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Abstract

In the era of digitization, the integration of big data technologies has become instrumental in advancing agri-
cultural supply chain management and bolstering risk decision-making processes. Agricultural supply chains, 
critical to ensuring food security and bolstering rural economies, face vulnerabilities stemming from a myriad 
of internal and external elements, including natural disasters and market dynamics. Consequently, the urgency 
to adopt effective risk management strategies is paramount. Contemporary studies have explored the utilization 
of big data in decision-making processes specific to agricultural supply chain risks, predominantly concentrat-
ing on preliminary risk prediction and characterization. Nonetheless, there exists a shortfall in comprehensively 
analyzing the intricate interplay among risk factors and establishing a holistic risk management decision-making 
framework based on such analyses. This research addresses these deficiencies through two principal investigative 
components. First, this research explores the analysis of risk factors and their interrelationships in the agricultural 
supply chain based on a decision tree algorithm with a transition structure. This algorithm enhances decision-
makers’ understanding of risk factors and their interrelationships, and guide the implementation of effective risk 
mitigation measures and the formulation of contingency plans. Subsequently, the research constructs a corre-
sponding data-driven multi-criteria decision-making method, assisting managers in balancing different risk man-
agement strategies in a volatile supply chain environment, considering costs, benefits, and feasibility to formulate 
the optimal strategy. The innovation of this research lies in the development of a novel risk analysis tool based 
on the transition decision tree algorithm. This is the first time that such advanced algorithms are applied to agri-
cultural supply chain risk management, filling a gap in the current research. The outcomes of this study not only 
contribute to enhancing risk management practices within agricultural supply chains but also offer novel insights 
and methodological tools that are applicable in research and practices across related domains.

Keywords: big data; agricultural supply chain; risk decision-making; safety management; decision tree; multi-criteria 
decision-making

Introduction

In the swiftly transforming digital age, big data 
technology has been recognized as a crucial catalyst 
propelling advancements across various sectors (Awad 
et al., 2023; Chandrasekaran et al., 2021; Chennouk et al., 
2022; Hasan et al., 2022; He et al., 2022; Kusrini 
et  al., 2022; Lazarevska et al., 2022; Li and Gao, 2022; 

Zhang  et  al.,  2023; Zhao et al., 2022). The agricultural 
industry, quintessential for sustaining human life, relies 
heavily on the efficiency and security of its supply chain. 
This supply chain’s effectiveness is intrinsically connected 
to food security, income generation for farmers, and 
societal stability (Nguyen, 2022; Xing and Zhao, 2013). It 
faces a myriad of risks, primarily because of the unpre-
dictable nature of environmental conditions and market 
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models typically require extensive data support, and 
there may be constraints in data collection and process-
ing, leading to inaccuracies in risk assessment and man-
agement strategies.

This research is bifurcated into two primary segments. 
Initially, it undertakes a detailed investigation of risk 
factors within agricultural supply chains and their interre-
lations, utilizing a decision tree algorithm enhanced with 
transition structures. This technique equips decision-
makers with the tools for intuitive risk identification 
and mapping of interrelationships, thereby facilitating 
the crafting of more robust risk mitigation strategies 
and emergency response plans. Subsequently, the study 
embraces a data-driven multi-criteria decision-making 
approach. This approach is designed to assist managers 
in navigating the complexities of decision environments 
within agricultural supply chains, weighing the intrica-
cies of costs, benefits, and feasibility to develop optimal 
management policies. Through a comprehensive explo-
ration of these research components, this study not only 
broadens the scope of big data application in agricultural 
supply chain risk decision-making and safety manage-
ment but also endows decision-makers with a more sci-
entific and systematic tool for decision support, imbued 
with significant research merit and practical relevance.

The novelty of this research is in the direct application 
of advanced data analysis algorithms to risk assessment 
and management in the agricultural supply chain, par-
ticularly the introduction of decision tree algorithms 
with transition structures as the core tool, which was not 
common in the previous research. This approach breaks 
through traditional analysis models and can delve deeply 
into complex interactions between risk factors, providing 
new perspectives for risk management in critical states. 
In addition, by integrating multi-criteria decision-mak-
ing methods, this study further enhances the compre-
hensiveness of strategy formulation and the ability to 
cope with complexity. Such a comprehensive analysis 
and decision-making framework is novel in the current 
literature.

The research tools in this paper, in terms of practical 
application, mainly provide scientific and precise sup-
port for risk management in agricultural supply chain. 
For instance, in the food industry, the decision tree algo-
rithms with transition structures can predict and man-
age potential risks related to food production and supply, 
such as yield fluctuations, food contamination, or sup-
ply interruptions. In stages such as the harvesting, stor-
ing, and packaging of crops, these advanced algorithms 
can help managers assess risks due to weather, pests, or 
changes in market demands, and accordingly formulate 
optimized operational plans and response strategies to 
reduce losses.

demands, encompassing threats, such as meteorological 
disasters, the spread of epidemics, and market volatili-
ties. The management and decision-making processes 
pertaining to these risks play a pivotal role in ensuring 
the safety of agricultural production and strengthening 
the resilience of the supply chain. In this context, big data 
technology emerges as a transformative tool, providing 
new insights and approaches (Li et al., 2023; Ye, 2021; 
Zhai, 2023).

The burgeoning development of information technology 
has amplified the importance of big data in the realms of 
risk decision-making and safety management within the 
agricultural supply chains (Chen et al., 2022; Dai and Liu, 
2020; Wang and Wu, 2022). The comprehensive gath-
ering, processing, and analytical examination of large-
scale data empower decision-makers to more precisely 
pinpoint potential risks and formulate more efficacious 
strategies for risk mitigation (Land and Siraj, 2021; Liu, 
2022; Lu et al., 2022; Zhang et al., 2022). Such strategic 
advancements not only optimize resource distribution 
and augment the competitive edge of agricultural prod-
ucts but also enhance the capacity to manage unforeseen 
contingencies, thereby safeguarding the continuity and 
security of agricultural supply chain (Cao et al., 2022; 
Chen and Su, 2022; Cui and Gao, 2022; Hui, 2021; Lin 
and Hu, 2022; Nagendra et al., 2022; Xu et al., 2022).

While existing studies have ventured into the realm of big 
data within agricultural supply chains, their focus pre-
dominantly has been on preliminary risk prediction and 
descriptive analysis. A notable gap exists in the thorough 
examination of risk factors and their interconnected 
dynamics as well as in the development of comprehen-
sive risk management decision support rooted in such 
analysis (Ge et al., 2023; Liu et al., 2022). Furthermore, 
prevalent methodologies often overlook the intricacies of 
supply chain management and the multifaceted nature of 
decision-making, thereby impacting the efficacy and pre-
cision of decision support systems in real-world settings 
(Krska et al., 2022; Modupalli et al., 2021).

Existing agricultural risk management and safety mod-
els usually cover multiple aspects, such as production 
risk, market risk, financial risk, technological risk, and 
natural disasters. They aim to mitigate the uncertainties 
and potential losses in agricultural production through 
diversified crop planting, insurance, futures contracts, 
disaster relief plans, and government subsidies (Le and 
Chu., 2023; Yu and Liang, 2022). However, the limita-
tions of these models often lie in their difficulty in pre-
cisely predicting and quantifying risks brought about by 
environmental and climate changes. They have limited 
responsiveness to global market fluctuations and may not 
cover all small-scale agricultural producers, especially in 
resource-limited developing countries. Moreover, these 
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Their advantage lies in the ability to process large 
amounts of data and extract key information, aiding in 
identifying and quantifying risk points across the entire 
supply chain. Furthermore, the integration of multi-
criteria decision-making methods with cost, benefit, and 
feasibility analysis ensures that the formulated risk man-
agement strategies are both economical and practical. 
However, the application of these research tools also has 
certain limitations. First, they have a strong dependency 
on high-quality and comprehensive data, and challenges 
in data collection and processing may limit their practi-
cal scope. Second, the complexity of the algorithms may 
require specific expertise, which could affect the usability 
and popularity among users. Finally, the adaptability of 
these tools in different regions and cultural contexts may 
also pose challenges and require localization adjustments 
and testing prior to implementation.

Analysis of Risk Factors and Their 
Interrelationships in Agricultural Supply Chains

The agricultural supply chain exhibits complex interre-
lations among risk factors. For instance, climate change 
can intensify the frequency and severity of pest outbreaks, 
directly impacting crop yield and quality. The uncertainty 
in yield and quality can affect market prices, thereby influ-
encing farmers’ planting decisions and stability of the sup-
ply chain. Moreover, while technological advancements 
can mitigate some impacts of natural risks, they may also 
introduce new technological risks. For example, reliance 
on novel storage technologies could disrupt the entire 
supply chain in the event of malfunctions. Risks affect not 
just a single segment but can also propagate and amplify 
throughout the supply chain. For instance, a shortage of 
primary agricultural products may cause stagnation in 
the processing stage, subsequently affecting supply in the 
retail segment and availability to end consumers. This 
chain reaction is particularly evident in the food chain, as 
the production, processing, and distribution of food typi-
cally involve multiple interdependent stages.

Therefore, this paper advocates for a systematic perspec-
tive in the risk management of agricultural supply chains. 
By thoroughly analyzing the interrelationships among 
risk factors and adopting comprehensive management 
measures, the risks in each segment can be mitigated, 
and the resilience of the entire chain can be optimized. 
This involves the continuity of risk assessment, transpar-
ency across all aspects of the supply chain, timely shar-
ing of information, and coordinated collaboration among 
multiple stakeholders.

The risk management of agricultural supply chains was 
addressed in this work by implementing a decision tree 
algorithm that incorporates transition structures. This 

approach incorporates transition structures into the con-
ventional decision tree analysis, enabling test samples 
to probabilistically transition between decision paths. 
This approach surpasses the constraints of singular path 
assessments, allowing the decision-making process to 
integrate information from several paths, thereby reflect-
ing a more comprehensive probability distribution. This 
approach effectively captures the interplay of nonlinear, 
complex, and constantly evolving risk elements in the 
supply chain, offering a reliable way for assessing and 
predicting risks under unpredictable circumstances. 
Figure 1 displays a schematic representation of a decision 
tree. Figure 1 contains a decision tree structure, featuring 
a hierarchical arrangement of nodes and leaves. The deci-
sion tree starts from the topmost root node (labeled as 1), 
with two values on it: 40 and 30. From the root node, two 
child nodes branch out, labeled 2 and 7, each respectively 
annotated with a pair of values: 22:18 and 13:17. This 
branching process continues, with some nodes further 
branching down into new nodes, until reaching the bot-
tom leaf nodes (labeled as 4, 6, 9, 11, 12, and 13), which 
also bear a set of values. Arrows indicate the direction 
of decision-making, and the number at each node rep-
resents the decision or statistical value at that point. The 
entire structure reflects a decision-making process from 
root to leaf, potentially representing different steps and 
outcomes in data classification.

The fundamental concept behind utilizing the decision 
tree algorithm with transition structures for examining 
risk factors in agricultural supply chains and their inter-
connections entails merging the decision tree model with 
the theory of Hidden Markov Model (HMM) (Gueham 
and Merazka, 2024; Nagahama et al., 2014). This results 
in a composite model that can effectively capture tempo-
ral dependencies and implicit states in sequential data. 
Each node in this approach serves as both decision con-
dition or output and a hidden state in HMM. The hidden 
states are linked by a transition matrix, which represents 
the probabilities of transitioning between different risk 
variables. The transition structure enables decision 
routes to stochastically transition across nodes, capturing 
the unpredictable and dynamic nature of risk variables in 
the agricultural supply chain environment. The emission 
matrix quantifies the likelihood of considering a particu-
lar risk impact for each concealed state. It represents the 
probability distribution of different risk events occurring 
based on the specific state of a supply chain. By applying 
the technique, the probability distribution of test sam-
ples across all nodes can be derived. Then the expected 
values of these distributions are utilized to make predic-
tions about the links between risk variables and impacts. 
The expected values represent the overall probability of 
risk happening across the whole supply chain. Therefore, 
decision-makers can acquire understanding not only of 
individual risk forecasts but also of the combinations 
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and interconnections of risks across several conceivable 
routes, thereby developing more comprehensive and effi-
cient risk management strategies.

Given that the algorithm’s initial state is denoted as τ = 
(1,0,...,0)1*V, the emission matrix as Y = (O1,O2,... ,OV)S, 
and the prediction at decision tree depth u as PRu, the 
probability distribution of samples in nodes after u-step 
transitions from the root node 1 is represented by τOu. A 
formula is presented for calculation:

	 PRu = τOuY.	 (1)

To facilitate clarity in explanation, the following defini-
tions are presented.

The transition matrix is a square matrix with dimensions 
equal to the square of the number of hidden states. The 
total of the probabilities in each row is equal to one, indi-
cating the probability distribution of transitioning from 
one state to different states. The matrix in question is a 
fundamental notion in HMM, and precisely characterizes 
the probability of transitioning between any two hidden 
states within a decision tree. Within the framework of 
agricultural supply networks, this refers to the likelihood 
of shifting from one particular risk factor to another. The 
transition matrix of a sample under the given decision 
tree S is expressed as follows:

	 [ ] V
uk ukV V k 1

O o , o 1 OR 0,
× =

= =∑ 	 (2)

where Ouk represents the transition probability from 
node u to node k, and V represents the total number of 
decision tree nodes.

Within the decision tree, target nodes correspond to leaf 
nodes. These leaf nodes signify the outputs of a decision 
tree, specifically the ultimate risk assessment outcomes. 
Within the decision tree framework, the target nodes 
can be likened to the final states in HMM, as they offer 
precise insights into the risk states of the supply chain. 
Non-target nodes, on the other hand, refer to the internal 
nodes in the decision tree that are not leaf nodes. In the 
context of HMM, these intermediate hidden states serve 
as representations of intermediate judgments or transi-
tions that occur before reaching the final risk assessment. 
These nodes direct samples from the current node to the 
next node, depending on branching circumstances, or 
simplify transitions between states. For a given node u, if 
a sample a is assigned to a certain child node k according 
to a rule, then k is designated as the target node for an 
inside u, while the remaining child nodes k’ are classified 
as non-target nodes.

The allocation of sample data to different child nodes in 
a given decision tree is determined by the division rules 
of non-leaf nodes, which are based on certain traits or 
features. Every internal node is linked to a decision rule, 
which might be either a threshold or a set. Once a sam-
ple reaches a non-leaf node, it is assigned to the appro-
priate child node according to a predetermined decision 
rule. If the attribute of the sample meets the criteria of 
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Figure 1.  Schematic diagram of a decision tree.
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the rule, it will go to the appropriate child node. If not, 
it may transition to a node on a different path based on 
the transition structure. This shift occurs by utilizing the 
probabilities in the transition matrix, enabling the algo-
rithm to investigate unconventional paths of risk states 
and detect more intricate risk patterns. When dividing 
the sample a into the target node k at the non-leaf node u 
in the decision tree S, the equation INu, = (ouk, ouk’) holds 
if the transition probability is represented by ouk. Node 
u is regarded as the sibling node of node k’, meeting the 
condition ouk+ Σk′ouk′ = 1.

Constructing the transition probabilities between nodes 
is a crucial stage in the decision tree algorithm for agri-
cultural supply chain risk analysis, which involves tran-
sition structures. This entails computing the transition 
probabilities to both target and non-target nodes and 
converting these probabilities from a fixed form to a 
probabilistic distance form. The subsequent information 
outlines the construction process.

When constructing the decision tree, the initial step is 
to define the probable transition relationships between 
each node. This is derived from the comprehension of 
risk factors and examination of the past data, identify-
ing the nodes that are probable to undergo a transition. 
The base probability of transitioning to other nodes is 
determined for each individual node. One can acquire 
this information by either analyzing the frequency of 
transitions between risk events in historical data or 
by utilizing estimations from experts with specialized 
knowledge. Fuzziness and randomness are incorporated 
into decision-making scenarios to account for inherent 
uncertainties. The transition probabilities at the base 
level are modified using fuzzy logic or probabilistic dis-
tributions to represent accurately the uncertainties and 
intricacies of decision-making in real-world scenarios. 
It’s assumed that sample a is divided into the target node 
k at a non-leaf node u, the function involving a[xu] and S 
are represented as ouk, and the number of child nodes of 
u is represented as v. To compute the transition proba-
bilities from u to k and k′, the following method is used:

	 uk u uko h(a[x ],S),0 o 1,= ≤ ≤ 	 (3)

	 uk
uk

1 oo .
v 1′
−

=
−

	 (4)

The initial transition probabilities are commonly dis-
played in a constant format, which represents the ideal 
conditions based on specific assumptions. Nevertheless, 
the actual situation in agricultural supply chains tends as 
more intricate, requiring a conversion of these consistent 
probabilities into formats that encapsulate uncertainty. 
By applying the concept of probabilistic distance, it is 
possible to convert constant transition probabilities into 

probabilistic distributions. This entails the introduction 
of a probability density function for each transition prob-
ability. It is commonly believed that these probabilities 
follow a normal distribution or another suitable distribu-
tion. The parameters of these distributions are given by 
constant transition probabilities and the related risk data. 
Because of this transformation, each transition proba-
bility is no longer represented by a single value but by a 
probabilistic distribution. This allows for a more accurate 
representation of uncertainties and variabilities that exist 
in the real world. The equation that represents the con-
stant form of Ouk is as follows:

	 uko ,0 1.β β= ≤ ≤ 	 (5)

It’s assumed that the cumulative distribution function of 
the xuth feature utilized at node u is denoted by Θxu, the 
base transition probability by a hyperparameter β, and 
the distance between the feature value a[xu] of the sam-
ple and the node threshold su by |Θxu(a[xu]-Θxu(su)|. The 
expression for Ouk in its probabilistic distance version is 
given by equation (6).

	
u uuk x u x uo (1 )| (a[x ]) (s )|,0 1.β β β= + − Θ −Θ ≤ ≤ 	 (6)

Utilizing the decision tree algorithm with transition 
structures to analyze risk factors and their effects in 
agricultural supply chains offers notable benefits by 
describing the transition probabilities between nodes in 
probabilistic distance forms. First and foremost, this form 
presents a more precise representation of uncertainties 
and variations of risk factors in real-life scenarios, as it 
offers a probability distribution instead of a single tran-
sition probability number. This method encompasses the 
full spectrum of potential risk events and the attributes 
of their distribution. Furthermore, this approach enables 
decision-makers to comprehend visually a more intricate 
risk scenario, facilitating the assessment and comparison 
of anticipated results across various risk management 
tactics. 

Incorporating transition probabilities in a probabilistic 
distribution form allows for the integration of informa-
tion from various data sources, such as historical data, 
real-time data, and expert opinions. This thorough exam-
ination enhances the precision of risk forecasts and the 
dependability of risk mitigation choices. In essence, this 
establishes a strong theoretical basis for constructing 
a versatile and responsive system for managing risks in 
the agricultural supply chain. This system can effectively 
handle existing identified hazards as well as unforeseen 
risks that may arise in the future. For example, let a ~ 
V(0,1). The values a1, a2, and a3 are respectively equal to 
0, 1, and 2. By calculating the distances DI(a1,a2,) and 
DI(a2,a3), it is intuitively believed that DI(a1,a2,) is bigger 
than DI(a2,a3). This is because in a finite sample set T that 
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follows a specified distribution, the number of elements 
in the range {a|a1<a<a2, a∈T} is greater than the number 
of elements in the range {a|a2 < a < a3, a∈T}. Nevertheless, 
the distance between DI(a1,a2,) and DI(a2,a3) is equal to 
1, which deviates from the expected norm. By employing 
probabilistic distance, the value of DI(a1,a2,) is approxi-
mately 0.24 and the value of DI(a2,a3) is around 0.14, 
thereby resolving this matter. In order to utilize probabi-
listic distance, it is necessary to possess knowledge of the 
distribution function of variable x. When node u is a leaf 
node, the following is observed:

	 uk
1,u k

o .,else0
== 


	 (7)

Trade-Offs in Data-Driven Decision-Making for 
Managing Rural Supply Chain Risks

This study employs a data-driven approach to evalu-
ate and prioritize various options for managing risks 
in rural supply chains. Managers can use this tech-
nique to make decisions by considering various inter-
connected factors, such as cost, benefits, risk levels, 
resource availability, and socioeconomic implications. 

The data-driven method utilizes advanced technolo-
gies, such as machine learning and statistical analysis, to 
extract insights from historical data (Asfaw et al., 2023; 
Jiang et al., 2023). These insights are then integrated into 
a multi-criteria decision-making framework after iden-
tifying patterns and trends. This methodology facilitates 
quantitative analysis, enhancing the transparency of the 
decision-making process and effectively illustrating the 
performance of alternative decision options across sev-
eral criteria and their influence on the ultimate results of 
risk management. Moreover, the data-driven multi-cri-
teria decision-making method facilitates the incorpora-
tion of real-time data, hence improving the promptness 
and flexibility of decisions. The adaptability and agility 
of this approach enables managers to modify tactics in 
response to shifting market and environmental circum-
stances, guaranteeing the stability and longevity of the 
agricultural supply chain, thus optimizing economic and 
social worth. Figure  2 depicts the optimization process 
of decision-making for managing risks in rural supply 
chain. This technique is based on the dynamic selection 
of various classifiers.

The purpose of developing an optimization model for 
decision-making in rural supply chain risk management 
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Figure 2.  Optimization process of rural supply chain risk management decision-making based on dynamic selection of multi-
ple classifiers.
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decisions. Figure 3 illustrates the procedure for generat-
ing a base classifier.

When making decisions about managing risks in rural 
supply chains, managers must make optimal choices con-
sidering several factors that impact risk management, 
including cost, time, resource utilization, environmental 
consequences, and social accountability. The assessment 
of each criterion is represented by an interval number, 
which indicates the range of uncertainty in evaluation 
results. This interval number represents the upper and 
lower limits of the best and worst potential outcomes. In 
the context of managing risks in rural supply chain, it is 
presumed that there are V different techniques for man-
aging these risks, denoted as āv(v = 1,..., V). The gold stan-
dard evaluation values for these V techniques are derived 
by experts in the relevant field who have chosen M deci-
sion criteria, denoted as {r1, ..., rM). At first, experts must 
assign specific evaluation values to these V risk manage-
ment strategies based on M criteria. The evaluation vec-
tor of the assessed rural supply chain risk management 
strategy av under M criteria is denoted as A–

v. The evalu-
ation value of interval number a-

v under choice criterion 
ru(u = 1,..., M) is represented as A-

v,u = [A_–
v,u, A_+

v,u].

The responsibility of decision-makers is to discern the 
most advantageous approach from all the available pos-
sibilities, taking into account all relevant criteria. Hence, 
it is necessary to devise a technique to synthesize or com-
pare various interval numbers in order to ascertain the 
combined interval number that signifies the most ideal 
performance of a strategy. Typically, this process entails 
the comparison and ranking of interval numbers as well 

is to offer managers a systematic approach to evalu-
ate and select various solutions for managing risks. The 
underlying premise of this strategy revolves around two 
essential steps: First, the process involves using base clas-
sifiers to predict the evaluation values of a gold standard. 
This is done by training validated classifiers on histori-
cal data. The goal is to predict the performance of each 
risk management strategy based on criteria, such as cost 
efficiency, degree of risk reduction, and execution feasi-
bility. The prediction findings act as benchmark assess-
ment values, offering foundational data for the future 
optimization model. Furthermore, the process of deter-
mining criterion weights seeks to discover the optimal 
set of weights that accurately represents the correlation 
between risk management techniques and gold standard 
evaluation outcomes. The optimization model evaluates 
the relative relevance of each criterion by analyzing the 
influence of each criterion on the gold standard assess-
ment results. This is commonly accomplished using 
optimization algorithms, such as genetic algorithms or 
gradient descent methods, with the objective of minimiz-
ing the discrepancy between predictive evaluation val-
ues and the gold standard. In the end, the model utilizes 
the acquired optimal criterion weights to combine the 
assessment values of each strategy across several criteria, 
resulting in a composite evaluation score. This score can 
be used as the benchmark evaluation outcome for rec-
ommending strategies. These outcomes not only demon-
strate the comparative advantages and disadvantages of 
various risk management strategies when evaluated using 
many criteria but also offer concrete and measurable 
evidence for decision-makers. This enhances the trans-
parency, rationality, and feasibility of risk management 
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c1

c3
c4

cU

c2

Collection of historical data on rural supply 
chain risk management strategy evaluations

Figure 3.  Process of generating a base classifier.
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the number of items in this set. The evaluation vector 
and related gold standard evaluation values of risk man-
agement strategy ai

(v,m) are represented by ai
(v,m) and Oi

(v,m), 
respectively. Next, the equations zi(A

i
(v,m)) = zi(A

_
v), where 

{(A
i
(v,m)),(O

i
(v,m))}

Liv
m=1 ⊆ {(Am,Om)}L

m=1 and Li
v < = L, are estab-

lished. The predictive quality of zi is believed to increase 
as the degree of similarity between {(A

i
(v,m))}

Liv
m=1 and a_

v 
increases.

It’s assumed that historical risk management strategies 
are denoted as am (where m ranges from 1 to L), and 
the rural supply chain risk management strategy for 
evaluation is denoted as a_

v. The related gold standard 
prediction results for the historical strategies are rep-
resented as zi(Am) (where m ranges from 1 to L), and 
the gold standard prediction result for the strategy for 
evaluation is represented as zi(A

_
v). It’s assumed that 

the historical risk management strategies, which are 
comparable to a_

v determined by zi(A
_

v), are represented 
by ai

(v,m). The individual evaluation values of risk man-
agement strategies, Ai

(v,m), and A_
v under the criterion 

ru, are represented by Ai
(v,m),u and A_

v,u, respectively. 
The calculation f(Ai

(v,m),u,A_
v,u) represents the distance 

between the interval numbers Ai
(v,m),u and A_

v,u. The pre-
dictive quality of zi can be determined using the follow-
ing equation:

	

( )( )i
v

M i
v,uL v,m ,uu 1

m 1

i
v i

v

f A ,A

M
W 1 .

L

=
=

 
 
 
 
 = −

∑∑
	 (8)

The predictive accuracy of basic classifiers pertains to the 
degree of agreement between the classifier’s predictions 
on a given evaluation vector and the true evaluation val-
ues determined as the gold standard. Predictive accuracy 
is a crucial measure in the dynamic selection process, 
employed to ascertain which classifiers are more inclined 
to yield precise outcomes when forecasting the gold stan-
dard evaluation values of novel techniques. Classifiers 
that demonstrate a high level of accuracy in making pre-
dictions are given greater importance by assigning them 
larger weights. Let {(Ay

m,O→y)}Ly
m=1 represent the decision 

dataset of historical risk management strategies with 
gold standard evaluation values O→y in the training set. In 
this dataset, L represents the total number of strategies, 
and L1 + L 2 +...+ LY = L is established. The evaluation vec-
tor sets for each type of risk management strategy under 
M criteria are denoted as {Ay

m}Ly
m=1(y = 1,..., Y). These sets 

are then inputted into zi to obtain the prediction result 
set for different types of historical risk management 
strategies, represented as {zi(A

y
m)Ly

m=1. The O→y distance 
between interval number zi(A

y
m) is denoted as f(zi(A

y-

m),O→y), while the prediction accuracy of zi for the yth 
type of historical risk management strategy is denoted as 

as the determination of the most favorable criterion 
weights. The process of determining criterion weights 
can be acquired through a data-driven method, which 
quantifies the relative significance of various criteria in 
the ultimate decision-making process. First, a collec-
tion of historical risk management strategies with estab-
lished evaluation values, denoted by {am}L

m=1, is obtained. 
The evaluation values under M criteria are denoted as  
{Am}L

m=1, while the matching gold standard evaluation val-
ues are denoted as {Om}L

m=1. These values together form 
a training set represented by {(Am, Om)}L

m=1. The evalua-
tion value of the historical risk management strategy am 
is represented by the gold standard Om, which is defined 
as the interval [O–

m, O+
m]. The multi-criteria decision 

issue under consideration involves Y types of evalua-
tion values, denoted as {O→y}Y

y=1 = {[O→y-,O→y+]}Y
y=1, where  

Om∈{O→y}Y
y=1.

A dynamic classifier selection approach is given as a solu-
tion to the described problem. This method does not 
depend on a fixed K value but instead selects classifiers 
dynamically by considering data similarity and the pre-
dictive quality of base classifiers. The set of base classifi-
ers derived from the decision evaluation set {(Am,Om)}L

m=1  
of historical risk management strategies {am}L

m=1 is 
denoted as z = {z1, ..., zI).

The study initially establishes the concept of individual 
evaluation vector similarity, which pertains to the extent 
of similarity between the evaluation vector of a new strat-
egy and the evaluation vectors of past strategies. The 
degree of similarity can be measured by computing the 
distance between vectors, such as with Euclidean dis-
tance, cosine similarity, or other comparable metrics. 
The individual evaluation vector similarity is employed to 
locate instances in the historical data that closely resem-
ble the new approach. These instances are then utilized 
to forecast the gold standard evaluation value of the new 
method. The training dataset, denoted as {(Am,Om)}L

m=1, 
and the rural supply chain risk management strategy to 
be assessed, denoted as a–

v, could be used to represent 
the individual evaluation vector of a-

v under M criteria, 
which is denoted as A–

v = {A–
v,u}M

u=1. If zi(Am) and zi(A
–
v) 

are the gold standard evaluation predictions received by 
am and A-v respectively from zi(i = 1,..., I), and if zi(Am) 
is equal to zi(A

_
v), then zi determines that am and A–

v are 
similar.

The predictive performance of base classifiers pertains to 
the precision and dependability of classifiers in assessing 
risk management techniques on past datasets. Accurate 
prediction entails classifiers being able to effectively 
assess the gold standard assessment values of risk man-
agement systems. Consider past risk management prac-
tices {ai

(v,m)}
Liv
m=1 that differ from the rural supply chain risk 

management strategy to be assessed A–
v, where Li

v denotes 
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The optimization model has a distinct optimal solution.
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After establishing the criterion weights, the evaluation 
values {A–

v,1,...,A
–
v,M} for the rural supply chain risk man-

agement strategy a-
v can be calculated across M criteria. 

This is done by using {q_–i
v,u}M

u=1 obtained from the afore-
mentioned process. The result is an interpretable gold 
standard evaluation value, denoted as ΣM

u=1q
_–i

v,u×A–
v,u. This 

process entails assigning weights to the evaluation find-
ings of each criterion based on their importance in order 
to calculate a composite evaluation value that considers 
all relevant criteria.

Ultimately, the composite evaluation value must be con-
verted into a format that enables effective communica-
tion with decision-makers and can be readily utilized in 
the decision-making process. For example, the composite 
evaluation value can be transformed into a classification, 
indicating high, medium, or low risk. It can also be con-
verted into a numerical score or probability value, allow-
ing decision-makers to comprehend easily the amount 
of risk associated with each option. The transformation 
performed to ΣL

i=1w
_-u

n,i*X–
n,iΣ

M
u=1q

_–i
v,u*A–

v,u, resulting in 
Õv, assumes that ΣM

u=1q
_–i

v,u*A–
v,u contains Y distinct types. 

The function f(O→y,ΣM
u=1q

_–i
v,u*A–

v,u) represents the distance 
between the interval number O→y and ΣM
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Figure 4 depicts the decision-making trade-off process 
for managing risk in the rural supply chain using the 
suggested method. This text provides a detailed expla-
nation of the procedure that relies on the data-driven 
multi-criteria decision-making method for managing 
trade-offs in decision-making for rural supply chain risk 
management.

Step 1. Expert examination: Decision-makers utilize their 
profound comprehension and wide expertise of the rural 
supply chain environment to evaluate newly suggested 
risk management techniques. The assessment criteria 

Xi
y( y = 1, ..., Y). The equation below presents the calcu-

lating formula for zi′s predicted accuracy across several 
risk management strategies:
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To anticipate the gold standard evaluation value of the 
rural supply chain risk management strategy to be eval-
uated a_

v, the zv/i selection can be determined by combin-
ing the above-mentioned two equations:

	 { }i i
v yi ARGMAX i | W X ,i 1,...,I .= + = 	 (10)

The acquisition of criterion weights is a fundamental 
component in the data-driven multi-criteria decision-
making method. The objective is to ascertain the com-
parative significance of various risk management criteria 
and thereafter assess novel techniques in accordance 
with this evaluation. The initial step involves defining 
the similarity between individual assessment values and 
the expected gold standard evaluation outcomes, which 
is used to analyze their similarity. This is accomplished 
by computing the disparities between the evaluations of 
criteria and the established level of excellence.

It’s assumed that the historical risk management strategies 
identical to a_

v are denoted as a–i
(v,m). These strategies have 

individual evaluation values on criterion ru, expressed 
as a–i

(v,m),u. The gold standard evaluation prediction 
results generated from zv

/i are represented as zv
/i(A

–i
(v,m)).  

The similarity between a–i
(v,m),u and zv

/i(A
–i
(v,m) for a–i

(v,m) can 
be defined as

	 ( ) ( ) ( )( )( )i i v i
v ,m ,u v,m ,u v,miTUL 1 f A ,z A .= − 	 (11)

The function f(a–i
(v,m),u,zv

/i(A
–i
(v,m)) represents the distance 

between A–i
(v,m) and zv

/i(A
–i
(v,m)). To calculate the criterion 

weights, the decision variable q–i*(v,m),u and the values of 
TUL–i

(v,m),u (u = 1, ..., M) are used.
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Let q-i
v,,u(u = 1, ... M) be a set of the most representative cri-

teria weights. Next, a mathematical model may be created 
to calculate the values of q–i

v,,u (where u ranges from 1 to M) 
based on the given values of q–i*(v,m),u (where u ranges from 1 
to M and m ranges from 1 to L–i

v) in the following manner:

	 ( ) ( )( )i *v
2

L M i i
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LUV q q ,
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of predictive models with varied attributes and capabili-
ties for dynamic selection in following stages.

Step 4. Prediction evaluation using gold standard: After 
acquiring the collection of basic classifiers, the criterion 
evaluation vectors of the strategies being assessed are fed 
into these classifiers. The classifiers utilize the acquired 
knowledge from the training set to forecast the prospec-
tive gold standard assessment values of novel strategies. 
This technique entails converting the evaluation values 
provided by experts into a collection of features that can 
be analyzed by classifiers. These features are then utilized 
to forecast the overall efficacy of the tactics.

Step 5. Determining the nearest neighborhood: The objec-
tive of this stage is to discover past risk management 
techniques that closely resemble the strategy being eval-
uated based on the evaluation criteria vectors. The result 
of this stage is a subset consisting of historical strategy 
cases that closely resemble the examined strategy in 
terms of their characteristics and are deemed as valuable 
references for decision-making.

encompass cost-effectiveness of the approach, antici-
pated risk reduction effects, feasibility of execution, and 
social and environmental repercussions. The assessment 
result of each criterion is quantified into an individual 
evaluation value, which can be either quantitative figures 
or qualitative descriptions. These evaluation values serve 
as initial data for further analysis.

Step 2. Construction of the training set: This entails gath-
ering historical data, which include implemented risk 
management techniques, their evaluation values based 
on different criteria, and the related gold standard evalu-
ation values. The objective is to create an extensive data-
set that serves as the basis for training machine learning 
models to capture accurately the connections and inter-
actions between different criteria.

Step 3. Construction of the base classifier set: In this stage, 
a sequence of fundamental classifiers is learned using the 
previously specified training set. Every classifier utilizes 
a distinct algorithm to enhance resilience against diverse 
data types and risk patterns. The goal is to develop a set 

Multi-classifier system

Gold standard 
prediction results for 
the risk management 

strategy to be 
evaluated

Gold standard prediction 
results for historical 

strategies

Identification of similar 
historical strategies for the 

risk management strategy to 
be evaluated

Selection of the most 
suitable base 

classifier for the 
current risk manage-
ment strategy to be 

evaluated

Prediction quality 
calculation of the case 

classifier
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acquisition of the base 
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Figure 4.  Decision-making trade-off process for managing rural supply chain risks based on the proposed method.
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evaluated are acquired. This stage entails examining the 
prediction outcomes of the base classifier in order to 
determine the previous cases that bear the closest resem-
blance to the new method.

Step 13. Calculation of similarity: The similarity is calcu-
lated between the individual evaluation values of the his-
torical risk management strategies, which are similar to 
the assessed strategy across each criterion, and the gold 
standard evaluation values predicted by the base classifier.

Step 14. Calculation of criterion weights: This step tries 
to calculate the weights for different criteria based on the 
results of the similarity calculation in the previous step.

Step 15. Calculation of the most efficient solution: In this 
stage, the optimization model is solved by utilizing the 
calculated criterion weights from the previous steps. The 
optimization model can be constructed by defining a set 
of goal functions and constraints, which may include 
minimizing risk and maximizing benefits. The ideal solu-
tion offers decision-makers a comprehensive evaluation 
of the success of the new strategy, taking into account all 
criteria and their respective weights.

Step 16. Recommendation for gold standard evaluation: 
Ultimately, the optimization model produces a gold 
standard evaluation suggestion for the risk management 
approach based on the optimal solution. The advice is 
transformed into comprehensible decision support infor-
mation, such as risk ratings, strategy priorities, or imple-
mentation ideas. This step involves the visualization of 
the recommendation outcomes, allowing decision-mak-
ers to gain a clear and intuitive understanding of the 
potential advantages and disadvantages of each option.

Experimental Results and Analysis

There are actual cases where agricultural produc-
ers in the Midwest of the United States face risks from 
extreme weather events, and in certain regions of Africa, 
crop yields are unstable due to drought and pestilence. 
Scholars have used decision tree algorithms to identify 
key climatic variables affecting harvests (such as pre-
cipitation, temperature fluctuations, etc.) and to pre-
dict harvest risks based on these. However, in practical 
applications, the effectiveness of these tools and meth-
ods largely depends on the quality and completeness of 
data, the cooperation of relevant stakeholders, and the 
decision-makers’ understanding and acceptance of the 
decision models. Moreover, while these tools can help 
identify and mitigate risks, they cannot eliminate them 
entirely. Therefore, in practice, it’s essential to combine 
these tools with experience and real-time information for 
flexible adjustment.

Step 6. Evaluation of classifier prediction accuracy: This 
entails evaluating the level of concordance between the 
predictions made by the basic classifier on past cases 
within the closest proximity and the benchmark evalua-
tion values.

Step 7. Partitioning the training set: In order to improve 
the precision and applicability of forecasts, the training 
dataset is separated into smaller groups based on the spe-
cific type or attributes of the approach. The categoriza-
tion can be determined by variables, such as the level of 
risk associated with the approach, the scope of its execu-
tion, and the expected influence it would have.

Step 8. Acquiring the prediction result set: The criterion 
evaluation vectors of various historical risk management 
procedures are inputted into each base classifier, based 
on the subset division indicated before. The base classifi-
ers produce prediction result sets for each subgroup, pro-
viding a first assessment of the potential gold standard 
evaluation values for various risk management strategies. 
The result sets are heterogeneous due to the incorpora-
tion of several base classifiers and types of risk manage-
ment procedures.

Step 9. Calculating the accuracy of classifier’s predictions: 
During this stage, the precision of each individual base 
classifier’s predictions is evaluated. In addition, macro 
averaging or micro averaging can be employed to evalu-
ate completely all categories in multi-class problems.

Step 10. Strategic forecasting determination of accuracy: 
The prediction accuracy of each base classifier for the 
gold standard evaluation values of the evaluated method 
is examined based on the accuracy gained in the previ-
ous phase. This process entails inserting the evaluation 
vector of the technique being evaluated into each base 
classifier and comparing its output to the gold standard 
evaluation values of similar cases in historical data to 
assess consistency.

Step 11. Selection of the most effective base classifier: After 
evaluating the predicted accuracy of each base classifier, 
the subsequent task is to select the most appropriate base 
classifier for the present risk management approach. The 
selection criteria are not exclusively reliant on accuracy 
but may also take into account other elements, such as 
the model’s stability, interpretability, and computing cost. 
The selection of a base classifier that is most suitable 
for the given application scenario is determined by com-
paring these characteristics.

Step 12. Obtaining similar strategy and evaluation vec-
tors. By utilizing the chosen optimal base classifier, 
comparable historical risk management methods and 
their criterion evaluation vectors to the strategy being 
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the depth increases, reaching its highest point at a depth 
of 5, and subsequently exhibiting minor fluctuations. The 
proposed algorithm has superior accuracy, compared to 
previous algorithms across all depths, particularly exhib-
iting notable advantages at depths of 5 and beyond.

Concerning the AUC values, as the depth increases, 
all algorithms demonstrate a positive trend in AUC. 
However, the rate of increase eventually diminishes, and 
certain algorithms discover a decline in AUC after reach-
ing a specific depth, possibly because of overfitting. The 
AUC value of RF algorithm demonstrates a deceleration 
in growth after reaching a depth of 6, displaying a pattern 
similar to ACC. Conversely, the AUC value of the GBDT 
remains very consistent even when the depth increases 
to 5, indicating strong stability. The suggested approach 
exhibits an increasing AUC value with depth, surpassing 
or matching the AUC values of the previous algorithms 
at all depths. The suggested approach consistently main-
tains a high AUC value, especially at depths of 5 and 
above, indicating exceptional classification ability.

The suggested approach outperforms or matches the 
accuracy and AUC values of other reference algorithms at 
different depths, demonstrating its efficacy and superior-
ity. At a depth of 5, the suggested algorithm achieves its 
highest level of accuracy and AUC values, demonstrating 
a favorable equilibrium between model complexity and 
generalization ability at this depth. While all algorithms 
tend to overfit as their depth increases, the proposed 
approach has greater resilience, retaining excellent perfor-
mance even in deeper trees. To summarize, the proposed 
method exhibits robust performance and versatility across 
several domains. It notably exhibits excellent stability and 
resilience against overfitting as depth of the decision tree 
increases, essential for real-world applications.

Table 1 provides necessary data to make comparative 
analysis of the accuracy and Area under the Curve (AUC) 
values of several methods on nine real datasets. The fur-
ther examination and deductions are made as follows: 

First, it is evident that the algorithm suggested in this 
study demonstrates superior accuracy across all data-
sets (B1–B9), compared to the other four algorithms, 
namely C4.5, Classification and Regression Tree (CART), 
Random Forest (RF), and Gradient Boosting Decision 
Tree (GBDT). The suggested method consistently 
achieves a higher AUC value, compared to the existing 
algorithms, suggesting its ability to maintain a reduced 
false positive rate while achieving a higher true positive 
rate. The subsequent inferences can be derived: The sug-
gested technique consistently outperforms the other four 
algorithms, not only in terms of accuracy but also in AUC 
performance, across nine real datasets. Improvements 
in accuracy and AUC values indicate that the suggested 
method has enhanced its predicted accuracy and overall 
effectiveness as a classifier. Increase in AUC values indi-
cates that the suggested algorithm possesses enhanced 
discriminatory power among various categories, which 
is particularly crucial in domains that prioritize risk 
assessment.

Figure 5 provides an opportunity to analyze the influ-
ence of decision tree depth on accuracy (ACC) and AUC 
values of various methods. For all algorithms, when the 
depth of the decision tree increases, the accuracy of 
C4.5, CART, and GBDT improves initially and eventu-
ally reaches a point of stability or mild fall. This suggests 
that as the complexity of the model increases, its abil-
ity to fit the training data improves, but there is also a 
risk of overfitting. The algorithm presented in this study 
demonstrates a consistent improvement in accuracy as 

Table 1.  Depth on accuracy and AUC of five different algorithms across nine actual datasets.

Accuracy AUC

Dataset C4.5 CART RF GBDT Proposed 
algorithm

C4.5 CART RF GBDT Proposed 
algorithm

B1 0.7325 0.7356 0.7325 0.7458 0.7526 0.7548 0.7654 0.7741 0.7789 0.7895

B2 0.9368 0.9315 0.9369 0.9369 0.9458 0.9426 0.9412 0.9784 0.9784 0.9884

B3 0.6458 0.6587 0.6514 0.6541 0.6621 0.6589 0.6639 0.6859 0.6852 0.7142

B4 0.7153 0.7123 0.7147 0.7147 0.7348 0.7214 0.7423 0.7321 0.7321 0.7662

B5 0.7189 0.7852 0.7856 0.8125 0.8223 0.8236 0.8321 0.8369 0.8895 0.8992

B6 0.7148 0.7123 0.7123 0.7236 0.7347 0.7256 0.7214 0.7145 0.7321 0.7621

B7 0.7267 0.7236 0.7256 0.7236 0.7336 0.7485 0.7458 0.7895 0.7514 0.7992

B8 0.9178 0.9189 0.9123 0.9178 0.9247 0.9236 0.9256 0.9632 0.9562 0.9784

B9 0.7489 0.7658 0.7789 0.7562 0.7989 0.6321 0.6358 0.7214 0.6326 0.7536

AUC = Area Under the Curve; CART = Classification and Regression Tree; GBDT = Gradient Boosting Decision Tree; RF = Random Forest.
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prediction probability density. This indicates that the 
prediction confidence is reasonably spread out. 

The CART algorithm exhibits 27 samples inside the 0.4 
probability density zone while having minimal repre-
sentation in other locations. This observation suggests 
a reasonably elevated although indeterminate level of 
prediction confidence for the majority of samples at this 
particular depth. The RF, GBDT, and proposed algorithm 
prioritize sampling in regions with high probability den-
sity, with RF and the proposed algorithm exhibiting a 
notable concentration of samples in the 0.6 region. This 

Figure 6 clearly shows that when the decision tree depth 
is set to 2, the C4.5, CART, and RF algorithms have a 
smaller number of samples in the high-probability region 
(0.6). This suggests that these algorithms have lower pre-
diction confidence for most samples. The GBDT and 
the method suggested in this research allocate a greater 
number of samples in the region with a probability den-
sity of 0.4. This indicates that these algorithms have a 
higher level of prediction confidence for a larger number 
of samples at this particular depth, compared to other 
algorithms. When the C4.5 algorithm is applied with a 
tree depth of 5, it exhibits a more even distribution of 
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Figure 5.  Impact of depth on accuracy (A) and AUC of different algorithms (B).
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Table 2.  Performance of different methods in gold standard evaluation recommendations for risk management strategies.

Method Dataset Accuracy Recall F1-score AUC

DCS B1 0.7451 0.6658 0.7456 0.8456

B2 0.8321 0.7214 0.7894 0.9127

B3 0.8124 0.7831 0.7789 0.8794

B4 0.7286 0.4682 0.6231 0.8632

B5 0.7258 0.5124 0.6324 0.8692

DES B1 0.7214 0.6239 0.7248 0.8431

B2 0.8176 0.6587 0.7546 0.9123

B3 0.8216 0.7214 0.7548 0.8743

B4 0.7143 0.4689 0.6231 0.8569

B5 0.7321 0.5213 0.6589 0.8756

DWM B1 0.7389 0.6487 0.7348 0.8451

B2 0.8174 0.6523 0.7289 0.8632

B3 0.8215 0.7215 0.7541 0.8895

B4 0.7369 0.5123 0.6458 0.9123

B5 0.7123 0.5489 0.6698 0.8678

Proposed method B1 0.7851 0.8542 0.8689 0.9321

B2 0.8742 0.7238 0.8241 0.9546

B3 0.8863 0.7487 0.8236 0.9143

B4 0.8871 0.6123 0.7489 0.9057

B5 0.8864 0.6487 0.7874 0.9162

DCS: Dynamic Classifier Selection; DES: Dynamic Ensemble Selection; DWM: Dynamic Weighted Majority; AUC: Area under the Curve.

indicates a high level of prediction confidence for these 
two methods at a depth of 5. When the tree depth is 
increased to 8 or beyond in the C4.5 method, the algo-
rithm tends to focus on samples that are located in 
regions with low probability density. This may suggest a 
decline in the algorithm’s confidence in making accurate 
predictions. The CART method has a greater number 
of samples in regions with medium probability density 
and none in the highest confidence interval, indicating a 
higher level of uncertainty in its predictions. The random 
forest model has a rather consistent probability density 
for predictions in the intermediate range. There are no 
samples in the extreme probability density regions, sug-
gesting a notable level of confidence in predictions for 
the majority of samples. The GBDT and the proposed 
method exhibit a more evenly distributed set of samples, 
with the proposed algorithm specifically containing sam-
ples within the probability density range of 0.2–0.6. This 
suggests that the proposed algorithm is capable of mak-
ing predictions with varying levels of confidence at this 
particular depth.

The analysis reveals that the suggested algorithm exhibits 
a high level of prediction certainty across different deci-
sion tree depths. Notably, at a depth of 5, the algorithm’s 
prediction probability density in the high confidence 
interval resembles closely that of RF, indicating a robust 

predictive capability. As the depth of the decision tree 
increases, the suggested algorithm exhibits a more consis-
tent and evenly distributed prediction probability density. 
This suggests that the algorithm is stable and less prone 
to overfitting. By examining the probability density distri-
butions for different tree depths, the proposed algorithm 
demonstrates superior overall performance, especially in 
delivering predictions with high levels of confidence.

The performance measures (accuracy, recall, F1-score, 
and AUC) of the proposed technique are compared 
to three other methods, namely Dynamic Classifier 
Selection (DCS), Dynamic Ensemble Selection (DES), 
and Dynamic Weighted Majority (DWM), on five dis-
tinct datasets, as shown in Table 2. The table clearly 
demonstrates that the suggested technique surpasses 
DCS, DES, and DWM in terms of accuracy across all 
datasets. Remarkably, the suggested technique achieves 
an accuracy of 0.7851 on the B1 dataset, which is much 
greater than the 0.7451 accuracy of DCS. The suggested 
technique consistently achieves the greatest accuracy 
across datasets B2–B5, showcasing its unwavering accu-
racy across diverse datasets. The recall, which measures 
the proportion of correctly identified positive samples 
out of all real positive samples, is particularly notable for 
the proposed technique on the B1 dataset, with a value 
of 0.8542. This value is much greater than that of other 
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the accuracy of each approach increases with increase in 
the number of folds. This is because a higher number of 
folds allows for more data utilization for training, which 
enables the models to learn more effectively the features 
of the data. The precision of the DCS approach improves 
from 0.868 at two folds to 0.994 at 10 folds, indicating an 
upgrade in performance as the amount of data grows. 
Both DES and DWM algorithms exhibit comparable per-
formance, achieving an accuracy of 0.996 at the highest 
number of folds, which demonstrates their exceptional 
capacity to adapt to the data. 

The proposed method in this paper demonstrates a mar-
ginally superior accuracy compared to DCS across all 
folds, and is on par with DES and DWM in the initial 
folds. However, its performance slightly declines in the 
subsequent folds, possibly because of variations in the sta-
bility and generalization abilities of the proposed method 
across different folds. The test set is primarily concerned 
with evaluating the model’s capacity to generalize unfamil-
iar data. The suggested technique consistently maintains 
accuracy above 0.928 across all folds, with a peak of 0.934, 
demonstrating strong and consistent performance on the 
test set. The DCS technique exhibits variable accuracy 
ranging from 0.912 to 0.920, consistently lower than the 
suggested method. This implies that the proposed method 
may possess superior predictive capability if applied to 
unfamiliar data. The precision of DES is marginally supe-
rior to DCS, although it is still outperformed by the sug-
gested approach, particularly in certain instances where 
the disparity is more evident. The performance of DWM 
on the test set is comparable to that of DCS, but it does 
not exceed the accuracy of the suggested technique.

The suggested method exhibits comparable or slightly 
improved performance on the training set, compared to 

methods, suggesting the strong ability of the suggested 
method to identify accurately positive samples. When 
applied to different datasets, the suggested method con-
sistently achieves a higher or comparable recall rate, 
compared to the other three methods. This indicates that 
the proposed method is useful in preventing the omis-
sion of crucial risk management tactics. The F1-score, a 
metric that combines accuracy and recall using the har-
monic mean, considers both precision and recall in eval-
uating the model’s performance. The suggested method 
achieves the highest F1-score across all datasets, particu-
larly on the B1 dataset, where it attains a value of 0.8689. 
This value indicates a favorable equilibrium between 
precision and recall. The AUC value is a measure of the 
model’s capacity to classify accurately, and the suggested 
technique outperforms other methods in terms of AUC 
values across all datasets, especially on datasets B1 and 
B2 with the respective AUC values are 0.9321 and 0.9546.

The suggested method exhibits superior performance 
compared to existing comparable methods (DCS, 
DES, and DWM) across several datasets, showcasing 
enhanced efficacy in crucial metrics, including accuracy, 
recall, F1-score, and AUC. The suggested method exhib-
its extraordinary performance on the B1 dataset, which 
may be attributed to its specific benefits in managing the 
risk management strategies employed in this dataset. 
The suggested method is a data-driven, multi-criteria 
decision-making tool that effectively and practically bal-
ances cost, benefits, and feasibility to design optimal risk 
management strategies.

By analyzing the data presented in Figure 7, one can com-
pare the performance of various methodologies in terms 
of the accuracy of gold standard evaluation recommenda-
tions for risk management strategies. On the training set, 
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Figure 7.  Comparison of gold standard evaluation recommendation accuracy between different methods. (A) Training set and 
(B) Test set.
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the existing methods while demonstrating higher accu-
racy and stability on the test set. The suggested method 
demonstrates a stable and consistent high accuracy 
on the test set, which suggests its strong generaliza-
tion potential and dependable forecast performance on 
unfamiliar data. While DES and DWM achieved slightly 
higher accuracy when using the maximum number of 
folds on the training set, the suggested technique demon-
strated superior performance on the test set, thereby 
showcasing its effectiveness in practical applications.

Conclusion

This research has elucidated a data-driven, multi-criteria 
decision-making methodology, meticulously designed 
to aid managers in the nuanced balancing of diverse 
risk management strategies within the intricate realm of 
agricultural supply chains. Fundamental to this study is 
the implementation of decision tree algorithms, notably 
those incorporating transition structures, which serve 
to analyze methodically risk factors and their conse-
quential impacts. Furthermore, the adoption of dynamic 
selection techniques within a multi-classifier system 
has been instrumental in augmenting the precision and 
dependability of evaluations pertaining to risk manage-
ment strategies. The algorithm proposed herein metic-
ulously constructs a model that assimilates an array of 
risk factors and their potential interrelations, derived 
from a comprehensive analysis of historical data, expert 
evaluations, and practical instances. This model not only 
facilitates decision-makers in the intuitive discernment 
of risks and the mapping of their interconnections but 
also weighs judiciously various elements, such as costs, 
benefits, and feasibility to devise optimal management 
strategies.

Empirical evidence demonstrates that this method out-
performs traditional risk assessment approaches across 
various key performance indicators, showcasing supe-
rior learning and generalization capabilities. Although 
the research findings are encouraging, limitations still 
exist. For example, responding to specific risk factors may 
require further refined data support, and the applicabil-
ity of this approach in different cultural and geographical 
contexts remains to be examined. The future develop-
ment directions could include expanding the dataset size 
to accommodate a more diverse range of agricultural 
environments and further enhancing the adaptability and 
robustness of the algorithm. Additionally, integrating this 
method with modern agricultural technologies, such as 
the Internet of things, devices, and real-time data mon-
itoring, may pave way for more efficient and real-time 
pathways for agricultural risk management. Moreover, 
exploring improvements in algorithm interpretability and 
decision-maker interactivity could be an important part 

of the future work, ensuring that technological solutions 
are as comprehensible and applicable to users as possible.
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