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RESEARCH ARTICLE
Abstract

In this research, ultrasound assisted osmotic dehydration of courgette rings using sorbitol/sucrose solution under
different temperature (5, 25 and 50 °C for 2 h) was investigated. Sucrose (35%, w/v) and sorbitol solutions (5, 10 and
15%, w/v) were used for osmotic dehydration processes. The reliability of using an artificial neural network (ANN)
approach for predicting the osmotic dehydration properties of courgette was investigated. Immersion time, type
of treatment, osmotic solution temperature and concentration were selected as input variables and solid gain and
water loss were chosen as the outputs of the network. Results showed that all processing factors had a significant
effect on the solid gain and water loss (P<0.01). Increasing osmotic solution concentration and temperature lead
to increases in water loss and solid gain for both samples of ultrasonicated and non-ultrasonicated treatments.
The results of ANN indicated that, tanh activation function with 46 neurons in first and second hidden layers was
selected as the best activation function. This network was able to predict solid gain and water loss with R? value

equals to 0.938 and 0.985, respectively.
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1. Introduction

Courgette, (Cucurbita pepo L.), belongs to the family of the
Cucurbitaceae (Izumi and Watada, 1995). It is a rich source
of different vitamins (C, A, K and B) and minerals (Mn,
Mg, K, Ca, Fe and Zn). It has abundant dietary fibre and
omega 3 fatty acids. The dietary fibre present helps to lower
blood cholesterol level, reducing the risk of heart diseases
(Tavakolipour et al., 2014). It is also used as a main part of
many foods such as stews and soups. According to Food and
Agriculture Organization statistics (http://faostat3.fao.org),
Iran produced about 965,000 MT of gourd (approximately
4.67% of the world’s production) in 2012. Like other fruit, due
to high moisture content courgette is highly perishable and
needs suitable preservation methods for increasing its shelf-
life (Izumi and Watada, 1995). Drying is one of the oldest
methods for food preservation, mainly because of moisture
removal from the food reduces the rate of bacteria, yeast and
mould growth (Mandala et al., 2005). Osmotic dehydration
processes have been widely used for preserving fruits and
vegetables due to their potential for preserving sensory

attributes and nutritional properties similar to fresh fruits
and vegetables (Najafi et al., 2014). Various osmotic agents
have been used including glucose, fructose, lactose, dextrose,
maltose, polysaccharides, maltodextrin, corn starch syrup,
whey, sorbitol, ascorbic acid, citric acid, calcium chloride,
and combinations of these osmotic agents (Rahman, 2007).
Among these osmotic agents, sorbitol is a dietetic sugar and
can be used as an alternative to replace sucrose and invert
sugar in the final product. Therefore, the final product can
be used as a dietary product for peoples with diabetes and
heart diseases and chronic obesity (Todorova et al., 1982).

Presently ultrasound is considered to be a promising
technology in food dehydration process. When ultrasound
waves are directly coupled to the foods, they produce a
rapid series of alternative compressions and expansions
reactions and a kind of sponge effect and so lead to the quick
migration of moisture from the product (Gallego-Juarez
et al., 2007). This mechanism is responsible for drying
and dehydrating foods. Cavitation leads to the formation
of bubbles in the liquid, which can explosively collapse
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and generate localised pressure fluctuations. This effect
increases the diffusion rate during osmotic processes and
accelerates de-gassing of the tissue (Rahman, 2007; Sun,
2005). Ultrasonic-assisted osmotic dehydration can be
carried out at lower solution temperatures to obtain a higher
rate of water loss and solid gain whilst preserving the natural
flavour, colour and heat-sensitive nutritional compounds
and reduces energy consumption (Sun, 2005).

Several papers have addressed the requirement of non-
thermal processing technologies such as ultrasound
and osmotic dehydration. For example Raj et al. (2014)
investigated Osmo-air dehydration of different Indian
apricot (Prunus armeniaca L.) cultivars. The results revealed
that among the different cultivars of apricot, cv. Kaisha
followed by New Castle showed a better yield and quality
of dried product. Rawson et al. (2011) studied the effect of
ultrasound and blanching pre-treatments on polyacetylene
and carotenoid content of hot air and freeze dried carrot
slice. They showed that ultrasound pre-treatment can be
used as an alternative to conventional blanching treatment
in the drying of carrots. Additionally, Fernandes et al.
(2009) studied the influence of ultrasound pre-treatment
on pineapple cellular structure during dehydration. They
stated that, ultrasound application increased sugar loss and
water diffusivity because of the formation of microscopic
channels, which offered lower resistance to water and
sugar diffusion. Generally, the results of these researches
illustrated that the use of ultrasound-assisted osmotic
dehydration improved mass transfer rate during osmotic
dehydration and it amended quality of final products.

Today, artificial neural networks (ANN) play an important
role as a powerful tool in predicting the processing
parameters in different food processing unit operation.
For example Aghajani et al. (2012); Kashiri ez al. (2012);
Ghahfarrokhi et al. (2013); Mokhtarian et al. (2014a,b) used
ANN methods for modelling drying processes of green malt,
soaking process of sorghum, non-thermal inactivation of
peroxidase enzyme, air drying and osmotic dehydration
of pumpkin fruit, respectively. Momenzadeh et al. (2011)
investigated drying behaviour of shelled corn dried in
a microwave-assisted fluidised bed dryer using ANN.
Lertworasirikul and Saetan (2010) used ANN modelling
to predict mass transfer parameters of kaffir lime peel
(i.e. water loss and solid gain). Goni et al. (2008) used an
artificial neural approach to predict freezing and thawing
times on foods. However, no research was observed in the
context of the impact of ultrasound-Osmo-dehydration
method on the physical parameters of courgette and
prediction of this process using an ANN.

The purpose of this study was to investigate the ultrasonic
osmotic dehydration of courgette and prediction of osmotic
dehydration parameters using an ANN method.

2. Material and methods
Raw material preparation

Fresh courgette was purchased from a local market in
Sabzevar, Iran. At the beginning of each experiment, the
courgette was washed with fresh water to remove the
courgette fines adhered to the fruit surface and cut into
rings with a diameter of 20 mm and thickness of 5 mm.
The initial weight of each courgette slice was about 2 g.
The initial moisture content was determined by drying in
hot air convective oven (model UNE 400 PA; Memmert,
Scheabach, Germany) at 105 °C for 48 h (Mokhtarian et
al., 2014a).

Ultrasound-assisted osmotic dehydration process

In this study different osmotic solution concentration
[sucrose 35% + sorbitol 5%, w/v (S;), sucrose 35% + sorbitol
10%, w/v (S,,), sucrose 35% + sorbitol 15%, w/v (S;5)] and
different temperatures (5, 25 and 50 °C) were used. The
experiments with ultrasound treatment were carried out
in 250 ml beaker. The experiments were carried out by an
ultrasonic probe system (model UP 200H with ultrasound
frequency of 24 kHz; Hielscher Ultrasonics GmbH, Teltow,
Germany). Courgette rings were immersed in an osmotic
solution, then the probe (model S7/Micro Tip7; Hielscher
Ultrasonics GmbH) was inserted into the sample beaker and
continuous sound waves were delivered to the sample for
120 min. Treated samples were removed from the osmotic
solutions and their surfaces washed out under distilled,
deionised water and placed on Whatman filter paper (GE
Healthcare Bio-Sciences, Pittsburgh, PA, USA) to absorb
the excess surface water; subsequently, the samples were
weighed. The osmotic solution temperature was adjusted
using a water bath (model E200; Lauda, Lauda-Koénigshofen,
Germany). In all experiments, in order to minimise
the dilution effect of the osmotic solution during the
dehydration process, the ratio of fruit to osmotic solution
was kept constant at a ratio of 1 to 20 kg/l (Mayor et al.,
2006). After the end of experiments water loss and solid
gain were calculated by the following equations (Chenlo
et al., 2006):

a-S,)m,—(1-S,)m,

Somo

WL =

1

Stml _Somo

SG = 2)

Somq
Where, m,, is the initial mass of the sample, m, is the sample
mass at time t, S and S, are the solids content of the sample
prior to osmotic dehydration and the solids content of the
sample after osmotic dehydration at time t, respectively.

It should be noted that, in order to measure moisture
content, rehydrated samples were withdrawn from osmotic
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solutions and after removal of excess surface water using
filter paper, placed in a petri dish and moved to a hot air
convective oven (model UNE 400 PA; Memmert) and dried
at 105 °C for 48 h, then the moisture content was calculated
by following equation:

w
MC(d.b%) = ‘“’ 3
@9 =5 3)
Where, W is the mass of evaporated water and W/, is the
initial mass of the sample after rehydration.

Artificial neural network

In order to obtain the best prediction of courgette osmotic
dehydration parameters by neural network, multilayer
perceptron network (MLP) was used with different
architectures and trained using the experimental data
(Aghajani et al., 2012; Kashiri et al., 2012; Mokhtarian
et al., 2014a,b). The network arrangement architecture
was based on 4 inputs and 2 outputs (Figure 1). The input
layer consists of osmotic solution concentration (x,)
osmotic solution temperature (x,), immersion time (x;)
and pre-treatment type (x,) and the output layer contains
water loss (y;) and solid gain (y,). The back propagation
algorithm was used in the training of ANN model. This
algorithm uses the supervised training technique where
the network weights and biases are initialised randomly
at the beginning of the training phase (Tavakolipour and
Mokhtarian, 2012). In this work, Number of 1-2 hidden
layers with 2-50 neurons per hidden layer, learning rate =
0.4, momentum coefficient = 0.9 and activation functions
of sigmoid logarithms (Equation 4) and hyperbolic tangent

First hidden layer
Inlet layer

V' H,
50 neuron cells

Ultrasonic osmotic dehydration

(Equation 5) in both hidden and output layers were used
in order to find the best configuration.

log sig(z)=(1+exp(-z)) ™ (0,+1) (4)
tanh(z)=4— e (~1,+1) (5)
e +e

Computer program SPSS version 17 (2011; IBM Corp.,
Armonk, NY, USA) was used to design and evaluation of
ANN performance by determination of two important
criteria such as correlation coefficient (R?) and mean
relative error (MRE) according to the following equations:

.
Z (U,;,i - Ue,;)z
Rzl g (6)
Z(Um*Up,,)
L =1
vlu -u..
MRE = %Z‘ ri_ Zeil 4100 (7)
i=1

e,

Where U, is predicted data, U, is experimental data,
Upi is average of experimental data and N is the number
of observations.

Statistical analysis method

Results were analysed by statistics software (version 8;
Analytical Software, Tallahassee, FL, USA) and analysis of
variance (ANOVA) method. Means comparison was made
by LSD tests at the probability of 0.01%.

Second hidden layer

7

Outlet layer

A

p

Bias

:7\ ”n2

50 neuron cells

Figure 1. Schematic structure of multi-layer perceptron neural network (x, . osmotic solution concentration; x, _ osmotic solution
temperature; x, _ immersion time; x, _ treatment type; y, _ water loss; y, _ solid gain).
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3. Results and discussion
Water loss

The effect of treatment type and osmotic solution
concentration on the amount of water loss is shown in
Figure 2A. The experimental results indicated that the
osmotic solution concentration and the type of treatment
had a meaningful effect on water loss (P<0.01). As can
be seen from Figure 2A, by increasing the solution
concentration from (sucrose 35% + sorbitol 5%, w/v)
to (sucrose 35% + sorbitol 15%, w/v), the rate of water
loss, increased during 120 min of osmotic dehydration
process, this was in agreement with other research (Khin
et al., 2007). The maximum water loss was obtained when
the osmotic treatment was carried out in the highest
concentrated solution (i.e. sucrose 35% + sorbitol 15%,
w/v). As can be seen from Figure 2A, the maximum water
loss in courgette was related to ultrasound assisted osmo-
dehydrated samples. Similar results were reported by
Garcia-Noguera and his co-workers regarding that used
ultrasound treatment in osmotic dehydration of strawberry
in sucrose osmotic solution (Garcia-Noguera et al., 2010).
Increasing the osmotic solution concentration decreased
water activity and increased the necessary derived force
for water removal from sample tissue, which lead to an
increase in the water loss (Eren and Kaymak-Ertekin, 2007).
Additionally, by increasing osmotic solution concentration,
the osmotic pressure difference was maintained for a longer
time and better mass transfer and higher water losses were
achieved (Togrul and Ispir, 2007).

The effect of osmotic solution temperature and the kind of
treatment on water loss was shown in Figure 2B. As can be
seen, by rising osmotic solution temperature, the amount of

O Ultrasound
@ Non-ultrasound

a
5 0481 c b
S d
5 e
= 036
Qo
£ ]
2 024+
(72}
e ]
£ 0121
=
0 ; .
S5 S10 s15

Osmotic solution concentration (% wi/v)

water loss of courgette slice increased, so that the dehydrated
sample at 50 °C had the highest amount of water loss and
dehydrated sample at 5 °C had the lowest amount of water
loss. Ultrasound treatment had a significant effect on the
amount of water loss in the osmotic dehydrated sample.
Increase osmotic solution temperature reduces the viscosity
of osmotic solution and external mass transfer resistance
which reduced water transport from courgette slice during
osmotic dehydration process (Lertworasirikul and Saetan,
2010). On the other hand, by rising osmotic solution
temperature, increased the membrane permeability, swelling
and shrinkage of cellular membrane that facilitates the rate
of water loss from sample (Eren and Kaymak-Ertekin, 2007).

ANOVA results showed that (Figure 2), the kind of
treatment had meaningful and significant effect (P<0.01)
on water loss. The highest values of water loss were shown
in treated samples with ultrasound that this due to the
cavitation phenomenon caused by sonication that this
effect can increase the mass transfer rate during osmotic
processes and accelerates the rate of water loss (Sun, 2005).

Solid gain

Figure 3 shows the experimental data for solid gain under the
experimental conditions tested in this research. The results
illustrated that the most significant (P<0.01) changes of solid
gain took place during the 120 min of osmotic dehydration in
ultrasound treated samples. As can be seen from Figure 3A,
increasing the concentration of osmotic solution from 5%,
w/v to 15%, w/v sorbitol, lead to an increase in the amount
of solid gain in both ultrasonicated and non-ultrasonicated
courgette slice. Other researchers have shown that the
amount of solid gain increased with an increase of the osmotic
solution concentration and application ultrasound treatment
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v 5 ' 25 ' 50

Osmotic solution temperature (°C)

Figure 2. The effect of (A) osmotic solution concentration and (B) temperature on water loss during 120 min of ultrasound and
non-ultrasound assisted osmotic dehydration process (S; = sucrose 35% + sorbitol 5%, wiv; S, = sucrose 35% + sorbitol 10%,
wiv; S, = sucrose 35% + sorbitol 15%, wiv). Columns with the same superscript letter are not statistically different (P<0.01).
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Figure 3. The effect of (A) osmotic solution concentration and (B) temperature on solid gain during 120 min of ultrasound and
non-ultrasound assisted osmotic dehydration process, (S = sucrose 35% + sorbitol 5%, wiv; S,, = sucrose 35% + sorbitol 10%,
wiv; S, = sucrose 35% + sorbitol 15%, wiv). Columns with the same superscript letter are not statistically different (P<0.01).

(Fernandes et al., 2008; Garcia-Noguera et al., 2010; Singh et
al., 2007). The increase of solid gain may be due to increases
water loss, which leads to an increase in solute concentration
inside courgette rings, this is in agreement with the results
of Jalaee et al. (2011). Furthermore, the increase in diffusion
rates of solute into courgette tissue may be due to the lower
molecular weight of sorbitol than sucrose. An increase of
osmotic solution concentration from 5%, w/v to 15%, w/v
sorbitol lead to an increase in the solid gain in courgette slices.
Several researchers have stated that Osmo-active substance
with lower molecular weight lead to significantly greater
solid gain compared with other osmotic agents with higher
molecular weight. This could be due to the lower diffusivity
of higher molecular weight substances (Kowalska et al., 2008;
Mayor et al., 2006).

As can be seen from Figure 3B, there was an increase in the
amount of solid gain with an increase of osmotic solution
temperature. The highest amount of solid gain was related
to osmo-dehydrated courgette slices at 50 °C and the lowest
amount was at 5 °C. Treated samples with ultrasound had a
higher solid gain compared to non-ultrasonicated samples.
These results are in accordance with those obtained by
other researchers (Garcia-Noguera et al., 2010; Singh et
al., 2007). The impact of increasing solution temperature
may be due to a decrease of the osmotic solution viscosity
which leads to higher diffusion rates of solute into the
courgette tissue (El-Aouar et al., 2006; Fernandes et al.,
2008; Singh et al., 2007).

Moisture content

The average initial moisture content of courgette slices was
found to be 18.49+1.61% (dry basis). The final moisture
content of courgette samples, as a function of osmotic solution
concentration in two different treatments of ultrasound
and non-ultrasound assisted osmotic dehydration during

120 min of osmotic process, are presented in Figure 4A.
Statistical analysis showed that the effect of osmotic solution
concentration and treatment on the final moisture content is
quite significant (P<0.01). The highest final moisture content
was found in non-ultrasound assisted osmotic dehydrated
courgette slice with sucrose 35% + sorbitol 5% w/v osmotic
solution (i.e. S;) and the lowest final moisture content was
observed in ultrasound assisted osmotic dehydrated courgette
slice with sucrose 35% + sorbitol 15%, w/v osmotic solution
(i.e. S;5). This may be due to the cavitation phenomenon
caused by sonication, this effect can increase moisture
diffusion during osmotic processes and accelerate dehydration
of the tissue (Sun, 2005).

The effect of osmotic solution temperature on the final
moisture content with respect to treatment type is shown
in Figure 4B. Statistical analysis revealed that by increasing
the solution temperature the final moisture content of
courgette decreased. Furthermore, the result indicated
that ultrasound assisted osmotic dehydration lead to a
higher reduction in the final moisture content. Increasing
osmotic solution temperature led to sample swelling and
more water diffusion from the sample (Eren and Kaymak-
Ertekin, 2007; Garcia-Noguera et al., 2010). These results
are in agreement with previous researchers (Kowalska et
al., 2008; Mokhtarian et al., 2014b).

Artificial neural network modelling of ultrasound assisted
osmotic dehydration parameters

In this work, a combination of the layers and neurons
with different activation functions was used for modelling
perceptron neural network. The neural network includes one
and two hidden layers, 2 to 50 neurons were selected randomly
and network power was estimated to predicting mass transfer
factors of ultrasound assisted osmotic dehydrated courgette
sample. In order to identify a suitable learning epoch, one
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Figure 4. The effect of (A) osmotic solution concentration and (B) temperature on moisture content during 120 min of ultrasound
and non-ultrasound assisted osmotic dehydration process (S, = sucrose 35% + sorbitol 5%, wiv; S,, = sucrose 35% + sorbitol
10%, wiv; S5 = sucrose 35% + sorbitol 15%, w/v). Columns with the same superscript letter are not statistically different (P<0.01).
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Figure 5. Determination of suitable learning epoch for different activation functions: (A) logarithm sigmoid and (B) tangent hyperbolic.

experimental network includes various neuron numbers (2
to 50 neurons), different activation functions (logsig and
tanh) and different learning epochs (100, 1,500, 2,500, 5,000
and 7,000). The results showed that the best learning epochs
for logarithm sigmoid and tangent hyperbolic activation
functions were obtained 7,000 and 5,000, respectively.
Optimisation of the best learning epoch in both activated
functions lead to the lowest MRE. Determination of a suitable
learning epoch for different activation functions was based
on the trial and error method (Figure 5).

The obtained results of MLP network for water loss and
solid gain with logsig and tanh activation functions and
different configurations are shown in Figure 6. The result
of MLP with logsig activation function with one and
two hidden layers and shoed that topology of 4-18-18-2
(i.e. network with 4 inputs, 18 neurons in the first and
second hidden layer and 2 outputs) had the best result for
predictimng water loss and solid gain. As well, the result
for the perceptron neural network with tanh activation
function with one and two hidden layers indicated that,
the neural network with a structure of 4-46-46-2 had the

best result for predicting water loss and solid gain. This
network was able to predict water loss and solid gain with
relative error values of 0.0071 and 0.0101, respectively. R?
values for water loss and solid gain were obtained 0.985
and 0.938, respectively.

A comparison of the results of the different activation
functions of ANN for determining the best activation
function for predicting ultrasound assisted osmotic
dehydration factors of courgette slice is shown in Table 1.
As can be seen, all the activation functions have a higher
ability to predict ultrasound assisted osmotic dehydration
parameters and R? values in all cases were higher than 0.831.
However, the tanh activation function with 5,000 learning
epoch lead to the best results for predicting water loss and
solid gain with R? of 0.985 and 0.938, respectively. Generally,
in the case of ultrasound assisted osmotic dehydrated
courgette slices, the tanh activation function was selected
as the best function due to the lower relative error and is
recommended for industrial applications.
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Figure 6. The variation of relative error values versus neuron number to predict (A) water loss and (B) solid gain with different
activation function (tanh = tangent hyperbolic; logsig = logarithm sigmoid).

Table 1. Comparison of the different activation functions of the multilayer perceptron network to predict ultrasound assisted
osmotic dehydration parameters of courgette.

Activation function Learning epoch Statistical parameters Water loss Solid gain

Logarithm sigmoid 7,000 Correlation coefficient 0.965 0.865
Mean relative error 0.0278 0.1333
Configuration’ 4-18-18-2 4-18-18-2

Tangent hyperbolic 5,000 Correlation coefficient 0.985 0.938
Mean relative error 0.0071 0.0101
Configuration 4-46-46-2 4-46-46-2

14-N,-N,-2: N, and N, were the number of neurons in the first and second hidden layer, respectively.
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Figure 7. Predicted and experimental values of the multilayer perceptron network with tanh activation function to predict mass
transfer parameters of courgette in ultrasound assisted osmotic dehydration.

Figure 7 shows the model sensitivity diagram of predicted
values of multilayer perceptron network with tanh activation
function vs experimental values for the best configuration
(i.e. structure of 4-46-46-2). The result indicate that, the
data were randomly located around the regression line.
This could be a reason for carefully evaluation of the
neural networks to predict ultrasound assisted osmotic
dehydration parameters of courgette sample (Figure 7).

4. Conclusions

In this research the effects of ultrasound and osmotic
dehydration treatments on the water loss and solid gain were
studied. The results indicated that, the use of ultrasound-
assisted osmotic dehydration, increased water loss and
sugar gain during the process. Also, osmotic dehydration
rate increased with an increase in the concentration in the
osmosis solution and with process temperature. In this
study an ANN trained by back propagation algorithms was
developed to predict water loss and solid gain. The tanh
activation function was selected as the best function due
to a lower relative error and is recommended for industrial
applications. This activation function was able to predict
water loss and solid gain with correlation coefficients of
0.985 and 0.938, respectively.
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