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Abstract

In the era of digitization, the integration of big data technologies has become instrumental in advancing agri-
cultural supply chain management and bolstering risk decision-making processes. Agricultural supply chains,
critical to ensuring food security and bolstering rural economies, face vulnerabilities stemming from a myriad
of internal and external elements, including natural disasters and market dynamics. Consequently, the urgency
to adopt effective risk management strategies is paramount. Contemporary studies have explored the utilization
of big data in decision-making processes specific to agricultural supply chain risks, predominantly concentrat-
ing on preliminary risk prediction and characterization. Nonetheless, there exists a shortfall in comprehensively
analyzing the intricate interplay among risk factors and establishing a holistic risk management decision-making
framework based on such analyses. This research addresses these deficiencies through two principal investigative
components. First, this research explores the analysis of risk factors and their interrelationships in the agricultural
supply chain based on a decision tree algorithm with a transition structure. This algorithm enhances decision-
makers’ understanding of risk factors and their interrelationships, and guide the implementation of effective risk
mitigation measures and the formulation of contingency plans. Subsequently, the research constructs a corre-
sponding data-driven multi-criteria decision-making method, assisting managers in balancing different risk man-
agement strategies in a volatile supply chain environment, considering costs, benefits, and feasibility to formulate
the optimal strategy. The innovation of this research lies in the development of a novel risk analysis tool based
on the transition decision tree algorithm. This is the first time that such advanced algorithms are applied to agri-
cultural supply chain risk management, filling a gap in the current research. The outcomes of this study not only
contribute to enhancing risk management practices within agricultural supply chains but also offer novel insights
and methodological tools that are applicable in research and practices across related domains.

Keywords: big data; agricultural supply chain; risk decision-making; safety management; decision tree; multi-criteria
decision-making

Introduction

In the swiftly transforming digital age, big data
technology has been recognized as a crucial catalyst
propelling advancements across various sectors (Awad
et al., 2023; Chandrasekaran et al., 2021; Chennouk et al.,
2022; Hasan et al, 2022; He et al, 2022; Kusrini
et al., 2022; Lazarevska et al., 2022; Li and Gao, 2022;

Zhang et al., 2023; Zhao et al., 2022). The agricultural
industry, quintessential for sustaining human life, relies
heavily on the efficiency and security of its supply chain.
This supply chain’s effectiveness is intrinsically connected
to food security, income generation for farmers, and
societal stability (Nguyen, 2022; Xing and Zhao, 2013). It
faces a myriad of risks, primarily because of the unpre-
dictable nature of environmental conditions and market
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demands, encompassing threats, such as meteorological
disasters, the spread of epidemics, and market volatili-
ties. The management and decision-making processes
pertaining to these risks play a pivotal role in ensuring
the safety of agricultural production and strengthening
the resilience of the supply chain. In this context, big data
technology emerges as a transformative tool, providing
new insights and approaches (Li et al., 2023; Ye, 2021;
Zhai, 2023).

The burgeoning development of information technology
has amplified the importance of big data in the realms of
risk decision-making and safety management within the
agricultural supply chains (Chen et al., 2022; Dai and Liu,
2020; Wang and Wu, 2022). The comprehensive gath-
ering, processing, and analytical examination of large-
scale data empower decision-makers to more precisely
pinpoint potential risks and formulate more efficacious
strategies for risk mitigation (Land and Siraj, 2021; Liu,
2022; Lu et al., 2022; Zhang et al., 2022). Such strategic
advancements not only optimize resource distribution
and augment the competitive edge of agricultural prod-
ucts but also enhance the capacity to manage unforeseen
contingencies, thereby safeguarding the continuity and
security of agricultural supply chain (Cao et al., 2022;
Chen and Su, 2022; Cui and Gao, 2022; Hui, 2021; Lin
and Hu, 2022; Nagendra et al., 2022; Xu et al., 2022).

While existing studies have ventured into the realm of big
data within agricultural supply chains, their focus pre-
dominantly has been on preliminary risk prediction and
descriptive analysis. A notable gap exists in the thorough
examination of risk factors and their interconnected
dynamics as well as in the development of comprehen-
sive risk management decision support rooted in such
analysis (Ge et al., 2023; Liu et al., 2022). Furthermore,
prevalent methodologies often overlook the intricacies of
supply chain management and the multifaceted nature of
decision-making, thereby impacting the efficacy and pre-
cision of decision support systems in real-world settings
(Krska et al., 2022; Modupalli et al., 2021).

Existing agricultural risk management and safety mod-
els usually cover multiple aspects, such as production
risk, market risk, financial risk, technological risk, and
natural disasters. They aim to mitigate the uncertainties
and potential losses in agricultural production through
diversified crop planting, insurance, futures contracts,
disaster relief plans, and government subsidies (Le and
Chu,, 2023; Yu and Liang, 2022). However, the limita-
tions of these models often lie in their difficulty in pre-
cisely predicting and quantifying risks brought about by
environmental and climate changes. They have limited
responsiveness to global market fluctuations and may not
cover all small-scale agricultural producers, especially in
resource-limited developing countries. Moreover, these

models typically require extensive data support, and
there may be constraints in data collection and process-
ing, leading to inaccuracies in risk assessment and man-
agement strategies.

This research is bifurcated into two primary segments.
Initially, it undertakes a detailed investigation of risk
factors within agricultural supply chains and their interre-
lations, utilizing a decision tree algorithm enhanced with
transition structures. This technique equips decision-
makers with the tools for intuitive risk identification
and mapping of interrelationships, thereby facilitating
the crafting of more robust risk mitigation strategies
and emergency response plans. Subsequently, the study
embraces a data-driven multi-criteria decision-making
approach. This approach is designed to assist managers
in navigating the complexities of decision environments
within agricultural supply chains, weighing the intrica-
cies of costs, benefits, and feasibility to develop optimal
management policies. Through a comprehensive explo-
ration of these research components, this study not only
broadens the scope of big data application in agricultural
supply chain risk decision-making and safety manage-
ment but also endows decision-makers with a more sci-
entific and systematic tool for decision support, imbued
with significant research merit and practical relevance.

The novelty of this research is in the direct application
of advanced data analysis algorithms to risk assessment
and management in the agricultural supply chain, par-
ticularly the introduction of decision tree algorithms
with transition structures as the core tool, which was not
common in the previous research. This approach breaks
through traditional analysis models and can delve deeply
into complex interactions between risk factors, providing
new perspectives for risk management in critical states.
In addition, by integrating multi-criteria decision-mak-
ing methods, this study further enhances the compre-
hensiveness of strategy formulation and the ability to
cope with complexity. Such a comprehensive analysis
and decision-making framework is novel in the current
literature.

The research tools in this paper, in terms of practical
application, mainly provide scientific and precise sup-
port for risk management in agricultural supply chain.
For instance, in the food industry, the decision tree algo-
rithms with transition structures can predict and man-
age potential risks related to food production and supply,
such as yield fluctuations, food contamination, or sup-
ply interruptions. In stages such as the harvesting, stor-
ing, and packaging of crops, these advanced algorithms
can help managers assess risks due to weather, pests, or
changes in market demands, and accordingly formulate
optimized operational plans and response strategies to
reduce losses.
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Their advantage lies in the ability to process large
amounts of data and extract key information, aiding in
identifying and quantifying risk points across the entire
supply chain. Furthermore, the integration of multi-
criteria decision-making methods with cost, benefit, and
feasibility analysis ensures that the formulated risk man-
agement strategies are both economical and practical.
However, the application of these research tools also has
certain limitations. First, they have a strong dependency
on high-quality and comprehensive data, and challenges
in data collection and processing may limit their practi-
cal scope. Second, the complexity of the algorithms may
require specific expertise, which could affect the usability
and popularity among users. Finally, the adaptability of
these tools in different regions and cultural contexts may
also pose challenges and require localization adjustments
and testing prior to implementation.

Analysis of Risk Factors and Their
Interrelationships in Agricultural Supply Chains

The agricultural supply chain exhibits complex interre-
lations among risk factors. For instance, climate change
can intensify the frequency and severity of pest outbreaks,
directly impacting crop yield and quality. The uncertainty
in yield and quality can affect market prices, thereby influ-
encing farmers’ planting decisions and stability of the sup-
ply chain. Moreover, while technological advancements
can mitigate some impacts of natural risks, they may also
introduce new technological risks. For example, reliance
on novel storage technologies could disrupt the entire
supply chain in the event of malfunctions. Risks affect not
just a single segment but can also propagate and amplify
throughout the supply chain. For instance, a shortage of
primary agricultural products may cause stagnation in
the processing stage, subsequently affecting supply in the
retail segment and availability to end consumers. This
chain reaction is particularly evident in the food chain, as
the production, processing, and distribution of food typi-
cally involve multiple interdependent stages.

Therefore, this paper advocates for a systematic perspec-
tive in the risk management of agricultural supply chains.
By thoroughly analyzing the interrelationships among
risk factors and adopting comprehensive management
measures, the risks in each segment can be mitigated,
and the resilience of the entire chain can be optimized.
This involves the continuity of risk assessment, transpar-
ency across all aspects of the supply chain, timely shar-
ing of information, and coordinated collaboration among
multiple stakeholders.

The risk management of agricultural supply chains was
addressed in this work by implementing a decision tree
algorithm that incorporates transition structures. This

approach incorporates transition structures into the con-
ventional decision tree analysis, enabling test samples
to probabilistically transition between decision paths.
This approach surpasses the constraints of singular path
assessments, allowing the decision-making process to
integrate information from several paths, thereby reflect-
ing a more comprehensive probability distribution. This
approach effectively captures the interplay of nonlinear,
complex, and constantly evolving risk elements in the
supply chain, offering a reliable way for assessing and
predicting risks under unpredictable circumstances.
Figure 1 displays a schematic representation of a decision
tree. Figure 1 contains a decision tree structure, featuring
a hierarchical arrangement of nodes and leaves. The deci-
sion tree starts from the topmost root node (labeled as 1),
with two values on it: 40 and 30. From the root node, two
child nodes branch out, labeled 2 and 7, each respectively
annotated with a pair of values: 22:18 and 13:17. This
branching process continues, with some nodes further
branching down into new nodes, until reaching the bot-
tom leaf nodes (labeled as 4, 6, 9, 11, 12, and 13), which
also bear a set of values. Arrows indicate the direction
of decision-making, and the number at each node rep-
resents the decision or statistical value at that point. The
entire structure reflects a decision-making process from
root to leaf, potentially representing different steps and
outcomes in data classification.

The fundamental concept behind utilizing the decision
tree algorithm with transition structures for examining
risk factors in agricultural supply chains and their inter-
connections entails merging the decision tree model with
the theory of Hidden Markov Model (HMM) (Gueham
and Merazka, 2024; Nagahama et al., 2014). This results
in a composite model that can effectively capture tempo-
ral dependencies and implicit states in sequential data.
Each node in this approach serves as both decision con-
dition or output and a hidden state in HMM. The hidden
states are linked by a transition matrix, which represents
the probabilities of transitioning between different risk
variables. The transition structure enables decision
routes to stochastically transition across nodes, capturing
the unpredictable and dynamic nature of risk variables in
the agricultural supply chain environment. The emission
matrix quantifies the likelihood of considering a particu-
lar risk impact for each concealed state. It represents the
probability distribution of different risk events occurring
based on the specific state of a supply chain. By applying
the technique, the probability distribution of test sam-
ples across all nodes can be derived. Then the expected
values of these distributions are utilized to make predic-
tions about the links between risk variables and impacts.
The expected values represent the overall probability of
risk happening across the whole supply chain. Therefore,
decision-makers can acquire understanding not only of
individual risk forecasts but also of the combinations
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Figure 1. Schematic diagram of a decision tree.

and interconnections of risks across several conceivable
routes, thereby developing more comprehensive and effi-
cient risk management strategies.

Given that the algorithm’s initial state is denoted as 7 =
(1,0,...,0),.,, the emission matrix as ¥ = (0,,0,,... ,0,),
and the prediction at decision tree depth u as PR, the
probability distribution of samples in nodes after u-step
transitions from the root node 1 is represented by TO". A
formula is presented for calculation:

PR =1O"Y. 1)

To facilitate clarity in explanation, the following defini-
tions are presented.

The transition matrix is a square matrix with dimensions
equal to the square of the number of hidden states. The
total of the probabilities in each row is equal to one, indi-
cating the probability distribution of transitioning from
one state to different states. The matrix in question is a
fundamental notion in HMM, and precisely characterizes
the probability of transitioning between any two hidden
states within a decision tree. Within the framework of
agricultural supply networks, this refers to the likelihood
of shifting from one particular risk factor to another. The
transition matrix of a sample under the given decision
tree S is expressed as follows:

v
0=[ou]yy ’Zk:lo“k -~10R0, @)

where O, represents the transition probability from
node u to node k, and V represents the total number of
decision tree nodes.

Within the decision tree, target nodes correspond to leaf
nodes. These leaf nodes signify the outputs of a decision
tree, specifically the ultimate risk assessment outcomes.
Within the decision tree framework, the target nodes
can be likened to the final states in HMM, as they offer
precise insights into the risk states of the supply chain.
Non-target nodes, on the other hand, refer to the internal
nodes in the decision tree that are not leaf nodes. In the
context of HMM, these intermediate hidden states serve
as representations of intermediate judgments or transi-
tions that occur before reaching the final risk assessment.
These nodes direct samples from the current node to the
next node, depending on branching circumstances, or
simplify transitions between states. For a given node u, if
a sample a is assigned to a certain child node k according
to a rule, then k is designated as the target node for an
inside u, while the remaining child nodes k’ are classified
as non-target nodes.

The allocation of sample data to different child nodes in
a given decision tree is determined by the division rules
of non-leaf nodes, which are based on certain traits or
features. Every internal node is linked to a decision rule,
which might be either a threshold or a set. Once a sam-
ple reaches a non-leaf node, it is assigned to the appro-
priate child node according to a predetermined decision
rule. If the attribute of the sample meets the criteria of
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the rule, it will go to the appropriate child node. If not,
it may transition to a node on a different path based on
the transition structure. This shift occurs by utilizing the
probabilities in the transition matrix, enabling the algo-
rithm to investigate unconventional paths of risk states
and detect more intricate risk patterns. When dividing
the sample a into the target node k at the non-leaf node u
in the decision tree S, the equation IN, = (o, 0 ,.) holds
if the transition probability is represented by o . Node
u is regarded as the sibling node of node k; meeting the
condition o+ ¥, 0, = 1.

Constructing the transition probabilities between nodes
is a crucial stage in the decision tree algorithm for agri-
cultural supply chain risk analysis, which involves tran-
sition structures. This entails computing the transition
probabilities to both target and non-target nodes and
converting these probabilities from a fixed form to a
probabilistic distance form. The subsequent information
outlines the construction process.

When constructing the decision tree, the initial step is
to define the probable transition relationships between
each node. This is derived from the comprehension of
risk factors and examination of the past data, identify-
ing the nodes that are probable to undergo a transition.
The base probability of transitioning to other nodes is
determined for each individual node. One can acquire
this information by either analyzing the frequency of
transitions between risk events in historical data or
by utilizing estimations from experts with specialized
knowledge. Fuzziness and randomness are incorporated
into decision-making scenarios to account for inherent
uncertainties. The transition probabilities at the base
level are modified using fuzzy logic or probabilistic dis-
tributions to represent accurately the uncertainties and
intricacies of decision-making in real-world scenarios.
It’s assumed that sample a is divided into the target node
k at a non-leaf node u, the function involving a[x ] and S
are represented as o ,, and the number of child nodes of
u is represented as v. To compute the transition proba-
bilities from u to k and k’, the following method is used:

Ouk = h(a[xu],S),O <oy S 1, (3)
1-o0
Oukr :—Uk' (4)
v—1

The initial transition probabilities are commonly dis-
played in a constant format, which represents the ideal
conditions based on specific assumptions. Nevertheless,
the actual situation in agricultural supply chains tends as
more intricate, requiring a conversion of these consistent
probabilities into formats that encapsulate uncertainty.
By applying the concept of probabilistic distance, it is
possible to convert constant transition probabilities into

probabilistic distributions. This entails the introduction
of a probability density function for each transition prob-
ability. It is commonly believed that these probabilities
follow a normal distribution or another suitable distribu-
tion. The parameters of these distributions are given by
constant transition probabilities and the related risk data.
Because of this transformation, each transition proba-
bility is no longer represented by a single value but by a
probabilistic distribution. This allows for a more accurate
representation of uncertainties and variabilities that exist
in the real world. The equation that represents the con-
stant form of O, is as follows:

Ouk:ﬂ’OSﬂSI' (5)

It’s assumed that the cumulative distribution function of
the x th feature utilized at node u is denoted by ®_, the
base transition probability by a hyperparameter B, and
the distance between the feature value a[x ] of the sam-
ple and the node threshold s by |® (a[x |-® (s )|. The
expression for O in its probabilistic distance version is
given by equation (6).

ow = +(1-5)|0, (alx,) -0, (5,).0< <1 (6)

Utilizing the decision tree algorithm with transition
structures to analyze risk factors and their effects in
agricultural supply chains offers notable benefits by
describing the transition probabilities between nodes in
probabilistic distance forms. First and foremost, this form
presents a more precise representation of uncertainties
and variations of risk factors in real-life scenarios, as it
offers a probability distribution instead of a single tran-
sition probability number. This method encompasses the
full spectrum of potential risk events and the attributes
of their distribution. Furthermore, this approach enables
decision-makers to comprehend visually a more intricate
risk scenario, facilitating the assessment and comparison
of anticipated results across various risk management
tactics.

Incorporating transition probabilities in a probabilistic
distribution form allows for the integration of informa-
tion from various data sources, such as historical data,
real-time data, and expert opinions. This thorough exam-
ination enhances the precision of risk forecasts and the
dependability of risk mitigation choices. In essence, this
establishes a strong theoretical basis for constructing
a versatile and responsive system for managing risks in
the agricultural supply chain. This system can effectively
handle existing identified hazards as well as unforeseen
risks that may arise in the future. For example, let a ~
V(0,1). The values a,, a,, and a, are respectively equal to
0, 1, and 2. By calculating the distances DI(aa,,) and
Dl(a,a,), it is intuitively believed that DI(a ,a,,) is bigger
than DI(a,,a,). This is because in a finite sample set T that
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follows a specified distribution, the number of elements
in the range {a|a <a<a,, a€T} is greater than the number
of elements in the range {a|a, < a < a,, a€T}. Nevertheless,
the distance between DI(a ,a,) and DI(a,a,) is equal to
1, which deviates from the expected norm. By employing
probabilistic distance, the value of DI(a,,a,,) is approxi-
mately 0.24 and the value of DI(a,a,) is around 0.14,
thereby resolving this matter. In order to utilize probabi-
listic distance, it is necessary to possess knowledge of the
distribution function of variable x. When node u is a leaf
node, the following is observed:

Lu=k
Ouk = 0,else *

Trade-Offs in Data-Driven Decision-Making for
Managing Rural Supply Chain Risks

(7)

This study employs a data-driven approach to evalu-
ate and prioritize various options for managing risks
in rural supply chains. Managers can use this tech-
nique to make decisions by considering various inter-
connected factors, such as cost, benefits, risk levels,
resource availability, and socioeconomic implications.

Classification Nearest
performance neighborhood
Y
Selection
criteria

The data-driven method utilizes advanced technolo-
gies, such as machine learning and statistical analysis, to
extract insights from historical data (Asfaw et al., 2023;
Jiang et al., 2023). These insights are then integrated into
a multi-criteria decision-making framework after iden-
tifying patterns and trends. This methodology facilitates
quantitative analysis, enhancing the transparency of the
decision-making process and effectively illustrating the
performance of alternative decision options across sev-
eral criteria and their influence on the ultimate results of
risk management. Moreover, the data-driven multi-cri-
teria decision-making method facilitates the incorpora-
tion of real-time data, hence improving the promptness
and flexibility of decisions. The adaptability and agility
of this approach enables managers to modify tactics in
response to shifting market and environmental circum-
stances, guaranteeing the stability and longevity of the
agricultural supply chain, thus optimizing economic and
social worth. Figure 2 depicts the optimization process
of decision-making for managing risks in rural supply
chain. This technique is based on the dynamic selection
of various classifiers.

The purpose of developing an optimization model for
decision-making in rural supply chain risk management

.- Multiple base classifier

Training set Test set

Test sample

A

( Prediction results

\

W

J

Figure 2. Optimization process of rural supply chain risk management decision-making based on dynamic selection of multi-

ple classifiers.
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is to offer managers a systematic approach to evalu-
ate and select various solutions for managing risks. The
underlying premise of this strategy revolves around two
essential steps: First, the process involves using base clas-
sifiers to predict the evaluation values of a gold standard.
This is done by training validated classifiers on histori-
cal data. The goal is to predict the performance of each
risk management strategy based on criteria, such as cost
efficiency, degree of risk reduction, and execution feasi-
bility. The prediction findings act as benchmark assess-
ment values, offering foundational data for the future
optimization model. Furthermore, the process of deter-
mining criterion weights seeks to discover the optimal
set of weights that accurately represents the correlation
between risk management techniques and gold standard
evaluation outcomes. The optimization model evaluates
the relative relevance of each criterion by analyzing the
influence of each criterion on the gold standard assess-
ment results. This is commonly accomplished using
optimization algorithms, such as genetic algorithms or
gradient descent methods, with the objective of minimiz-
ing the discrepancy between predictive evaluation val-
ues and the gold standard. In the end, the model utilizes
the acquired optimal criterion weights to combine the
assessment values of each strategy across several criteria,
resulting in a composite evaluation score. This score can
be used as the benchmark evaluation outcome for rec-
ommending strategies. These outcomes not only demon-
strate the comparative advantages and disadvantages of
various risk management strategies when evaluated using
many criteria but also offer concrete and measurable
evidence for decision-makers. This enhances the trans-
parency, rationality, and feasibility of risk management

Decision-
makers

decisions. Figure 3 illustrates the procedure for generat-
ing a base classifier.

When making decisions about managing risks in rural
supply chains, managers must make optimal choices con-
sidering several factors that impact risk management,
including cost, time, resource utilization, environmental
consequences, and social accountability. The assessment
of each criterion is represented by an interval number,
which indicates the range of uncertainty in evaluation
results. This interval number represents the upper and
lower limits of the best and worst potential outcomes. In
the context of managing risks in rural supply chain, it is
presumed that there are V different techniques for man-
aging these risks, denoted as 4 (v = 1,..., V). The gold stan-
dard evaluation values for these V techniques are derived
by experts in the relevant field who have chosen M deci-
sion criteria, denoted as {r, .., r,,). At first, experts must
assign specific evaluation values to these V risk manage-
ment strategies based on M criteria. The evaluation vec-
tor of the assessed rural supply chain risk management
strategy a_ under M criteria is denoted as A7. The evalu-
ation value of interval number a" under choice criterion
r (u=1,.., M) is represented as A= [A—*V‘u, A—;‘u].

The responsibility of decision-makers is to discern the
most advantageous approach from all the available pos-
sibilities, taking into account all relevant criteria. Hence,
it is necessary to devise a technique to synthesize or com-
pare various interval numbers in order to ascertain the
combined interval number that signifies the most ideal
performance of a strategy. Typically, this process entails
the comparison and ranking of interval numbers as well

Objective evaluation criteria

: Criterion evaluation
: values

Gold standard
evaluation values

Collection of historical data on rural supply
chain risk management strategy evaluations

Multiple base classifiers

| Training dataset

Figure 3. Process of generating a base classifier.

]
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as the determination of the most favorable criterion
weights. The process of determining criterion weights
can be acquired through a data-driven method, which
quantifies the relative significance of various criteria in
the ultimate decision-making process. First, a collec-
tion of historical risk management strategies with estab-
lished evaluation values, denoted by {a_}" _, is obtained.
The evaluation values under M criteria are denoted as
{A_}t _, while the matching gold standard evaluation val-
ues are denoted as {O_}: . These values together form
a training set represented by {(4_, O_)}: . The evalua-
tion value of the historical risk management strategy a_
is represented by the gold standard O_, which is defined
as the interval [O_, O*]. The multi-criteria decision
issue under consideration involves Y types of evalua-
tion values, denoted as {O"Y}‘y{:1 = {[O*Y’,O*‘/*]}’;Zl, where
Ome{O*‘/}‘;z1

A dynamic classifier selection approach is given as a solu-
tion to the described problem. This method does not
depend on a fixed K value but instead selects classifiers
dynamically by considering data similarity and the pre-
dictive quality of base classifiers. The set of base classifi-
ers derived from the decision evaluation set {(A_,O_)}* |
of historical risk management strategies {a_} = is
denoted asz = {z, ..., z)).

The study initially establishes the concept of individual
evaluation vector similarity, which pertains to the extent
of similarity between the evaluation vector of a new strat-
egy and the evaluation vectors of past strategies. The
degree of similarity can be measured by computing the
distance between vectors, such as with Euclidean dis-
tance, cosine similarity, or other comparable metrics.
The individual evaluation vector similarity is employed to
locate instances in the historical data that closely resem-
ble the new approach. These instances are then utilized
to forecast the gold standard evaluation value of the new
method. The training dataset, denoted as {(A_,O_)}* _,
and the rural supply chain risk management strategy to
be assessed, denoted as a_, could be used to represent
the individual evaluation vector of a' under M criteria,
which is denoted as Aj = {A] M . If z(A ) and z(A))
are the gold standard evaluation predictions received by
a_ and A- respectively from z(i = 1,.., I), and if z(A )
is equal to z,(A- ), then z determines that a_and A are
similar.

The predictive performance of base classifiers pertains to
the precision and dependability of classifiers in assessing
risk management techniques on past datasets. Accurate
prediction entails classifiers being able to effectively
assess the gold standard assessment values of risk man-
agement systems. Consider past risk management prac-
tices {a' _}V that differ from the rural supply chain risk

(v,m)

management strategy to be assessed A7, where L! denotes

the number of items in this set. The evaluation vector
and related gold standard evaluation values of risk man-
agement strategy a' - are represented by a'  -and O,
respectively. Next, the equations z Al = zl A—V), where
{(sz,m))’(oiv,m))}Lnlr‘xl LS (A, O} _ and L! < = L, are estab-
lished. The predictive quality of z_is believed to increase
as the degree of similarity between and a-

increases.

{( vm))} n"l’ 1

It’s assumed that historical risk management strategies
are denoted as a_ (where m ranges from 1 to L), and
the rural supply chain risk management strategy for
evaluation is denoted as a-. The related gold standard
prediction results for the historical strategies are rep-
resented as z(A ) (where m ranges from 1 to L), and
the gold standard prediction result for the strategy for
evaluation is represented as z(A-). It's assumed that
the historical risk management strategies, which are
comparable to a- determined by z(A- ), are represented
by a', . The individual evaluation values of risk man-
agement strategies, A' ., and A- under the criterion
r,, are represented by A, and A- , respectively.
The calculation f(Ai oA-, ) represents the distance
between the 1nterval numbers Al e and A- . The pre-
dictive quality of z, can be determlned using the follow-
ing equation:

m=1

M ) —
L A 1y u
‘v Z = f( (V’m)’u ’ )
§ u=1

1
W, =1 0 . (8
The predictive accuracy of basic classifiers pertains to the
degree of agreement between the classifier’s predictions
on a given evaluation vector and the true evaluation val-
ues determined as the gold standard. Predictive accuracy
is a crucial measure in the dynamic selection process,
employed to ascertain which classifiers are more inclined
to yield precise outcomes when forecasting the gold stan-
dard evaluation values of novel techniques. Classifiers
that demonstrate a high level of accuracy in making pre-
dictions are given greater importance by assigning them
larger weights. Let {(AY_,O™)}"Y _ represent the decision
dataset of historical risk management strategies with
gold standard evaluation values O~ in the training set. In
this dataset, L represents the total number of strategies,
and L, + L, +..+ L, = L is established. The evaluation vec-
tor sets for each type of risk management strategy under
M criteria are denoted as {AY_}'¥_(y = 1,..., Y). These sets
are then inputted into z to obtain the prediction result
set for different types of historical risk management
strategies, represented as {z(AY )Y . The O~ distance
between interval number z(AY ) is denoted as f(z(AY
O™, while the prediction accuracy of z for the yth
type of historical risk management strategy is denoted as
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Xiy( y = 1, .., Y). The equation below presents the calcu-
lating formula for z's predicted accuracy across several
risk management strategies:

. ZLmyzlf(zi(Ag),()‘/)

Ly

X} = (y=1..Y). (9

To anticipate the gold standard evaluation value of the
rural supply chain risk management strategy to be eval-
uated a-, the 2" selection can be determined by combin-
ing the above-mentioned two equations:

T = ARGMAX {i|w§ +x;,i=1,.,.,1}. (10)

The acquisition of criterion weights is a fundamental
component in the data-driven multi-criteria decision-
making method. The objective is to ascertain the com-
parative significance of various risk management criteria
and thereafter assess novel techniques in accordance
with this evaluation. The initial step involves defining
the similarity between individual assessment values and
the expected gold standard evaluation outcomes, which
is used to analyze their similarity. This is accomplished
by computing the disparities between the evaluations of
criteria and the established level of excellence.

It’s assumed that the historical risk management strategies
identical to a-, are denoted as a; . These strategies have
individual evaluation values on criterion r, expressed
as aj . The gold standard evaluation prediction

results generated from z), are represented as zj(A7] ).

/ ) /i v,m)
The similarity between a-, and z.(A7  for a; . can
u /i (v,m)
be defined as

i i
(v,m), (vm)

TUL, )0 = l—f(A(Tv,m)_u,zV;(A(Tv,m))). (11)

The function f(a?i’m)‘u,z"/i(A‘(‘v‘m)) represents the distance
between A;i‘m) and z" /i(A;i‘m)). To calculate the criterion
weights, the decision variable q*  ~and the values of
TUL(‘V"m),u (u=1,.., M) are used.

- TUL!

i v,m),u

Uy = %,(u =1,..M). (12
w1 DL ()

Letq’, (u=1,.. M)be aset of the most representative cri-
teria weights. Next, a mathematical model may be created
to calculate the values of q | (where u ranges from 1 to M)
based on the given values of qz;fn ,u (Where u ranges from 1
to M and m ranges from 1 to L7) in the following manner:

2

LUVZnE:lZil(q(T"’m)v“ _q(T\;,m),u) ) (13)

M 1=
s.t. Zudq(v,m),u =1, (14)

i*

0<q <1. (15)

(v,m),u

The optimization model has a distinct optimal solution.

L3 LT
—i —i _ Zm:l q(v,m),l Zm:l q(v,m),M
Qv,1r-o9v,M | = LT yeeor —

\4

(16)

After establishing the criterion weights, the evaluation
values {A_,..,A],/} for the rural supply chain risk man-
agement strategy a’ can be calculated across M criteria.
This is done by using {g-7 }™ = obtained from the afore-
v,u’ u=1

mentioned process. The result is an interpretable gold
standard evaluation value, denoted as ¥™_ q-7! xA . This
process entails assigning weights to the evaluation find-
ings of each criterion based on their importance in order
to calculate a composite evaluation value that considers
all relevant criteria.

Ultimately, the composite evaluation value must be con-
verted into a format that enables effective communica-
tion with decision-makers and can be readily utilized in
the decision-making process. For example, the composite
evaluation value can be transformed into a classification,
indicating high, medium, or low risk. It can also be con-
verted into a numerical score or probability value, allow-
ing decision-makers to comprehend easily the amount
of risk associated with each option. The transformation
performed to X, w-* *X-¥M g *A7 , resulting in

ni “niT u=

O, assumes that M q-7i *A- contains Y distinct types.
vV u=1 vu T v

The function f(O~%,ZM q-7 *A_ ) represents the distance

between the interval number O~ and M q-7 *A

v,u vu’

6, =07,

M - —_
IF = ARGMIN {y | f(c”)y, > B -Av,uj,y = 1,...,Y}.
u=
17)

Figure 4 depicts the decision-making trade-off process
for managing risk in the rural supply chain using the
suggested method. This text provides a detailed expla-
nation of the procedure that relies on the data-driven
multi-criteria decision-making method for managing
trade-offs in decision-making for rural supply chain risk
management.

Step 1. Expert examination: Decision-makers utilize their
profound comprehension and wide expertise of the rural
supply chain environment to evaluate newly suggested
risk management techniques. The assessment criteria
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Figure 4. Decision-making trade-off process for managing rural supply chain risks based on the proposed method.

encompass cost-effectiveness of the approach, antici-
pated risk reduction effects, feasibility of execution, and
social and environmental repercussions. The assessment
result of each criterion is quantified into an individual
evaluation value, which can be either quantitative figures
or qualitative descriptions. These evaluation values serve
as initial data for further analysis.

Step 2. Construction of the training set: This entails gath-
ering historical data, which include implemented risk
management techniques, their evaluation values based
on different criteria, and the related gold standard evalu-
ation values. The objective is to create an extensive data-
set that serves as the basis for training machine learning
models to capture accurately the connections and inter-
actions between different criteria.

Step 3. Construction of the base classifier set: In this stage,
a sequence of fundamental classifiers is learned using the
previously specified training set. Every classifier utilizes
a distinct algorithm to enhance resilience against diverse
data types and risk patterns. The goal is to develop a set

of predictive models with varied attributes and capabili-
ties for dynamic selection in following stages.

Step 4. Prediction evaluation using gold standard: After
acquiring the collection of basic classifiers, the criterion
evaluation vectors of the strategies being assessed are fed
into these classifiers. The classifiers utilize the acquired
knowledge from the training set to forecast the prospec-
tive gold standard assessment values of novel strategies.
This technique entails converting the evaluation values
provided by experts into a collection of features that can
be analyzed by classifiers. These features are then utilized
to forecast the overall efficacy of the tactics.

Step 5. Determining the nearest neighborhood: The objec-
tive of this stage is to discover past risk management
techniques that closely resemble the strategy being eval-
uated based on the evaluation criteria vectors. The result
of this stage is a subset consisting of historical strategy
cases that closely resemble the examined strategy in
terms of their characteristics and are deemed as valuable
references for decision-making.
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Step 6. Evaluation of classifier prediction accuracy: This
entails evaluating the level of concordance between the
predictions made by the basic classifier on past cases
within the closest proximity and the benchmark evalua-
tion values.

Step 7. Partitioning the training set: In order to improve
the precision and applicability of forecasts, the training
dataset is separated into smaller groups based on the spe-
cific type or attributes of the approach. The categoriza-
tion can be determined by variables, such as the level of
risk associated with the approach, the scope of its execu-
tion, and the expected influence it would have.

Step 8. Acquiring the prediction result set: The criterion
evaluation vectors of various historical risk management
procedures are inputted into each base classifier, based
on the subset division indicated before. The base classifi-
ers produce prediction result sets for each subgroup, pro-
viding a first assessment of the potential gold standard
evaluation values for various risk management strategies.
The result sets are heterogeneous due to the incorpora-
tion of several base classifiers and types of risk manage-
ment procedures.

Step 9. Calculating the accuracy of classifier’s predictions:
During this stage, the precision of each individual base
classifier’s predictions is evaluated. In addition, macro
averaging or micro averaging can be employed to evalu-
ate completely all categories in multi-class problems.

Step 10. Strategic forecasting determination of accuracy:
The prediction accuracy of each base classifier for the
gold standard evaluation values of the evaluated method
is examined based on the accuracy gained in the previ-
ous phase. This process entails inserting the evaluation
vector of the technique being evaluated into each base
classifier and comparing its output to the gold standard
evaluation values of similar cases in historical data to
assess consistency.

Step 11. Selection of the most effective base classifier: After
evaluating the predicted accuracy of each base classifier,
the subsequent task is to select the most appropriate base
classifier for the present risk management approach. The
selection criteria are not exclusively reliant on accuracy
but may also take into account other elements, such as
the model’s stability, interpretability, and computing cost.
The selection of a base classifier that is most suitable
for the given application scenario is determined by com-
paring these characteristics.

Step 12. Obtaining similar strategy and evaluation vec-
tors. By utilizing the chosen optimal base classifier,
comparable historical risk management methods and
their criterion evaluation vectors to the strategy being

evaluated are acquired. This stage entails examining the
prediction outcomes of the base classifier in order to
determine the previous cases that bear the closest resem-
blance to the new method.

Step 13. Calculation of similarity: The similarity is calcu-
lated between the individual evaluation values of the his-
torical risk management strategies, which are similar to
the assessed strategy across each criterion, and the gold
standard evaluation values predicted by the base classifier.

Step 14. Calculation of criterion weights: This step tries
to calculate the weights for different criteria based on the
results of the similarity calculation in the previous step.

Step 15. Calculation of the most efficient solution: In this
stage, the optimization model is solved by utilizing the
calculated criterion weights from the previous steps. The
optimization model can be constructed by defining a set
of goal functions and constraints, which may include
minimizing risk and maximizing benefits. The ideal solu-
tion offers decision-makers a comprehensive evaluation
of the success of the new strategy, taking into account all
criteria and their respective weights.

Step 16. Recommendation for gold standard evaluation:
Ultimately, the optimization model produces a gold
standard evaluation suggestion for the risk management
approach based on the optimal solution. The advice is
transformed into comprehensible decision support infor-
mation, such as risk ratings, strategy priorities, or imple-
mentation ideas. This step involves the visualization of
the recommendation outcomes, allowing decision-mak-
ers to gain a clear and intuitive understanding of the
potential advantages and disadvantages of each option.

Experimental Results and Analysis

There are actual cases where agricultural produc-
ers in the Midwest of the United States face risks from
extreme weather events, and in certain regions of Africa,
crop yields are unstable due to drought and pestilence.
Scholars have used decision tree algorithms to identify
key climatic variables affecting harvests (such as pre-
cipitation, temperature fluctuations, etc.) and to pre-
dict harvest risks based on these. However, in practical
applications, the effectiveness of these tools and meth-
ods largely depends on the quality and completeness of
data, the cooperation of relevant stakeholders, and the
decision-makers’ understanding and acceptance of the
decision models. Moreover, while these tools can help
identify and mitigate risks, they cannot eliminate them
entirely. Therefore, in practice, it’s essential to combine
these tools with experience and real-time information for
flexible adjustment.
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Table 1 provides necessary data to make comparative
analysis of the accuracy and Area under the Curve (AUC)
values of several methods on nine real datasets. The fur-
ther examination and deductions are made as follows:

First, it is evident that the algorithm suggested in this
study demonstrates superior accuracy across all data-
sets (B1-B9), compared to the other four algorithms,
namely C4.5, Classification and Regression Tree (CART),
Random Forest (RF), and Gradient Boosting Decision
Tree (GBDT). The suggested method consistently
achieves a higher AUC value, compared to the existing
algorithms, suggesting its ability to maintain a reduced
false positive rate while achieving a higher true positive
rate. The subsequent inferences can be derived: The sug-
gested technique consistently outperforms the other four
algorithms, not only in terms of accuracy but also in AUC
performance, across nine real datasets. Improvements
in accuracy and AUC values indicate that the suggested
method has enhanced its predicted accuracy and overall
effectiveness as a classifier. Increase in AUC values indi-
cates that the suggested algorithm possesses enhanced
discriminatory power among various categories, which
is particularly crucial in domains that prioritize risk
assessment.

Figure 5 provides an opportunity to analyze the influ-
ence of decision tree depth on accuracy (ACC) and AUC
values of various methods. For all algorithms, when the
depth of the decision tree increases, the accuracy of
C4.5, CART, and GBDT improves initially and eventu-
ally reaches a point of stability or mild fall. This suggests
that as the complexity of the model increases, its abil-
ity to fit the training data improves, but there is also a
risk of overfitting. The algorithm presented in this study
demonstrates a consistent improvement in accuracy as

the depth increases, reaching its highest point at a depth
of 5, and subsequently exhibiting minor fluctuations. The
proposed algorithm has superior accuracy, compared to
previous algorithms across all depths, particularly exhib-
iting notable advantages at depths of 5 and beyond.

Concerning the AUC values, as the depth increases,
all algorithms demonstrate a positive trend in AUC.
However, the rate of increase eventually diminishes, and
certain algorithms discover a decline in AUC after reach-
ing a specific depth, possibly because of overfitting. The
AUC value of RF algorithm demonstrates a deceleration
in growth after reaching a depth of 6, displaying a pattern
similar to ACC. Conversely, the AUC value of the GBDT
remains very consistent even when the depth increases
to 5, indicating strong stability. The suggested approach
exhibits an increasing AUC value with depth, surpassing
or matching the AUC values of the previous algorithms
at all depths. The suggested approach consistently main-
tains a high AUC value, especially at depths of 5 and
above, indicating exceptional classification ability.

The suggested approach outperforms or matches the
accuracy and AUC values of other reference algorithms at
different depths, demonstrating its efficacy and superior-
ity. At a depth of 5, the suggested algorithm achieves its
highest level of accuracy and AUC values, demonstrating
a favorable equilibrium between model complexity and
generalization ability at this depth. While all algorithms
tend to overfit as their depth increases, the proposed
approach has greater resilience, retaining excellent perfor-
mance even in deeper trees. To summarize, the proposed
method exhibits robust performance and versatility across
several domains. It notably exhibits excellent stability and
resilience against overfitting as depth of the decision tree
increases, essential for real-world applications.

Table 1. Depth on accuracy and AUC of five different algorithms across nine actual datasets.
Accuracy AUC

Dataset C4.5 CART RF GBDT Proposed C4.5 CART RF GBDT Proposed

algorithm algorithm
B, 0.7325 0.7356 0.7325 0.7458 0.7526 0.7548 0.7654 0.7741 0.7789 0.7895
B, 0.9368 0.9315 0.9369 0.9369 0.9458 0.9426 0.9412 0.9784 0.9784 0.9884
B, 0.6458 0.6587 0.6514 0.6541 0.6621 0.6589 0.6639 0.6859 0.6852 0.7142
B, 0.7153 0.7123 0.7147 0.7147 0.7348 0.7214 0.7423 0.7321 0.7321 0.7662
B, 0.7189 0.7852 0.7856 0.8125 0.8223 0.8236 0.8321 0.8369 0.8895 0.8992
B, 0.7148 0.7123 0.7123 0.7236 0.7347 0.7256 0.7214 0.7145 0.7321 0.7621
B, 0.7267 0.7236 0.7256 0.7236 0.7336 0.7485 0.7458 0.7895 0.7514 0.7992
B, 0.9178 0.9189 0.9123 0.9178 0.9247 0.9236 0.9256 0.9632 0.9562 0.9784
B 0.7489 0.7658 0.7789 0.7562 0.7989 0.6321 0.6358 0.7214 0.6326 0.7536

©

AUC = Area Under the Curve; CART = Classification and Regression Tree; GBDT = Gradient Boosting Decision Tree; RF = Random Forest.
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Figure 6. Probability density distribution graphs of several algorithms at various decision tree depths. (A) Depth of 2, (B)

Depth of 5, (C) Depth of 8.

Figure 6 clearly shows that when the decision tree depth
is set to 2, the C4.5, CART, and RF algorithms have a
smaller number of samples in the high-probability region
(0.6). This suggests that these algorithms have lower pre-
diction confidence for most samples. The GBDT and
the method suggested in this research allocate a greater
number of samples in the region with a probability den-
sity of 0.4. This indicates that these algorithms have a
higher level of prediction confidence for a larger number
of samples at this particular depth, compared to other
algorithms. When the C4.5 algorithm is applied with a
tree depth of 5, it exhibits a more even distribution of

prediction probability density. This indicates that the
prediction confidence is reasonably spread out.

The CART algorithm exhibits 27 samples inside the 0.4
probability density zone while having minimal repre-
sentation in other locations. This observation suggests
a reasonably elevated although indeterminate level of
prediction confidence for the majority of samples at this
particular depth. The RF, GBDT, and proposed algorithm
prioritize sampling in regions with high probability den-
sity, with RF and the proposed algorithm exhibiting a
notable concentration of samples in the 0.6 region. This
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indicates a high level of prediction confidence for these
two methods at a depth of 5. When the tree depth is
increased to 8 or beyond in the C4.5 method, the algo-
rithm tends to focus on samples that are located in
regions with low probability density. This may suggest a
decline in the algorithm’s confidence in making accurate
predictions. The CART method has a greater number
of samples in regions with medium probability density
and none in the highest confidence interval, indicating a
higher level of uncertainty in its predictions. The random
forest model has a rather consistent probability density
for predictions in the intermediate range. There are no
samples in the extreme probability density regions, sug-
gesting a notable level of confidence in predictions for
the majority of samples. The GBDT and the proposed
method exhibit a more evenly distributed set of samples,
with the proposed algorithm specifically containing sam-
ples within the probability density range of 0.2—0.6. This
suggests that the proposed algorithm is capable of mak-
ing predictions with varying levels of confidence at this
particular depth.

The analysis reveals that the suggested algorithm exhibits
a high level of prediction certainty across different deci-
sion tree depths. Notably, at a depth of 5, the algorithm’s
prediction probability density in the high confidence
interval resembles closely that of RF, indicating a robust

predictive capability. As the depth of the decision tree
increases, the suggested algorithm exhibits a more consis-
tent and evenly distributed prediction probability density.
This suggests that the algorithm is stable and less prone
to overfitting. By examining the probability density distri-
butions for different tree depths, the proposed algorithm
demonstrates superior overall performance, especially in
delivering predictions with high levels of confidence.

The performance measures (accuracy, recall, F1-score,
and AUC) of the proposed technique are compared
to three other methods, namely Dynamic Classifier
Selection (DCS), Dynamic Ensemble Selection (DES),
and Dynamic Weighted Majority (DWM), on five dis-
tinct datasets, as shown in Table 2. The table clearly
demonstrates that the suggested technique surpasses
DCS, DES, and DWM in terms of accuracy across all
datasets. Remarkably, the suggested technique achieves
an accuracy of 0.7851 on the B1 dataset, which is much
greater than the 0.7451 accuracy of DCS. The suggested
technique consistently achieves the greatest accuracy
across datasets B2—B5, showcasing its unwavering accu-
racy across diverse datasets. The recall, which measures
the proportion of correctly identified positive samples
out of all real positive samples, is particularly notable for
the proposed technique on the Bl dataset, with a value
of 0.8542. This value is much greater than that of other

Table 2. Performance of different methods in gold standard evaluation recommendations for risk management strategies.

Method Dataset Accuracy Recall F1-score AUC
DCS B, 0.7451 0.6658 0.7456 0.8456
B, 0.8321 0.7214 0.7894 0.9127
1B, 0.8124 0.7831 0.7789 0.8794
B, 0.7286 0.4682 0.6231 0.8632
B, 0.7258 0.5124 0.6324 0.8692
DES B, 0.7214 0.6239 0.7248 0.8431
B, 0.8176 0.6587 0.7546 0.9123
B, 0.8216 0.7214 0.7548 0.8743
B, 0.7143 0.4689 0.6231 0.8569
B, 0.7321 0.5213 0.6589 0.8756
DWM B, 0.7389 0.6487 0.7348 0.8451
B, 0.8174 0.6523 0.7289 0.8632
B, 0.8215 0.7215 0.7541 0.8895
B, 0.7369 0.5123 0.6458 0.9123
B 0.7123 0.5489 0.6698 0.8678
Proposed method B, 0.7851 0.8542 0.8689 0.9321
B, 0.8742 0.7238 0.8241 0.9546
B, 0.8863 0.7487 0.8236 0.9143
B, 0.8871 0.6123 0.7489 0.9057
B 0.8864 0.6487 0.7874 0.9162

o

DCS: Dynamic Classifier Selection; DES: Dynamic Ensemble Selection; DWM: Dynamic Weighted Majority; AUC: Area under the Curve.
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methods, suggesting the strong ability of the suggested
method to identify accurately positive samples. When
applied to different datasets, the suggested method con-
sistently achieves a higher or comparable recall rate,
compared to the other three methods. This indicates that
the proposed method is useful in preventing the omis-
sion of crucial risk management tactics. The F1-score, a
metric that combines accuracy and recall using the har-
monic mean, considers both precision and recall in eval-
uating the model’s performance. The suggested method
achieves the highest F1-score across all datasets, particu-
larly on the B1 dataset, where it attains a value of 0.8689.
This value indicates a favorable equilibrium between
precision and recall. The AUC value is a measure of the
model’s capacity to classify accurately, and the suggested
technique outperforms other methods in terms of AUC
values across all datasets, especially on datasets B1 and
B2 with the respective AUC values are 0.9321 and 0.9546.

The suggested method exhibits superior performance
compared to existing comparable methods (DCS,
DES, and DWM) across several datasets, showcasing
enhanced efficacy in crucial metrics, including accuracy,
recall, F1-score, and AUC. The suggested method exhib-
its extraordinary performance on the Bl dataset, which
may be attributed to its specific benefits in managing the
risk management strategies employed in this dataset.
The suggested method is a data-driven, multi-criteria
decision-making tool that effectively and practically bal-
ances cost, benefits, and feasibility to design optimal risk
management strategies.

By analyzing the data presented in Figure 7, one can com-
pare the performance of various methodologies in terms
of the accuracy of gold standard evaluation recommenda-
tions for risk management strategies. On the training set,
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1.024
0.992}
z 0.96r
®
5
3
< 0928}
—— DCS
—— DES
0.896 DWM
—— Proposed method
0.864 I- 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9
Number of folds
Figure 7.
(B) Test set.
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the accuracy of each approach increases with increase in
the number of folds. This is because a higher number of
folds allows for more data utilization for training, which
enables the models to learn more effectively the features
of the data. The precision of the DCS approach improves
from 0.868 at two folds to 0.994 at 10 folds, indicating an
upgrade in performance as the amount of data grows.
Both DES and DWM algorithms exhibit comparable per-
formance, achieving an accuracy of 0.996 at the highest
number of folds, which demonstrates their exceptional
capacity to adapt to the data.

The proposed method in this paper demonstrates a mar-
ginally superior accuracy compared to DCS across all
folds, and is on par with DES and DWM in the initial
folds. However, its performance slightly declines in the
subsequent folds, possibly because of variations in the sta-
bility and generalization abilities of the proposed method
across different folds. The test set is primarily concerned
with evaluating the model’s capacity to generalize unfamil-
iar data. The suggested technique consistently maintains
accuracy above 0.928 across all folds, with a peak of 0.934,
demonstrating strong and consistent performance on the
test set. The DCS technique exhibits variable accuracy
ranging from 0.912 to 0.920, consistently lower than the
suggested method. This implies that the proposed method
may possess superior predictive capability if applied to
unfamiliar data. The precision of DES is marginally supe-
rior to DCS, although it is still outperformed by the sug-
gested approach, particularly in certain instances where
the disparity is more evident. The performance of DWM
on the test set is comparable to that of DCS, but it does
not exceed the accuracy of the suggested technique.

The suggested method exhibits comparable or slightly
improved performance on the training set, compared to
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the existing methods while demonstrating higher accu-
racy and stability on the test set. The suggested method
demonstrates a stable and consistent high accuracy
on the test set, which suggests its strong generaliza-
tion potential and dependable forecast performance on
unfamiliar data. While DES and DWM achieved slightly
higher accuracy when using the maximum number of
folds on the training set, the suggested technique demon-
strated superior performance on the test set, thereby
showcasing its effectiveness in practical applications.

Conclusion

This research has elucidated a data-driven, multi-criteria
decision-making methodology, meticulously designed
to aid managers in the nuanced balancing of diverse
risk management strategies within the intricate realm of
agricultural supply chains. Fundamental to this study is
the implementation of decision tree algorithms, notably
those incorporating transition structures, which serve
to analyze methodically risk factors and their conse-
quential impacts. Furthermore, the adoption of dynamic
selection techniques within a multi-classifier system
has been instrumental in augmenting the precision and
dependability of evaluations pertaining to risk manage-
ment strategies. The algorithm proposed herein metic-
ulously constructs a model that assimilates an array of
risk factors and their potential interrelations, derived
from a comprehensive analysis of historical data, expert
evaluations, and practical instances. This model not only
facilitates decision-makers in the intuitive discernment
of risks and the mapping of their interconnections but
also weighs judiciously various elements, such as costs,
benefits, and feasibility to devise optimal management
strategies.

Empirical evidence demonstrates that this method out-
performs traditional risk assessment approaches across
various key performance indicators, showcasing supe-
rior learning and generalization capabilities. Although
the research findings are encouraging, limitations still
exist. For example, responding to specific risk factors may
require further refined data support, and the applicabil-
ity of this approach in different cultural and geographical
contexts remains to be examined. The future develop-
ment directions could include expanding the dataset size
to accommodate a more diverse range of agricultural
environments and further enhancing the adaptability and
robustness of the algorithm. Additionally, integrating this
method with modern agricultural technologies, such as
the Internet of things, devices, and real-time data mon-
itoring, may pave way for more efficient and real-time
pathways for agricultural risk management. Moreover,
exploring improvements in algorithm interpretability and
decision-maker interactivity could be an important part

of the future work, ensuring that technological solutions
are as comprehensible and applicable to users as possible.
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