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1. Introduction

Courgette, (Cucurbita pepo L.), belongs to the family of the 
Cucurbitaceae (Izumi and Watada, 1995). It is a rich source 
of different vitamins (C, A, K and B) and minerals (Mn, 
Mg, K, Ca, Fe and Zn). It has abundant dietary fibre and 
omega 3 fatty acids. The dietary fibre present helps to lower 
blood cholesterol level, reducing the risk of heart diseases 
(Tavakolipour et al., 2014). It is also used as a main part of 
many foods such as stews and soups. According to Food and 
Agriculture Organization statistics (http://faostat3.fao.org), 
Iran produced about 965,000 MT of gourd (approximately 
4.67% of the world’s production) in 2012. Like other fruit, due 
to high moisture content courgette is highly perishable and 
needs suitable preservation methods for increasing its shelf-
life (Izumi and Watada, 1995). Drying is one of the oldest 
methods for food preservation, mainly because of moisture 
removal from the food reduces the rate of bacteria, yeast and 
mould growth (Mandala et al., 2005). Osmotic dehydration 
processes have been widely used for preserving fruits and 
vegetables due to their potential for preserving sensory 

attributes and nutritional properties similar to fresh fruits 
and vegetables (Najafi et al., 2014). Various osmotic agents 
have been used including glucose, fructose, lactose, dextrose, 
maltose, polysaccharides, maltodextrin, corn starch syrup, 
whey, sorbitol, ascorbic acid, citric acid, calcium chloride, 
and combinations of these osmotic agents (Rahman, 2007). 
Among these osmotic agents, sorbitol is a dietetic sugar and 
can be used as an alternative to replace sucrose and invert 
sugar in the final product. Therefore, the final product can 
be used as a dietary product for peoples with diabetes and 
heart diseases and chronic obesity (Todorova et al., 1982).

Presently ultrasound is considered to be a promising 
technology in food dehydration process. When ultrasound 
waves are directly coupled to the foods, they produce a 
rapid series of alternative compressions and expansions 
reactions and a kind of sponge effect and so lead to the quick 
migration of moisture from the product (Gallego-Juarez 
et al., 2007). This mechanism is responsible for drying 
and dehydrating foods. Cavitation leads to the formation 
of bubbles in the liquid, which can explosively collapse 

Prediction of ultrasonic osmotic dehydration properties of courgette by ANN

M. Mokhtarian1* and A.D. Garmakhany2

1Department of Food Science and Technology, Roudehen Branch, Islamic Azad University, Roudehen, Iran; 2Department 
of Food Science and Technology, Toyserkan Faculty of Industrial Engineering, Bu-Ali Sina University, Hamadan, Iran; 
mokhtarian.mo@gmail.com

Received: 16 June 2015 / Accepted: 15 July 2016 
© 2016 Wageningen Academic Publishers

RESEARCH ARTICLE
Abstract

In this research, ultrasound assisted osmotic dehydration of courgette rings using sorbitol/sucrose solution under 
different temperature (5, 25 and 50 °C for 2 h) was investigated. Sucrose (35%, w/v) and sorbitol solutions (5, 10 and 
15%, w/v) were used for osmotic dehydration processes. The reliability of using an artificial neural network (ANN) 
approach for predicting the osmotic dehydration properties of courgette was investigated. Immersion time, type 
of treatment, osmotic solution temperature and concentration were selected as input variables and solid gain and 
water loss were chosen as the outputs of the network. Results showed that all processing factors had a significant 
effect on the solid gain and water loss (P<0.01). Increasing osmotic solution concentration and temperature lead 
to increases in water loss and solid gain for both samples of ultrasonicated and non-ultrasonicated treatments. 
The results of ANN indicated that, tanh activation function with 46 neurons in first and second hidden layers was 
selected as the best activation function. This network was able to predict solid gain and water loss with R2 value 
equals to 0.938 and 0.985, respectively.

Keywords: courgette, mass transfer, osmotic dehydration, sorbitol/sucrose solution, ultrasound

OPEN ACCESS  

http://faostat3.fao.org
mailto:mokhtarian.mo@gmail.com
http://creativecommons.org/licenses/by-nc-sa/4.0/


M. Mokhtarian and A.D. Garmakhany

162� Quality Assurance and Safety of Crops & Foods 9 (2)

and generate localised pressure fluctuations. This effect 
increases the diffusion rate during osmotic processes and 
accelerates de-gassing of the tissue (Rahman, 2007; Sun, 
2005). Ultrasonic-assisted osmotic dehydration can be 
carried out at lower solution temperatures to obtain a higher 
rate of water loss and solid gain whilst preserving the natural 
flavour, colour and heat-sensitive nutritional compounds 
and reduces energy consumption (Sun, 2005).

Several papers have addressed the requirement of non-
thermal processing technologies such as ultrasound 
and osmotic dehydration. For example Raj et al. (2014) 
investigated Osmo-air dehydration of different Indian 
apricot (Prunus armeniaca L.) cultivars. The results revealed 
that among the different cultivars of apricot, cv. Kaisha 
followed by New Castle showed a better yield and quality 
of dried product. Rawson et al. (2011) studied the effect of 
ultrasound and blanching pre-treatments on polyacetylene 
and carotenoid content of hot air and freeze dried carrot 
slice. They showed that ultrasound pre-treatment can be 
used as an alternative to conventional blanching treatment 
in the drying of carrots. Additionally, Fernandes et al. 
(2009) studied the influence of ultrasound pre-treatment 
on pineapple cellular structure during dehydration. They 
stated that, ultrasound application increased sugar loss and 
water diffusivity because of the formation of microscopic 
channels, which offered lower resistance to water and 
sugar diffusion. Generally, the results of these researches 
illustrated that the use of ultrasound-assisted osmotic 
dehydration improved mass transfer rate during osmotic 
dehydration and it amended quality of final products.

Today, artificial neural networks (ANN) play an important 
role as a powerful tool in predicting the processing 
parameters in different food processing unit operation. 
For example Aghajani et al. (2012); Kashiri et al. (2012); 
Ghahfarrokhi et al. (2013); Mokhtarian et al. (2014a,b) used 
ANN methods for modelling drying processes of green malt, 
soaking process of sorghum, non-thermal inactivation of 
peroxidase enzyme, air drying and osmotic dehydration 
of pumpkin fruit, respectively. Momenzadeh et al. (2011) 
investigated drying behaviour of shelled corn dried in 
a microwave-assisted fluidised bed dryer using ANN. 
Lertworasirikul and Saetan (2010) used ANN modelling 
to predict mass transfer parameters of kaffir lime peel 
(i.e. water loss and solid gain). Goni et al. (2008) used an 
artificial neural approach to predict freezing and thawing 
times on foods. However, no research was observed in the 
context of the impact of ultrasound-Osmo-dehydration 
method on the physical parameters of courgette and 
prediction of this process using an ANN.

The purpose of this study was to investigate the ultrasonic 
osmotic dehydration of courgette and prediction of osmotic 
dehydration parameters using an ANN method.

2. Material and methods

Raw material preparation

Fresh courgette was purchased from a local market in 
Sabzevar, Iran. At the beginning of each experiment, the 
courgette was washed with fresh water to remove the 
courgette fines adhered to the fruit surface and cut into 
rings with a diameter of 20 mm and thickness of 5 mm. 
The initial weight of each courgette slice was about 2 g. 
The initial moisture content was determined by drying in 
hot air convective oven (model UNE 400 PA; Memmert, 
Scheabach, Germany) at 105 °C for 48 h (Mokhtarian et 
al., 2014a).

Ultrasound-assisted osmotic dehydration process

In this study different osmotic solution concentration 
[sucrose 35% + sorbitol 5%, w/v (S5), sucrose 35% + sorbitol 
10%, w/v (S10), sucrose 35% + sorbitol 15%, w/v (S15)] and 
different temperatures (5, 25 and 50 °C) were used. The 
experiments with ultrasound treatment were carried out 
in 250 ml beaker. The experiments were carried out by an 
ultrasonic probe system (model UP 200H with ultrasound 
frequency of 24 kHz; Hielscher Ultrasonics GmbH, Teltow, 
Germany). Courgette rings were immersed in an osmotic 
solution, then the probe (model S7/Micro Tip7; Hielscher 
Ultrasonics GmbH) was inserted into the sample beaker and 
continuous sound waves were delivered to the sample for 
120 min. Treated samples were removed from the osmotic 
solutions and their surfaces washed out under distilled, 
deionised water and placed on Whatman filter paper (GE 
Healthcare Bio-Sciences, Pittsburgh, PA, USA) to absorb 
the excess surface water; subsequently, the samples were 
weighed. The osmotic solution temperature was adjusted 
using a water bath (model E200; Lauda, Lauda-Königshofen, 
Germany). In all experiments, in order to minimise 
the dilution effect of the osmotic solution during the 
dehydration process, the ratio of fruit to osmotic solution 
was kept constant at a ratio of 1 to 20 kg/l (Mayor et al., 
2006). After the end of experiments water loss and solid 
gain were calculated by the following equations (Chenlo 
et al., 2006):

� (1) 

� (2)

Where, m0 is the initial mass of the sample, mt is the sample 
mass at time t, S0 and St are the solids content of the sample 
prior to osmotic dehydration and the solids content of the 
sample after osmotic dehydration at time t, respectively.

It should be noted that, in order to measure moisture 
content, rehydrated samples were withdrawn from osmotic 
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solutions and after removal of excess surface water using 
filter paper, placed in a petri dish and moved to a hot air 
convective oven (model UNE 400 PA; Memmert) and dried 
at 105 °C for 48 h, then the moisture content was calculated 
by following equation:

� (3)

Where, Ww is the mass of evaporated water and Wi is the 
initial mass of the sample after rehydration.

Artificial neural network

In order to obtain the best prediction of courgette osmotic 
dehydration parameters by neural network, multilayer 
perceptron network (MLP) was used with different 
architectures and trained using the experimental data 
(Aghajani et al., 2012; Kashiri et al., 2012; Mokhtarian 
et al., 2014a,b). The network arrangement architecture 
was based on 4 inputs and 2 outputs (Figure 1). The input 
layer consists of osmotic solution concentration (x1) 
osmotic solution temperature (x2), immersion time (x3) 
and pre-treatment type (x4) and the output layer contains 
water loss (y1) and solid gain (y2). The back propagation 
algorithm was used in the training of ANN model. This 
algorithm uses the supervised training technique where 
the network weights and biases are initialised randomly 
at the beginning of the training phase (Tavakolipour and 
Mokhtarian, 2012). In this work, Number of 1-2 hidden 
layers with 2-50 neurons per hidden layer, learning rate = 
0.4, momentum coefficient = 0.9 and activation functions 
of sigmoid logarithms (Equation 4) and hyperbolic tangent 

(Equation 5) in both hidden and output layers were used 
in order to find the best configuration.

� (4)

� (5)

 
Computer program SPSS version 17 (2011; IBM Corp., 
Armonk, NY, USA) was used to design and evaluation of 
ANN performance by determination of two important 
criteria such as correlation coefficient (R2) and mean 
relative error (MRE) according to the following equations:

 
� (6)

� (7)

 
Where Up,i is predicted data, Ue,i is experimental data, 
Ūp,i is average of experimental data and N is the number 
of observations.

Statistical analysis method

Results were analysed by statistics software (version 8; 
Analytical Software, Tallahassee, FL, USA) and analysis of 
variance (ANOVA) method. Means comparison was made 
by LSD tests at the probability of 0.01%.
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Figure 1. Schematic structure of multi-layer perceptron neural network (x1 = osmotic solution concentration; x2 = osmotic solution 
temperature; x3 = immersion time; x4 = treatment type; y1 = water loss; y2 = solid gain).
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3. Results and discussion

Water loss

The effect of treatment type and osmotic solution 
concentration on the amount of water loss is shown in 
Figure 2A. The experimental results indicated that the 
osmotic solution concentration and the type of treatment 
had a meaningful effect on water loss (P<0.01). As can 
be seen from Figure 2A, by increasing the solution 
concentration from (sucrose 35% + sorbitol 5%, w/v) 
to (sucrose 35% + sorbitol 15%, w/v), the rate of water 
loss, increased during 120 min of osmotic dehydration 
process, this was in agreement with other research (Khin 
et al., 2007). The maximum water loss was obtained when 
the osmotic treatment was carried out in the highest 
concentrated solution (i.e. sucrose 35% + sorbitol 15%, 
w/v). As can be seen from Figure 2A, the maximum water 
loss in courgette was related to ultrasound assisted osmo-
dehydrated samples. Similar results were reported by 
García-Noguera and his co-workers regarding that used 
ultrasound treatment in osmotic dehydration of strawberry 
in sucrose osmotic solution (García-Noguera et al., 2010). 
Increasing the osmotic solution concentration decreased 
water activity and increased the necessary derived force 
for water removal from sample tissue, which lead to an 
increase in the water loss (Eren and Kaymak-Ertekin, 2007). 
Additionally, by increasing osmotic solution concentration, 
the osmotic pressure difference was maintained for a longer 
time and better mass transfer and higher water losses were 
achieved (Togrul and Ispir, 2007).

The effect of osmotic solution temperature and the kind of 
treatment on water loss was shown in Figure 2B. As can be 
seen, by rising osmotic solution temperature, the amount of 

water loss of courgette slice increased, so that the dehydrated 
sample at 50 °C had the highest amount of water loss and 
dehydrated sample at 5 °C had the lowest amount of water 
loss. Ultrasound treatment had a significant effect on the 
amount of water loss in the osmotic dehydrated sample. 
Increase osmotic solution temperature reduces the viscosity 
of osmotic solution and external mass transfer resistance 
which reduced water transport from courgette slice during 
osmotic dehydration process (Lertworasirikul and Saetan, 
2010). On the other hand, by rising osmotic solution 
temperature, increased the membrane permeability, swelling 
and shrinkage of cellular membrane that facilitates the rate 
of water loss from sample (Eren and Kaymak-Ertekin, 2007).

ANOVA results showed that (Figure 2), the kind of 
treatment had meaningful and significant effect (P<0.01) 
on water loss. The highest values of water loss were shown 
in treated samples with ultrasound that this due to the 
cavitation phenomenon caused by sonication that this 
effect can increase the mass transfer rate during osmotic 
processes and accelerates the rate of water loss (Sun, 2005).

Solid gain

Figure 3 shows the experimental data for solid gain under the 
experimental conditions tested in this research. The results 
illustrated that the most significant (P<0.01) changes of solid 
gain took place during the 120 min of osmotic dehydration in 
ultrasound treated samples. As can be seen from Figure 3A, 
increasing the concentration of osmotic solution from 5%, 
w/v to 15%, w/v sorbitol, lead to an increase in the amount 
of solid gain in both ultrasonicated and non-ultrasonicated 
courgette slice. Other researchers have shown that the 
amount of solid gain increased with an increase of the osmotic 
solution concentration and application ultrasound treatment 
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Figure 2. The effect of (A) osmotic solution concentration and (B) temperature on water loss during 120 min of ultrasound and 
non-ultrasound assisted osmotic dehydration process (S5 = sucrose 35% + sorbitol 5%, w/v; S10 = sucrose 35% + sorbitol 10%, 
w/v; S15 = sucrose 35% + sorbitol 15%, w/v). Columns with the same superscript letter are not statistically different (P<0.01).
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(Fernandes et al., 2008; García-Noguera et al., 2010; Singh et 
al., 2007). The increase of solid gain may be due to increases 
water loss, which leads to an increase in solute concentration 
inside courgette rings, this is in agreement with the results 
of Jalaee et al. (2011). Furthermore, the increase in diffusion 
rates of solute into courgette tissue may be due to the lower 
molecular weight of sorbitol than sucrose. An increase of 
osmotic solution concentration from 5%, w/v to 15%, w/v 
sorbitol lead to an increase in the solid gain in courgette slices. 
Several researchers have stated that Osmo-active substance 
with lower molecular weight lead to significantly greater 
solid gain compared with other osmotic agents with higher 
molecular weight. This could be due to the lower diffusivity 
of higher molecular weight substances (Kowalska et al., 2008; 
Mayor et al., 2006).

As can be seen from Figure 3B, there was an increase in the 
amount of solid gain with an increase of osmotic solution 
temperature. The highest amount of solid gain was related 
to osmo-dehydrated courgette slices at 50 °C and the lowest 
amount was at 5 °C. Treated samples with ultrasound had a 
higher solid gain compared to non-ultrasonicated samples. 
These results are in accordance with those obtained by 
other researchers (García-Noguera et al., 2010; Singh et 
al., 2007). The impact of increasing solution temperature 
may be due to a decrease of the osmotic solution viscosity 
which leads to higher diffusion rates of solute into the 
courgette tissue (El-Aouar et al., 2006; Fernandes et al., 
2008; Singh et al., 2007).

Moisture content

The average initial moisture content of courgette slices was 
found to be 18.49±1.61% (dry basis). The final moisture 
content of courgette samples, as a function of osmotic solution 
concentration in two different treatments of ultrasound 
and non-ultrasound assisted osmotic dehydration during 

120 min of osmotic process, are presented in Figure 4A. 
Statistical analysis showed that the effect of osmotic solution 
concentration and treatment on the final moisture content is 
quite significant (P<0.01). The highest final moisture content 
was found in non-ultrasound assisted osmotic dehydrated 
courgette slice with sucrose 35% + sorbitol 5% w/v osmotic 
solution (i.e. S5) and the lowest final moisture content was 
observed in ultrasound assisted osmotic dehydrated courgette 
slice with sucrose 35% + sorbitol 15%, w/v osmotic solution 
(i.e. S15). This may be due to the cavitation phenomenon 
caused by sonication, this effect can increase moisture 
diffusion during osmotic processes and accelerate dehydration 
of the tissue (Sun, 2005).

The effect of osmotic solution temperature on the final 
moisture content with respect to treatment type is shown 
in Figure 4B. Statistical analysis revealed that by increasing 
the solution temperature the final moisture content of 
courgette decreased. Furthermore, the result indicated 
that ultrasound assisted osmotic dehydration lead to a 
higher reduction in the final moisture content. Increasing 
osmotic solution temperature led to sample swelling and 
more water diffusion from the sample (Eren and Kaymak-
Ertekin, 2007; García-Noguera et al., 2010). These results 
are in agreement with previous researchers (Kowalska et 
al., 2008; Mokhtarian et al., 2014b).

Artificial neural network modelling of ultrasound assisted 
osmotic dehydration parameters

In this work, a combination of the layers and neurons 
with different activation functions was used for modelling 
perceptron neural network. The neural network includes one 
and two hidden layers, 2 to 50 neurons were selected randomly 
and network power was estimated to predicting mass transfer 
factors of ultrasound assisted osmotic dehydrated courgette 
sample. In order to identify a suitable learning epoch, one 
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Figure 3. The effect of (A) osmotic solution concentration and (B) temperature on solid gain during 120 min of ultrasound and 
non-ultrasound assisted osmotic dehydration process, (S5 = sucrose 35% + sorbitol 5%, w/v; S10 = sucrose 35% + sorbitol 10%, 
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experimental network includes various neuron numbers (2 
to 50 neurons), different activation functions (logsig and 
tanh) and different learning epochs (100, 1,500, 2,500, 5,000 
and 7,000). The results showed that the best learning epochs 
for logarithm sigmoid and tangent hyperbolic activation 
functions were obtained 7,000 and 5,000, respectively. 
Optimisation of the best learning epoch in both activated 
functions lead to the lowest MRE. Determination of a suitable 
learning epoch for different activation functions was based 
on the trial and error method (Figure 5).

The obtained results of MLP network for water loss and 
solid gain with logsig and tanh activation functions and 
different configurations are shown in Figure 6. The result 
of MLP with logsig activation function with one and 
two hidden layers and shoed that topology of 4-18-18-2 
(i.e. network with 4 inputs, 18 neurons in the first and 
second hidden layer and 2 outputs) had the best result for 
predictimng water loss and solid gain. As well, the result 
for the perceptron neural network with tanh activation 
function with one and two hidden layers indicated that, 
the neural network with a structure of 4-46-46-2 had the 

best result for predicting water loss and solid gain. This 
network was able to predict water loss and solid gain with 
relative error values of 0.0071 and 0.0101, respectively. R2 
values for water loss and solid gain were obtained 0.985 
and 0.938, respectively.

A comparison of the results of the different activation 
functions of ANN for determining the best activation 
function for predicting ultrasound assisted osmotic 
dehydration factors of courgette slice is shown in Table 1. 
As can be seen, all the activation functions have a higher 
ability to predict ultrasound assisted osmotic dehydration 
parameters and R2 values in all cases were higher than 0.831. 
However, the tanh activation function with 5,000 learning 
epoch lead to the best results for predicting water loss and 
solid gain with R2 of 0.985 and 0.938, respectively. Generally, 
in the case of ultrasound assisted osmotic dehydrated 
courgette slices, the tanh activation function was selected 
as the best function due to the lower relative error and is 
recommended for industrial applications.
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Figure 4. The effect of (A) osmotic solution concentration and (B) temperature on moisture content during 120 min of ultrasound 
and non-ultrasound assisted osmotic dehydration process (S5 = sucrose 35% + sorbitol 5%, w/v; S10 = sucrose 35% + sorbitol 
10%, w/v; S15 = sucrose 35% + sorbitol 15%, w/v). Columns with the same superscript letter are not statistically different (P<0.01).

0

0,02

0.04

0.06

0.08

0.10

0.12

A

0 10 20 30 40 50 60

To
ta

l m
ea

n 
re

lat
ive

 e
rro

r

100 Epoch 1,500 Epoch 2,500 Epoch
5,000 Epoch 7,000 Epoch

Number of neurons 

B

0

0.05

0.10

0.15

0.20

0.25

0 10 20 30 40 50 60

To
ta

l m
ea

n 
re

lat
ive

 er
ro

r

Number of neurons 

100 Epoch 1,500 Epoch 2,500 Epoch
5,000 Epoch 7,000 Epoch

Figure 5. Determination of suitable learning epoch for different activation functions: (A) logarithm sigmoid and (B) tangent hyperbolic.



� Ultrasonic osmotic dehydration

Quality Assurance and Safety of Crops & Foods 9 (2)� 167

Table 1. Comparison of the different activation functions of the multilayer perceptron network to predict ultrasound assisted 
osmotic dehydration parameters of courgette.

Activation function Learning epoch Statistical parameters Water loss Solid gain

Logarithm sigmoid 7,000 Correlation coefficient 0.965 0.865
Mean relative error 0.0278 0.1333
Configuration1 4-18-18-2 4-18-18-2

Tangent hyperbolic 5,000 Correlation coefficient 0.985 0.938
Mean relative error 0.0071 0.0101
Configuration 4-46-46-2 4-46-46-2

1 4-N1-N2-2: N1 and N2 were the number of neurons in the first and second hidden layer, respectively.

0

0.1

0.2

0.3

0.4

2 6 10 14 18 22 26 30 34 38 42 46 50

Me
an

 re
lat

ive
 er

ro
r (

%
)

Number of neurons

tanh-one hidden layer tanh-two hidden layer
logsig -one hidden layer logsig-two hidden layer

0

0.02

0.04

0.06

0.08

0.10

0.12A

B

2 6 10 14 18 22 26 30 34 38 42 46 50

Me
an

 re
lat

ive
 er

ro
r (

%
)

Number of neurons

tanh-one hidden layer tanh-two hidden layer
logsig-one hidden layer logsig-two hidden layer

Figure 6. The variation of relative error values versus neuron number to predict (A) water loss and (B) solid gain with different 
activation function (tanh = tangent hyperbolic; logsig = logarithm sigmoid).



M. Mokhtarian and A.D. Garmakhany

168� Quality Assurance and Safety of Crops & Foods 9 (2)

Figure 7 shows the model sensitivity diagram of predicted 
values of multilayer perceptron network with tanh activation 
function vs experimental values for the best configuration 
(i.e. structure of 4-46-46-2). The result indicate that, the 
data were randomly located around the regression line. 
This could be a reason for carefully evaluation of the 
neural networks to predict ultrasound assisted osmotic 
dehydration parameters of courgette sample (Figure 7).

4. Conclusions

In this research the effects of ultrasound and osmotic 
dehydration treatments on the water loss and solid gain were 
studied. The results indicated that, the use of ultrasound-
assisted osmotic dehydration, increased water loss and 
sugar gain during the process. Also, osmotic dehydration 
rate increased with an increase in the concentration in the 
osmosis solution and with process temperature. In this 
study an ANN trained by back propagation algorithms was 
developed to predict water loss and solid gain. The tanh 
activation function was selected as the best function due 
to a lower relative error and is recommended for industrial 
applications. This activation function was able to predict 
water loss and solid gain with correlation coefficients of 
0.985 and 0.938, respectively.
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