application due to short prediction 
time (Feng et al. 2019b). Laborious and time-consuming 
tasks of classifying hybrid progeny of okra seeds and 
loofah seeds have been done by Nie et al. (2019) using a 
deep convolution neural network (DCNN) with an effi-
ciency of 95%, suggesting acceleration towards the prog-
ress of related research. Deep learning along with HSI 
has replaced the traditional authenticity measures for 
the classification of meat (Al-Sarayreh et al., 2020). The 
authors have utilised 3D-CNN approach to classify red 
meat suggesting future scope of real-time meat authen-
ticity. Visual Geometry Group16 (VGG16) CNN has 
been used to detect the freshness of fruits such as apples, 
bananas, guava and oranges, yielding an accuracy of 99% 
(Mehta et al., 2021). Various architectures of convolu-
tional neural network such as ResNet18, MobileNetV2, 
MobileNetV3-Small and MobileNetV3-Large have 
been employed for freshness detection of hog plum 
(Arunachalaeshwaran et al., 2022). A tabulated struc-
ture showing various types of deep learning techniques 
and the results achieved has been given in Table 2. Apart 
from studies on Classification, there have been numerous 
studies on prediction as well using deep learning. One 
such study has been performed by Zhang et al. (2022)
obtaining a large number of oil content reference values 
of maize kernels is time-consuming and expensive, and 
the limited data set also leads to low generalization abil-
ity of the model. Here, hyperspectral imaging technology 
and deep convolutional generative adversarial network 
(DCGAN. The authors utilised deep convolutional gen-
erative adversarial network (DCGAN) combined with 
partial least squares regression (PLSR) and support vec-
tor regression (SVR) to predict the oil content of single 
maize kernel. Due to limitations in the dataset, augmen-
tation by DCGAN expanded the spectral data and oil 
content data, respectively, which proved advantageous 
for regression model improvisation and furnishing a 
large amount of data for model training. The regression 
results have been tabulated in Table 3. To meet the grow-
ing demand for food, there has to be an average increase 
in crop yield by 2.4% annually, with the current rate at 
1.3%. These facts point out the urgency in crop produc-
tion efficiency to meet food security concerns. In this 
regard, Moghimi et al. (2020) have utilised deep neural 

networks for selecting advanced varieties of wheat. The 
authors have divided the study area into plot scale and 
sub-plot scale. A produce of thousands of wheat plots 
was harvested and recorded as ground truth over two 
growing seasons along with aerial hyperspectral image 
acquisition of the fields. Deep neural networks were 
trained to extract features from the aerial images to esti-
mate wheat yield. The coefficient of determination at plot 
scale and sub-plot scale was 0.41 and 0.79, respectively, 
which reveals that the study can facilitate remote visual 
inspection for high-throughput yield phenotyping.

Recurrent neural networks

Recurrent neural networks (RNN) can extract patterns 
in sequences of data that are dynamic and temporal in 
nature. The ability to extract patterns from sequences is 
provided by recurrent hidden states. One disadvantage of 
conventional RNN is the vanishing gradient or exploding 
gradient due to long-term sequential data which down-
grades performance of RNN. To overcome this issue, 
Long Short-Term Memory (LSTM) (Graves, 2013) and 
Gated Recurrent Unit (GRU) (Chung et al., 2014) were 
introduced.

A hyperspectral data cube is a 3D dataset; each sample 
of the data cube serves as sequential data for the RNN. 
LSTM has been employed for HSI spectral classifica-
tion by Mou et al. (2017). Corresponding to a sam-
ple pixel vector, each band forms a sequential input to 
the LSTM model. To fuse spatial information into the 
spectral classification, Liu et al. (2018) proposed multi-
layer LSTM for spatial-spectral feature extraction. Pan 
et al. (2020) offered single gate recurrent unit GRU for 
combined spectral-spatial feature extraction in the HSI 
classification task. A combination of 1D convolution 
operation and RNN have been used by Wu and Prasad 
(2017), primarily for extracting spectral feature vectors, 
the 1D convolution operation is employed and then the 
spectral feature sequences are fed to RNN along with 
the support of fully connected layers and SoftMax func-
tion to achieve HSI classification. The reason behind the 
collaboration between 1D convolution and RNN is that 
individually each of these does not cater to the extraction 
of spectral-spatial features in an efficient manner. Other 
works mentioning collaboration between convolution 
operation and RNN is proposed by Hao et al. (2020). The 
authors extracted features using U-Net and then fed the 
input to LSTM to explore contextual information within 
features. A peculiar collaboration between techniques 
has been shown by Zhou et al. (2017) by employing PCA 
to extract spatial information. The first principle compo-
nent (PC1) lends itself in a sequential form in terms of 
several lines to the LSTM network. LSTM has been used 
by Kang et al. (2021) for the identification of food-borne 
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Table 3.  Deep learning-based regression analysis of food products.

Purpose Food item Wavelength 
range

Deep learning 
model

Determination 
coefficient of 
prediction (R2

p)

Root mean square 
error estimated 
by prediction 
(RMSEP)

Source

Detection of  
compound heavy 
metals

Lettuce 
(Cadmium 
content 
prediction)

400.68–1001.61 Wavelet transform
Stacked 
convolution 
autoencoder(WT-
SCAE)

0.9319 0.04988 Zhou et al. 
(2020)

Lettuce (lead 
content 
prediction)

400.68–1001.61 Wavelet transform
Stacked 
convolution 
autoencoder 
(WT-SCAE)

0.9418 0.04123 Zhou et al. 
(2020)

High throughput 
yield phenotyping

Wheat (sub-
plot )

400–900 Deep Neural 
Network

0.79 0.41 Moghimi et al. 
(2020)

Wheat (plot) 400–900 Deep Neural 
Network

0.24 0.14 Moghimi et al. 
(2020)

Total volatile 
nitrogen content

Fish fillets 430–1000 LDNN 0.853 3.159 Moosavi-
Nasab et al. 
(2021)

Fish fillets 430–1000 Least squares 
support vector 
machine

0.897 2.63 Moosavi-
Nasab et al. 
(2021)

Prediction of  oil 
content

Maize kernels 
(Zhengdon958)

866.4–1701 DCGAN, 
SVM

0.9158 0.4620 Zhang et al. 
(2022)

Maize kernels
(Zhengdon958)

866.4–1701 DCGAN,
PLSR

0.934 0.4183 Zhang et al. 
(2022)

Maize kernels 
(Nongda616)

866.4–1701 DCGAN,
SVM

0.9309 0.3661 Zhang et al. 
(2022)

Maize kernels 
(Nongda616)

866.4–1701 DCGAN,
PLSR

0.9299 0.3673 Zhang et al. 
(2022)

pathogens from chicken carcass rinse. The authors have 
employed three LSTM blocks and achieved an accuracy 
of 90.4%, 92.6% and 92.9% for different types of identifi-
cation (Table 2). A tabular representation showcasing the 
comparison and limitations among the three techniques 
of deep learning have been organised in Table 4. 

Application of Hyperspectral Imaging in Foods

Sensory analysis of foods

Sensory properties of food, including appearance (shape, 
colour and physical defects), taste and texture (hardness, 
chewiness and cohesiveness) constitute the first impres-
sion of a food product perceived by the consumer. The 
sensory analysis includes the evaluation of the signals 
which are received through the sense of sight, taste, smell 
and touch. Determination of the sensory properties of a 
food item is important for satisfying the needs of con-
sumers and providing them with quality and wholesome 

food products. Moreover, sensory analysis is import-
ant to determine the food quality after processing such 
as cooking, drying and freezing. Nowadays, in the food 
industry, sensory evaluation of foods finds a wider appli-
cation as consumer’s desire to purchase foods that can 
assure acceptance and satisfaction. In this regard, food 
manufacturers have to evaluate the overall acceptability 
and specify the sensory attributes that are crucial for a 
food item (Ozdogan et al., 2021).

Traditionally, the assessment of the sensory quality 
of food products is done by trained human panellists. 
However, sensory evaluation by a trained panel is subjec-
tive and is found unsuitable for instant application when 
required. Instrumental methods like texture profile analy-
sis using a texture analyser for determining textural attri-
butes, colourimeters for colour analysis and GC-MS for 
determination of flavour compounds are also available, 
but these techniques are also time-consuming, destruc-
tive and applicable on a small scale. Therefore, there is a 
need to develop rapid and reliable methods for assessing 
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Table 4.  Comparative analysis of deep learning techniques and their limitations.

Aspect Autoencoders Convolution neural networks Recurrent neural network

Architecture Encoder-decoder based Convolutional layers, pooling layers, 
fully connected layers

Recurrent connections

Input type Unstructured data Grid-like data (images) Sequential data (time-series, text)

Layer operation Symmetric encoding-decoding Localised feature extraction Sequential memory processing

Data efficiency Efficient for dense data Efficient for grid-like structures Efficient for sequential dependencies

Application of  the tool Determining the freshness grades 
(fresh and stale) of  shrimp, predict 
the total viable count (TVC) of  
peeled Pacific white shrimp

Detecting bruises on winter jujube, 
classifying hybrid progeny of  okra 
seeds and loofah seeds, classifying 
red meat

Identification of  food-borne pathogens 
from chicken carcass rinse

Limitations

Training data 
dependency

Sensitive to insufficient data Requires large datasets, data hungry Challenged by limited data for effective 
training

Interpretability of  learned 
features

Complex and non-interpretable Feature hierarchies might lack 
intuitiveness

Struggles with capturing long-term 
dependencies

Use case specificity Limited to data compression/
generation

Primarily applied to image-related 
tasks

Effective for sequential data, less for 
static features

Decoding imperfection May result in imperfect decoding Loss of  spatial information in 
down-sampling

Memory fading and gradient vanishing 
issues

Dimensionality reduction Efficient for dimensionality 
reduction

Naturally handles grid-like data 
structures

Limited capability for high-dimensional 
data

Learning time Generally faster learning time Moderate learning time for image data Slower learning due to sequential 
processing

Complexity in 
representation

Might represent data in complex 
ways

Hierarchical and spatial feature 
representations

Captures sequential dependencies, but 
complexity

of sensory properties of food products. Various imaging 
and spectroscopic technologies have emerged as alter-
native methods to be used in the food industry for the 
sensory assessment of food items. In recent times, HSI 
technology has gained prime importance as a novel rapid 
and non-invasive technique for the sensory evaluation of 
foods (Liu et al., 2017). HSI is less time-consuming and 
a non-destructive technique to determine the sensory 
properties of a diverse range of food products. The VIS-
NIR (400–1000 nm) HSI is the most used method for the 
evaluation of sensory attributes (Ozdogan et al., 2021). 
Table 5 summarises the recent studies done to evaluate 
the sensory properties of food products using the HSI 
technique. HSI principally depends on chemometric 
analysis for evaluating sensory quality, and the relation-
ship between molecular bonds and wavebands is very 
important to understanding the chemistry behind the 
models (Lin and Sun, 2020).

HSI as a powerful tool to check adulteration of foods

Over the years, several analytical methods have 
been considered to detect adulterants in food prod-
ucts. Unfortunately, these procedures are disruptive, 
time-consuming, labour-intensive and expensive and 
they necessitate specific sample preparation. Alternative 

analytical approaches for speedy, accurate and reliable 
quality control systems for determining food adulterants 
and preventing fraudulent practices involving food adul-
teration are becoming increasingly important in order to 
assure food safety. In this context, the combined use of 
optical imaging and spectroscopic techniques for exam-
ining food safety and quality analysis is gaining popu-
larity as it provides non-destructive detection, chemical 
information and visualisation, all at the same time. HSI 
is a technology that combines both spectroscopic and 
photography approaches into a single system, allowing it 
to gather both spectral and spatial information about the 
studied 

object. HSI is a promising technology that enables the 
rapid and accurate detection of spectral and spatial infor-
mation. To derive spectral, textural and morphological 
information from high-dimensional HSI data, chemom-
etric approaches are necessary (Temiz and Ulas, 2021). 
In this regard, the combined use of non-destructive opti-
cal imaging and spectroscopic techniques for evaluating 
food safety and quality analysis is gaining popularity. 

Shafiee et al. (2016) investigated the use of HSI sys-
tem and data mining-based classifiers to detect honey 
adulteration. A VIS-NIR hyperspectral camera (400–
1000  nm) was used to take hyperspectral images of 
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Table 5.  Sensory evaluation of foods using hyperspectral imaging.

Type of Food Product Name Sensory Parameter Wavelength (nm) References

Fruits Apple Flavour (sweetness and sourness) 380–1040 Liu et al. (2020)

Firmness 400–1000 Zhu et al. (2013)

Banana Colour and firmness 380–1023 Xie et al. (2018)

Cherry Maturity
Firmness

874–1734
500–1600

Li et al. (2018a)
Pullanagari and Li (2021)

Peach Chilling injury 400–1000 Pan et al. (2016)

Plum Colour 600–975 Li et al. (2018c)

Mango Firmness 450–1000 Rungpichayapichet et al. (2017)

Orange Maturity 390-1055 Wie et al. (2017)

Vegetables Tomato Colour
Flavour and firmness

400–1000
1000–1550

Van Roy et al. (2017)
Rahman et al. (2018a)

Potato Bruises 400–1000 Ji et al. (2019)

Garlic Flavour 1000–1700 Rahman et al. (2018b)

Spinach Freshness 380–310 Zhu et al. (2019).

Green pepper Flavour 1000–1700 Rahman et al. (2018c)

Mushroom Bruise 880–1720 Esquerre et al. (2012)

Cereals Wheat Kernel Hardness 1000–1500 Erkinbaev et al. (2019)

Maize seeds Hardness, springiness and resilience 400–1000 Wang et al. (2015)

Milk Cheese Maturity 1000–2400 Priyashantha et al. (2020)

Meat Chicken Freshness 328–1115 Xiong et al. (2015a)

Red meet Colour 400-1000 Kamruzzaman et al. (2016)

Mutton Freshness 400-100 Zhu et al. (2021)

Pork Tenderness 910–1700 Barbin et al. (2012)

Beef Freshness Red, green and blue 
channels

Sharma et al. (2023)

pure and adulterated samples. After pre-processing the 
images, supervised image classification was performed 
using five distinct data mining-based techniques: ANN, 
SVM, linear discriminant analysis (LDA), Fisher and 
Parzen classifiers. The ANN classifier showed maxi-
mum classification accuracy of 95%, according to classi-
fier test results. Other classifiers with acceptable results 
included SVM with radial basis kernel function, LDA, 
Fisher and Parzen having classification rate of 92%, 
90%, 89% and 84%, respectively. This study highlights 
the potential of HSI in honey authentication. Verdu 
et al. (2016) examined the efficacy of a SW-NIR hyper-
spectral image approach to detect adulteration in wheat 
flour and bread with low-cost grains like sorghum, oats 
and corn. Hyperspectral information was also used to 
interpret the change in physicochemical properties. The 
SW-NIR imaging approach was fully able to detect adul-
teration, and substantial correlation significances were 
found between wavelengths from specific spectra zones 
and physicochemical attributes of sample. Adulterants 
(soda, water, urea and detergents) have been success-
fully detected in milk using hyperspectral radiometry 

coupled with machine learning techniques, as observed 
by Kimbahune et al. (2016). The spectral irradiance was 
recorded over a range of wavelengths from VIS to NIR 
(350–1050 nm). For quantitative detection of adulteration 
of limestone powder in tapioca starch, Khamsopha et al. 
(2021) used near-infrared HSI at wavelengths ranging 
from 935–1720 nm. Chemometrics was studied and used 
to develop a calibration model for predicting adulterant 
concentrations using PLSR. With a correlation coefficient 
(R) of 0.996 and a root mean square error of prediction 
(RMSEP) of 2.47%, the model’s prediction accuracy was 
found excellent. With the help of the model, images of 
pure tapioca starch, adulterated tapioca starch and pure 
adulterant were then created. Depending on the amount 
of adulterant present, various colours were displayed. 
Barreto et al. (2018) predicted that the HSI approach 
could detect the presence of starch in fresh cheese that 
has been added as an adulterant. The PLSR method was 
used in the modelling of starch content present in cheese. 
For a reduced model, a level of predictability of the starch 
content of 83.21% was achieved. The model also showed 
a high degree of precision, even with values of 6.65 mg 
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loss method, both PCA and PLSR models were created. 
Xuan et al. (2021) confirmed that maturity index of okra 
fruit can be assessed using VIS-NIR HSI, which could be 
important for farmers to optimise harvest dates for good 
taste and economic return. Effective wavelengths, texture 
features and their fusion were used to create a library for 
support vector machines (LIBSVM) model. The LIBSVM 
model with the fused dataset showed highest total matu-
rity classification accuracy of okra fruit, with a cross-val-
idation accuracy of 91.7%. The fermentation index, total 
polyphenol content and antioxidant activity of individual 
dry fermented cocoa beans can be quantitatively pre-
dicted using HSI in the spectral region of 1000–2500 nm 
(Caporaso et al., 2018). The concentration of soluble sol-
ids, organic acids, sugars, polyphenols and antioxidant 
activity of fennel heads predicted using HSI in the VIS-
NIR spectral range in relation to the difference in sheath 
layers and harvest periods (Amodio et al., 2017). The 
study showed that HSI in the VIS-NIR spectral range has 
greater potential for predicting interior constituents than 
HSI in the NIR spectral range. NIR-HSI was applied to 
quantify 27 distinct phenolic compounds in freeze-dried 
grape marc components. When PLSR was applied to the 
spectral data, coefficient of determination values of up 
to 0.98 were found, even when estimating minor com-
pounds. Because of its speed and simplicity, this technol-
ogy emerges as an appealing alternative for analysing the 
phenolic components in grape marc (Jara-Palacios et al., 
2016). HSI was used to determine the levels of monoun-
saturated and polyunsaturated fatty acids in processed 
hog products. The regression coefficient curves of PLSR 
models were used to find optimal wavelengths. The least 
squares SVM models used showed a higher coefficient of 
determination (greater than 0.81) in the Monte Carlo val-
idation set than the partial least squares regression mod-
els, and the least squares SVM models developed based 
on selected optimal wavelengths (Ma and Sun, 2020).

Evaluation of microbial contamination and toxicants

Food quality and safety issues are getting importance 
in both developing and developed countries; these 
challenges are regularly encountered in our daily lives 
because there is an increasing need for safe and quality 
food products in today’s marketplaces. The food indus-
try is truly focused on generating harmless products 
and needs a continuous commitment to the creation 
and implementation of protocols and systems to man-
age numerous parameters in food products. Currently, 
existing analytical techniques are extremely slow and 
harmful. As a result, developing non-invasive, effective 
and rapid testing methods for monitoring food quality 
and safety is critical. HSI technology is one of the most 
promising alternatives, as it is a non-destructive anal-
ysis technique that may readily engage in productive 

starch per gramme of cheese on a dry basis (3.19 mg g-1 
on a wet basis). The wavelengths of 584 nm and 976–
1000 nm were found most preferable for detecting and 
predicting starch in fresh cheese. It was also predicted 
that a sample’s light intensity for a given wavelength is 
inversely proportional to its starch content. Black pepper 
adulterated with common adulterant papaya seeds could 
be identified using NIR-HSI coupled with multivariate 
analysis (Orrillo et al., 2019). Principal component anal-
yses (PCA) and soft independent modelling of class anal-
ogy (SIMCA)-based classification models achieved 100% 
accuracy for berry samples and sensitivity of more than 
90% for ground samples. 

Assessment of physicochemical properties

HSI can be used to determine various physicochemical 
properties like moisture content, pH, acidity, total soluble 
solids (TSS), polyphenol content and antioxidant activity 
of food commodities. Efficiency of HIS in determining 
internal quality (TSS and pH) of mulberry was explored 
by Huang et al. (2011). Rungpichayapiche et al. (2017) also 
found that HSI could be used to determine the TSS and 
the titratable acidity of mango. Potential of HSI for deter-
mination of pH, total acidity and soluble solid content of 
table grapes was explored by Baiano et al. (2017). A HSI 
system was used to obtain the reflectance spectra of ber-
ries and a good correlation was found between each of the 
properties and the spectra information. Ma et al. (2018) 
applied NIR-HSI to assess the soluble solids content 
(SSC) of apples. The relationship between SSC reference 
data and NIR spectral data taken from each sample was 
determined using PLS regression analysis. HSI can also 
be used to determine polyphenol oxidase (PPO) activity, 
which is important for controlling the quality of the fin-
ished product. For indirect measurement of PPO activity 
in fresh-cut apple slices, Shrestha et al. (2020) employed 
the VIS-NIR. The authors found that HSI could be used 
as an alternative for conventional chemical evaluation of 
PPO enzyme activity. Lu et al. (2017) proposed that HIS 
technology could be used to determine the quantitative 
amount of starch in rice. The hyperspectral pictures of 
100 rice samples of 10 starch grades were collected using 
a HSI device within a spectral range of 871–1766 nm. 
Using full wavelength spectra data, the SVR model was 
developed to determine the starch percentage. According 
to the authors, HSI technique for starch detection in rice 
is viable, and it can measure rice starch fast, effectively 
and non-destructively. ElMasry Sun and Allen (2011) 
applied NIR-HSI to assess water holding capacity (WHC) 
in fresh beef. The spectral characteristics of various beef 
samples from various breeds and muscles were recov-
ered from hyperspectral pictures. To get an overview of 
the systematic spectral variations and to link spectral 
data of beef samples to its WHC determined by the drip 
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(Siripatrawan et al., 2011) and lettuce (Yang et al., 2010). 
HSI has been found to be efficient in analysing the fun-
gal contamination in apples (Mehl et al., 2004) and dates 
(Teena et al., 2014). Microbial toxins are one of the most 
common pollutants identified in food products. The pro-
duction of these poisons is carried out by fungi (myco-
toxins) and bacteria (bacterial toxins). Microbial toxins 
are detected using a variety of techniques, including 
HPLC, TLC, GC, ELISA and fluorescence-based detec-
tion methods. HSI is a new, fast, non-invasive, non-de-
structive, and acceptable approach for detecting toxins 
in foods. Wu and Zu (2019) examined the potential of 
VIS/NIR HSI in detecting aflatoxin B1 (AFB1) in pista-
chio kernels. PCA was used to separate control (unpol-
luted) and all polluted kernels. For samples that were 
intentionally contaminated with varying concentrations 
of AFB1, LDA yielded accuracies higher than 90.0% 
based on spectra from 694 to 988 nm which had been 
pre-processed with standard normal variate (SNV) and 
Savitzky-Golay (SG) smoothing. The calibration and val-
idation correlation coefficients using stepwise multiple 
linear regression (SMLR) models were all greater than 
0.9100. Kandpal et al. (2015) reported that aflatoxin con-
tamination on corn kernels can be detected using a short 
wave infrared (SWIR) HSI approach. Corn samples were 
inoculated with four different concentrations of aflatoxin 
B1 and SWIR hyperspectral device was used to scan both 
infected and control (uncontaminated) samples over the 
spectral range of 1100–1700 nm. To categorise control 
and infected kernels, a PLS-DA model was developed, 
and the maximum overall classification accuracy gener-
ated by the developed model was 96.9%. Due to rise in 
concentration of AFB1, spectral divergence was found 
between the control and infected samples. Besides, the 
contamination map created with the PLS-DA model 
showed how contaminated samples appear visually. The 
authors concluded that SWIR HSI is a quick, accurate 
and non-destructive method for detecting hazardous 
metabolites in grains and that it could be used as an 
alternative to conventional methods. Using a NIR-HSI 
approach, the feasibility of detecting Aflatoxin B1 in 
maize kernels inoculated with Aspergillus flavus conidia 
was investigated by Wang et al. (2015). The frequencies 
1729 and 2344 nm have been found as key wavelengths 
for detection of AFB1. Based on NIR spectral features, 
a full approach for detecting ergot bodies in cereals 
was conducted by Vermeulen et al. (2013). The results 
obtained utilising two NIR-HSI cameras were quite 
consistent and repeatable. Furthermore, the estimated 
values produced by NIR-HSI and those provided by the 
stereo-microscopic approach (reference method) had a 
correlation of greater than 0.94. The method’s transfer-
ability was demonstrated by the validation of the trans-
ferred process on blind samples, which revealed that it 
could detect and quantify ergot contamination.

operations (Vejarano et al., 2017). Numerous studies 
have demonstrated the significant potential of HSI in 
detecting microbiological quality and the presence of 
toxicants in food applying distinctive HSI acquisition 
methods and wavelengths varying from the VIS spec-
trum to NIR. Barbin et al. (2013) used NIR-HSI to assess 
microbial contamination in porcine meat. Plate count 
analysis was utilised as a complementary technique to 
assess the efficacy of HSI in detecting the microbiolog-
ical quality of pork. Hyperspectral pictures were used 
to categorise the pork meat in fresh and spoiled forms. 
Appropriate results for spoilage detection with accu-
racy greater than 95% were observed when NIR spectra 
was combined with LDA, and thus the adopted tech-
nique could be used to calculate the shelf life of pork. 
The NIR hyperspectral pictures used to predict the TVC 
and psychrotrophic plate count (PPC) using quantitative 
PLS models with coefficients of determination of 0.82 
and 0.85 for TVC and PPC, respectively. As a result of 
the good regression models between spectral data and 
bacterial counts, the NIR hyperspectral system has the 
potential to become an alternative tool for rapid and 
reliable shelf life determination and microbiological 
assessment in the meat sector. Cheng and Sun (2015a) 
studied the feasibility of using VIS and NIR-HSI in the 
range of 400–1000 nm to determine TVCs for the detec-
tion of microbial deterioration in fish fillets. Models 
based on full wavelengths, such as PLSR and least square 
SVM, performed well, with the least square SVM model 
outperforming others with a higher residual predictive 
deviation (RPD) of 3.89, determination coefficient of 
0.93 and lower RMSEP of 0.49 log10 CFU/g. Cheng and 
Sun (2015b) used HSI in the spectral region of 400–1000 
nm to detect E. coli count in grass carp fish for evalu-
ation and visualisation of microbial quality. To create 
prediction models between the spectrum data and the 
reference E. coli loads obtained by the standard micro-
biological plating method, a PLSR model was used. With 
a RPD of 5.47 and a determination coefficient of 0.880, 
the PLSR model based on complete wavelengths per-
formed well in predicting E. coli loads. Sricharoonratana 
et al. (2021) worked on determination of shelf life and 
classify sponge cakes on microbial infections during 
storage using NIR-HIS in the range of 935–1720 nm. 
NIR-HSI has been used to estimate the average spec-
trum from a region of interest (ROI) in each sample’s 
spectral image. The model was created using PLSR to 
predict the storage time of the cakes. With a correlation 
coefficient (R) of 0.835 and a RMSEP of 1.242 days, the 
model proved to be reliable. The classification model 
for discriminating between non-expired and expired 
sponge cakes was developed using PLS discriminant 
analysis (PLS-DA). According to the findings, the accu-
racy of prediction was about 91.3%. HSI has also been 
used to detect bacterial contamination in spinach leaves 
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analysis to determine the concentration of the target 
component. This process is repeated for all samples, 
forming a matrix where each row represents the spec-
tral signature of a sample, with the last column indicat-
ing the component’s concentration (Mishra et al., 2022). 
Conversely, if the study aims to automate the classifica-
tion of different food material varieties or distinguish 
between good and bad quality products, manual labeling 
of all considered samples is necessary. This results in a 
matrix where each row represents the spectral signature 
of a sample, with the final column denoting the sample’s 
assigned class (Nogales-Bueno et al., 2021).

Development of deep learning models 

Numerous state-of-the-art models are available, and the 
choice depends on the problem’s nature and the cod-
er’s expertise. For regression-based problems, a suitable 
approach may involve using machine learning algo-
rithms or a combination of machine learning and deep 
learning techniques. Similarly, classification tasks can be 
tackled using either machine learning or deep learning. 
It is widely acknowledged that deep learning algorithms 
outperform machine learning when provided with exten-
sive datasets. Advanced augmentation techniques have 
expanded the horizons, making dataset size less of an 
obstacle. Section 4 outlines some of the deep learning 
techniques.

Comparative analysis and model deployment phase

Refinement and validation take centre stage. The devel-
oped models undergo critical comparisons with previ-
ous studies to fine-tune their performance and achieve 
high-quality metric scores. Metrics for regression stud-
ies encompass the Coefficient of Prediction, Root Mean 
Square Error and more. For classification studies, key 
metrics include Total Accuracy, Precision, Recall and 
F1 Score. While impactful research can transform lives, 
transitioning from the lab to practical applications pres-
ents challenges. Direct transfer of deep learning models 
is rarely feasible, given the bulkiness of hyperspectral 
image datasets. Practical use necessitates dimensionality 
reduction techniques to retain essential features while 
reducing time complexity. This critical step facilitates 
knowledge transfer from the lab to practical applications.

Conclusion

In conclusion, this paper provides a comprehensive over-
view of the utilisation of deep learning in HSI for food 
quality and safety assessment. HSI, which amalgamates 
spectroscopy and computer vision, offers a swift and 

Practical Framework for Applying Deep 
Learning to Quality Analysis Using 
Hyperspectral Imagery 

In Section 4, we detail the framework of deep learning 
algorithms and highlighted studies achieving remarkable 
accuracies with advanced techniques. The subsequent 
section explores applications across various food qual-
ity domains, demonstrating deep learning’s potential in 
sensory analysis, adulteration detection, physicochemical 
property assessment, microbial contamination evalua-
tion and toxicant identification. To aid researchers, we 
present a step-by-step guideline for conducting research 
in these phases:

Step 1: Data preparation phase
Step 2: Image acquisition phase
Step 3: Manual testing phase
Step 4: Development of deep learning models
Step 5: Comparative analysis and model deployment 
phase

Data preparation phase

The creation of a high-quality dataset is imperative. This 
involves meticulous sample selection, sample inspection 
and the removal of any samples exhibiting anomalies such 
as detrimental disorders, abnormal coloration, microbial 
growth or insect damage (Nogales-Bueno et al., 2021).

Image acquisition phase

The food material under examination must be captured 
using a hyperspectral camera with a spectral range of 
900–1700 nm. During imaging, several factors require 
careful consideration, including source light intensity, 
exposure time and the distance between the food mate-
rial and the lens. If the experiment necessitates a moving 
surface, the speed of this surface becomes a crucial factor 
(Nogales-Bueno et al., 2021). Once the hyperspectral cam-
era captures the images of the food material, it generates 
a hypercube with dimensions x*y*z, where x denotes the 
number of lines in the image, y represents the number of 
columns in the image and z signifies the number of images 
captured for each sample. This hypercube subsequently 
undergoes pre-processing steps outlined in Table 1.

Manual testing phase 

The nature of the study dictates the type of manual test-
ing to be conducted. For research focused on estimating 
specific components in the food material, such as regres-
sion analysis, each imaged sample undergoes chemical 
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deep stacked sparse autoencoder.  J Appl. Remote Sens. 11 
(4):042604. https://doi.org/10.1117/1.JRS.11.042604

Al-Sarayreh, M., Reis, M.M., Yan, W. Q. and Klette, R. 2020. 
Potential of deep learning and snapshot hyperspectral imaging 
for classification of species in meat. Food Control. 117:107332. 
https://doi.org/10.1016/j.foodcont.2020.107332

Arunachalaeshwaran, V.R., Mahdi, H.F., Choudhury, T., Sarkar,  T. 
and Bhuyan, B.P. 2022. Freshness classification of hog plum 
fruit using deep learning. In  2022 International congress on 
human-computer interaction, optimization and robotic appli-
cations (HORA)  (pp. 1–6). IEEE. https://doi.org/10.1109/
HORA55278.2022.9799897

Agarwal, M., Al-Shuwaili, T., Nugaliyadde, A., Wang, P., Wong, K.W. 
and Ren, Y. 2020. Identification and diagnosis of whole body and 
fragments of Trogoderma granarium and Trogoderma vari-
abile using visible near-infrared hyperspectral imaging tech-
nique coupled with deep learning. Comp and Elect in Agri. 173. 
https://doi.org/10.1016/j.compag.2020.105438

Amodio, M.L., Capotorto, I., Chaudhry, M.M.A. and Colelli, G. 
2017. The use of hyperspectral imaging to predict the distribu-
tion of internal constituents and to classify edible fennel heads 
based on the harvest time. Comp and Elect in Agri. 134:1–10. 
https://doi.org/10.1016/j.compag.2017.01.005

Baiano, A., Terracone, C., Peri, G. and Romaniello, R. 2012. 
Application of hyperspectral imaging for prediction of physi-
co-chemical and sensory characteristics of table grapes. Comp 
and Elect in Agri. 87:142–151. https://doi.org/10.1016/j.
compag.2012.06.002

Barbin, D.F., ElMasry, G., Sun, D.W. and Allen, P. 2012. Predicting 
quality and sensory attributes of pork using near-infrared hyper-
spectral imaging. Analytica Chimica Acta. 719:30–42. https://
doi.org/10.1016/j.aca.2012.01.004

Barbin, D.F., ElMasry, G., Sun, D.W., Allen, P. and Morsy, N. 2013. 
Non-destructive assessment of microbial contamination in por-
cine meat using NIR hyperspectral imaging. Innov. Food Science 
& Emerging Technol. 17:180–191. https://doi.org/10.1016/j.
ifset.2012.11.001

Barreto, A., Cruz-Tirado, J.P., Siche, R. and Quevedo, R. 2018. 
Determination of starch content in adulterated fresh cheese 
using hyperspectral imaging. Food Bioscience. 21:14–19. 
https://doi.org/10.1016/j.fbio.2017.10.009

Benouis, M., Medus, L.D., Saban, M., Labiak, G. and Rosado-
Muñoz, A. 2020. Food tray sealing fault detection using hyper-
spectral imaging and PCANet. Elsevier. 53(2):7845–7850. 
https://doi.org/10.1016/j.ifacol.2020.12.1955

Bureau, S., Cozzolino, D. and Clark, C.J. 2019. Contributions of Fourier-
transform mid infrared (FT-MIR) spectroscopy to the study of fruit 
and vegetables: A review. Postharvest Bio. and Technol. 148:1–14. 
https://doi.org/10.1016/j.postharvbio.2018.10.003

Caporaso, N., Whitworth, M.B., Fowler, M.S. and Fisk, I.D. 2018. 
Hyperspectral imaging for non-destructive prediction of fer-
mentation index, polyphenol content and antioxidant activity 
in single cocoa beans. Food Chem. 258:343–351. https://doi.
org/10.1016/j.foodchem.2018.03.039

Chen, Y., Lin, Z., Zhao, X., Wang, G. and Gu, Y. 2014. Deep 
learning-based classification of hyperspectral data.  IEEE 

non-destructive means of evaluating the quality and 
safety of food products by simultaneously capturing sur-
face and internal information.

Our review has primarily focused on recent advance-
ments in HSI technology concerning food quality and 
safety. However, it’s worth noting that the potential of HSI 
extends far beyond this scope. To harness its full capabil-
ities, future research endeavours should explore its appli-
cation in various other facets of food quality and safety. 
By doing so, HSI has the potential to play a pivotal role 
in proactively averting food safety crises and minimising 
associated losses. Its versatility and non-invasive nature 
make it a valuable tool in ensuring the integrity and safety 
of our food supply chain. As we continue to delve into 
its possibilities, we open doors to enhanced food quality 
assessment and a safer, more secure food industry.
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