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Abstract

This current work explored the physicochemical characteristics of sprouted cowpea starch across different variet-
ies. Specifically, cowpea varieties (IR48B, IT89KD-288, IT82D-716W, and TV32-36WS) were sprouted (steeping = 
36 h; germinating = 72 h), then milled into a slurry, followed by starch extraction. Physicochemical characteriza-
tion involved measurements of starch yield, moisture, protein, pH, amylose, water absorption capacity, gelation, 
solubility index, bulk density, swelling power, and pasting attributes. Results showed that sprouting significantly 
enhanced the protein, water absorption capacity, total titratable acidity, swelling power, solubility index, and 
emulsion capacity of cowpea starch. However, sprouting significantly reduced starch yield, pH, bulk density, 
gelation capacity, and amylose content. Comparative analysis revealed that sprouted cowpea starch had supe-
rior pasting properties, including higher peak viscosity and setback viscosity, especially when compared to other 
starch sources. A direct correlation between amylose content and setback viscosity appeared evident, although 
the quality of fit for sprouted cowpea starch suggested that additional factors might influence the pasting behav-
ior. Sprouted cowpea starch seems to be a nutritional and versatile alternative in food formulations, functionally 
positioned particularly for health-conscious consumers.
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Introduction

Pulses are dicotyledonous seeds of the global 
Leguminosae plant family, with about 60 domesticated 
species (Hedey, 2001). Among different pulses, cowpea 
(Vigna unguiculata L. Walp) remains the most consumed 
source of protein (Hedey, 2001), with seeds constituting 
about 25% protein and 64% carbohydrate, while starch 
makes up about 52% of the total carbohydrate content 

(Kerr et al., 2000; Ihediohanma et al., 2014). Besides 
comprising a well-balanced amino acid content, cowpea 
provides several B-complex diet vitamins (Hedey, 2001), 
which, when utilized, can directly help combat malnutri-
tion in developing countries. Believed to have originated 
from Africa before spreading into Asia and Europe, cow-
pea appeared long before Phaseolus beans were intro-
duced from the Americas (Sasanam et al., 2011). Given 
its distribution in both tropical and temperate climates, 
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Various modification processes, such as physical, chem-
ical (acid-thinning, oxidation, etc.), and enzymatic 
techniques, have been employed to improve the func-
tionality and digestibility of legume starch (Rostamabadi 
et al., 2024; Bangar et al., 2022; Ashogbon et al., 2020). 
While concerns about chemical starch modifications are 
increasing, legume starches treated without chemicals 
are gaining popularity (BeMiller, 2018). 

Bioprocessing methods such as solid-state fermentation, 
dry fractionation, air classification, and sprouting have 
been used to modify legume starch (Di Stefano et al., 
2019; Xing, 2020; Xing et al., 2020). Specifically, sprouting 
stands out because it modifies the starch through induced 
enzyme activity on the legume’s carbohydrates, significantly 
enhancing the nutritional profile and improving digestibility 
(Ofoedu et al., 2020; Eke-Ejiofor et al., 2021). Additionally, 
sprouting reduces the levels of anti-nutritional components, 
such as phytic acid and tannins, which would otherwise 
inhibit the absorption of vital nutrients. Also considered 
a “clean-label” method, sprouting is regarded as a natural 
and simple process, yet it is cost-effective, energy-efficient, 
and requires minimal external additives or chemicals (Di 
Stefano et al., 2019). Despite previous studies on the effects 
of cross-linking and acetylation in modifying the starch 
properties of cowpea seeds (Haungb et al., 2007; Mwasaru 
and Ishibashi, 2006), there is a lack of relevant information 
regarding the starch characteristics across different varieties 
modified by sprouting, particularly in relation to emergent 
functional and pasting properties. Understanding the func-
tionality and rheological behavior of cowpea starch within 
the food system (post-modification) can help enhance 
variety selection for high-quality output. As a functional 
ingredient, therefore, the utilization of cowpea starch with 
hope of reducing the over-dependence on more familiar 
sources should be a promising food application strategy. To 
extend the body of knowledge, this current work explored 
the physicochemical characterization of sprouted cowpea 
starch across different varieties.

Materials and Methods

Schematic overview of the experimental program

The schematic overview of the experimental program, 
as shown in Figure 1, presents the crucial processing 
and treatment stages of cowpea seeds, from sprouting 
through the extraction of cowpea starch to the quality 
evaluation of the starch. For emphasis, this current work 
was specifically designed to characterize the starch pro-
duced from different cowpea varieties after the sprouting 
treatment. Starch analysis was conducted through dupli-
cate determinations of aliquots collected from the sample 
population (sprouted and unsprouted cowpea starches) 
across the cowpea varieties.

cowpea can have different seed coat shapes, sizes, and 
colors (Afoakwa et al., 2006; FAO, 2000). In Nigeria, cow-
pea is widely consumed as boiled seeds alone or in com-
bination with other foods (e.g., plantain, maize, and rice) 
(Henshaw, 2008). Cowpea paste can also be fried (Akara) 
or steamed (moi moi) (Nwosu et al., 2014). Compared to 
other legumes, cowpea remains one of the most signifi-
cant starch-protein grains with potential industrial appli-
cations in the West African sub-region (Atuobi et al., 
2011; Oyeyinka et al., 2021).

In recent times, food and non-food industries have 
increased their attention to utilizing cowpea components 
as functional ingredients. Processing cowpea seeds into 
value-added products, such as protein concentrate and/
or food-grade starch, has become useful for extenders, 
gelling agents, stabilizers, texture modifiers, and thick-
eners in food formulations (Thomas and Atwell, 1997). 
However, isolating pure starch from some legumes, which 
are largely occupied with insoluble protein and highly 
hydrated fine fiber fractions, remains challenging (Schoch 
and Maywald, 1968; Ashogbon and Akintayo, 2013). 
The fine fibers likely reflect the cell walls that cover the 
starch granules. Comparatively, legume starches appear 
more viscous than those of cereals, indicative of higher 
granule resistance to swelling and rupture. Additionally, 
legume starches serve as better substrates than those of 
cereals or tubers (Hoover and Zhou, 2003), probably due 
to the absence of pores on the granule surface (Hoover 
and Sosulski, 1985), the presence of only trace quantities 
of bound lipids (Hoover and Sosulski, 1991), wide varia-
tions in ‘B’ type crystallite quantities (Cairns et al., 1997; 
Ratnayake et al., 2001), uniform granule size (Hoover 
and Sosulski, 1991), and variations in starch chain inter-
actions within the amorphous and crystalline domains 
(Hoover and Sosulski, 1985). Understanding the suscep-
tibility of cowpea starches, whether within the same or 
different biotypes, may help identify the structural factors 
that limit amylolysis and provide greater insights into the 
legume’s lower glycemic index (GI). 

Native starches can easily undergo syneresis, making 
them unsuitable for certain types of processing (Din 
et al., 2015), due to their poor shear and thermal stability, 
as well as a high degree of retrogradation (Jayakody and 
Hoover, 2008). To enhance starch utilization in various 
food applications, inherent drawbacks such as excessive 
paste turbidity, retrogradability, low resistance to shear 
and temperature, and limited structure formability must 
be addressed (Atienza & Rubiales, 2017). However, starch 
restructuring through various modifications is necessary, 
which can increase their stability against excessive heat, 
acid, shear, time, cooling, or freezing, as well as either 
increase or decrease their viscosity, shorten or lengthen 
the gelatinization period, change their texture, and/
or improve their visco-stability (Zeeman et al., 2010).  



114� Quality Assurance and Safety of  Crops & Foods 17 (1)

Monu CU et al.

Starch extraction from cowpea seeds

Starch extraction from cowpea seeds (sprouted and 
unsprouted) followed the method described by Osuji 
and Anih (2011) with slight modifications. The cowpea 
seeds were washed, steeped in water, and their coats 
manually removed. This was followed by wet milling of 
the cotyledons into a slurry, then stirring and allowing 
it to settle (~6 h) until a heterogeneous mixture was 
observed. The top portion formed a transparent liquid, 
whereas the bottom part formed a thick deposit. The 
supernatant was decanted. The starch sediment was 
re-dissolved in 0.05 M NaOH and allowed to stand for 
2  h, after which it was neutralized with 1 M NaNO3 
to pH 6. The starch sediment was rinsed with distilled 
water and allowed to settle until a firm and dense 
deposit was seen at the bottom, facilitating the gradual 
recovery of the sediment. This was followed by gen-
tly drying (~60ºC) in a hot air oven (Genlab, England, 
Model M 30 C, S/N 92B060) for about 6 h. Thereafter, 
the resultant starch was ground using an electric 
blender (Blendtec FIT Model, Blendtec Inc., USA) to 
achieve a powder, then sieved and stored in a sealed 
container until required for further analysis.

Physicochemical characterization of cowpea starch

Determination of  yield
The cowpea starch yield (sprouted and unsprouted) 
was determined using the method described by  

Procurement of materials

Four commercially available cowpea varieties, namely: 
Beans Variety IR48B (denoted herein as AB), Beans 
Variety IT89KD-288 (denoted herein as BD), Beans 
Variety IT82D-716W (denoted herein as CW), and 
Beans Variety TV32-36WS (denoted herein as DS), were 
sourced from the National Root Crop Research Institute 
(NRCRI) Umudike, Abia State, Nigeria. Importantly, 
these cowpea varieties were grown and stored under 
standard field agronomic practices. Additionally, all 
chemicals and reagents used in this current work were of 
analytical grade and procured from certified sources.

Sprouting of cowpea samples

Before the sprouting activity, the cowpea seeds of dif-
ferent varieties were manually cleaned by sorting to 
remove extraneous materials and damaged seeds, fol-
lowed by winnowing to remove dust, before being 
subjected to further processing through sprouting and 
starch extraction. The sprouting activity followed the 
barley malting protocol (Kunze, 2005; Osuji et al., 2019) 
with slight modifications. Cowpea samples were steeped 
in water at a temperature of 20–25°C for 36 h. Further, 
the steep cycle alternated between a wet-steep cycle of 
12 h and an air-rest period of 45 min. Once the steeping 
operation was completed, the cowpea seeds were placed 
on (dry heat) sterilized jute bags, allowed to sprout at a 
temperature range of 25–30°C, and removed after 72 h.

Unsprouted cowpea

Sprouted cowpea

AB = Beans variety IR48B
BD = Beans variety IT89KD-288

CW = Beans variety IT82D-716W

DS = Beans variety TV32-36WS
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Figure 1.  Schematic representation of the experimental program.
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water (9 ml). Subsequently, 0.5 ml was taken from the 10 
ml diluent into another test tube, then 0.2 ml of iodine 
solution and 0.1 ml of acetic acid solution were added, 
and the entire volume was made up to 10 ml with 9.2 ml 
of distilled water. The mixture was allowed to stand for 
20 minutes to facilitate color development (dark blue 
complex). The test tubes were vortexed, and the absor-
bance was read on the spectrophotometer (Spectrumlab 
22pc) at 620 nm. The % amylose content was calculated 
using Eqn 5 below:

% Amylose content
%Absorbance of  standard Absorbance of  sample

Absorbance of  standard
×

=
	(5)

Determination of  water absorption capacity
The water absorption capacity of cowpea starch 
(sprouted and unsprouted) was determined using the 
method described by Onwuka (2005). The water absorp-
tion capacity, expressed as g/g, was calculated using 
Eqn 6 below:

	
Water absorption capacity (g/g)

Weight of  sample after centrifuging
Weight of  sample before centrifuging

=
	 (6)

Determination of  emulsion capacity
The emulsion capacity of cowpea starch (sprouted and 
unsprouted) was determined using the method described 
by Onwuka (2005). The emulsion capacity, expressed 
as %, was read from the centrifuge tubes and calculated 
using Eqn 7 below:

	

Emulsion Capacity (%)
Height of  emulsified layer 100

Height of  whole solution in the centrifuge tube

=

×
		

		  (7)

Determination of  gelation capacity
The gelation capacity of cowpea starch (sprouted and 
unsprouted) was determined using the method described 
by Onwuka (2005) with slight modifications. Suspensions 
of 4, 8, 12, 14, 16, 18, and 20% (w/v) in 5 ml of distilled 
water were prepared in test tubes. These were immersed 
in a boiling water bath and heated for 1 h, followed by 
rapid cooling under running cold tap water. The lowest 
gelation concentration (LGC) was identified when the 
sample did not slide when the tube was inverted.

Determination of  solubility index
The solubility index of cowpea starch (sprouted and 
unsprouted) was determined using the method described 
by Adebowale et al. (2009) with slight modifications. 
The starch sample (5 g) was weighed into a pre-weighed 
centrifuge tube, and 20 ml of distilled water was added 

Adebowale et al. (2010), and was expressed as a percent-
age on a dry matter basis using Eqn 1 below:

Starch Yield
Weight of  Cowpea Starch after extraction 100
Weight of  Cowpea seeds before treatment

= ×
	 (1)

Determination of  moisture content
The moisture content of cowpea starch (sprouted and 
unsprouted) was determined using the extraction oven 
method (AOAC, 2004), expressed as a percentage (%) 
and calculated from Eqn 2 below:

	 2 3

2 1

W WMoisture content 100
W W

−
= ×

−
	 (2)

where W1 = initial weight of the empty dish 
W2 = weight of the dish + undried sample 
W3= weight of the dish + dried

Determination of  protein content
The protein content of cowpea starch (sprouted and 
unsprouted) was determined using the Kjeldahl method 
(AOAC, 2004), expressed as a percentage (%) and calcu-
lated from Eqn 3 and 4 below:

	 (S B) N 0.014 D 100% Nitrogen
Weight of  Sample V
− × × × ×

=
×

	 (3)

	 % Crude protein = 6.25 × %N	 (4)

where S = Sample titration reading
0.014 = Milli equivalent weight of Nitrogen
N = Normality of HCl
V = Volume taken for distillation
B = Blank titration reading
D = Dilution of sample after digestion

Determination of  pH
The pH of cowpea starch (sprouted and unsprouted) was 
determined using a pH meter electrode (probe) (AOAC, 
2004). 

Determination of  amylose content
Amylose content of cowpea starch (sprouted and 
unsprouted) was determined using the method described 
by Udachan et al. (2012) with slight modifications. 
Standard amylose (70%) and about 0.1 g of the cowpea 
starch samples were weighed into different test tubes. 
Then, 9 ml of 1 M NaOH and 95% ethanol were added 
and mixed in a vortex mixer. A boiling water bath was 
used to heat and gelatinize the starch in the test tubes, 
which was then allowed to cool (it should contain 10 ml 
of extract). An aliquot (1 ml) was taken from each extract 
into another test tube and made up to 10 ml with distilled 
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heating at 12°C/min up to 95°C; 2.5 min of holding at 95°C; 
3 min and 48 sec of cooling down to 50°C at the same rate 
as the heating (12°C/min); and 2 min of holding at 50°C, 
with the process ending after 13 minutes (Deffenbaugh 
and Walker, 1989). Using the starch gelatinization (past-
ing) curves, the viscosity was determined, expressed in 
terms of Rapid Visco Units (RVU), which is equivalent to 
10 centipoises. The viscogram profile/pasting curves show 
the relationship between time, viscosity, and tempera-
ture during the cooking processes. The pasting attributes 
determined included: (a) peak viscosity, (b) peaking time 
(pasting time) breakdown, (c) trough viscosity, (d) setback, 
(e) final viscosity, and (f) pasting temperature.

Statistical analysis

Data obtained from two determinations were subjected 
to analysis of variance (ANOVA) in a 4 (Cowpea Variety) 
x 2 (Treatments) approach, and results were expressed as 
mean ± standard deviation (SD). Mean differences were 
resolved using the LSD test. Correlation analysis was 
applied to determine if any relationship existed between 
amylopectin content of sprouted and unsprouted cowpea 
starch and pasting attributes (setback). The significance 
level was set at p < 0.05. SPSS Software Package version 
16 was used to perform the data analysis.

Results and Discussion 

Variations in yield, moisture and protein content of 
cowpea starch

The variations in yield, moisture, and protein content of 
starches from sprouted and unsprouted cowpea of differ-
ent varieties are shown in Table 1. While the starch yield 
and moisture content were similar (p > 0.05), the protein 
content significantly differed (p < 0.05) due to sprouting 

and thoroughly shaken on a vortex. The sample was then 
heated to temperatures of 50°C, 60°C, 70°C, and 80°C for 
30 min in a water bath (HH-4, Techmel and Techmel, 
USA). The samples were centrifuged at 3000 rpm for 20 
min. The supernatant was carefully decanted and dried to 
a constant weight at 110°C in a hot air oven (TT 9053A, 
Techmel and Techmel, USA). The residue obtained after 
drying the supernatant represented the amount of starch 
solubilized in water. The solubility index was calculated 
using Eqn 8 below:

	 Weight of  solubleSolubility index (%)  100
Weight of  sample

= × 	 (8)

Determination of  bulk density and swelling power
The swelling power and bulk density of cowpea starch 
(sprouted and unsprouted) were determined using the 
method described by Onwuka (2005). The percentage 
swelling power and bulk density, expressed as g/mL, were 
calculated using Eqns 9 and 10 below:

	 Weight of  sample (g)Bulk density (g/ml) 
Volume of  sample (ml)

= 	 (9)

	 Final volumeSwelling power (%) 100
Initial volume

= × 	 (10)

Determinations of  pasting attributes
The pasting attributes of cowpea starch (sprouted and 
unsprouted) were determined using the Rapid Visco 
Analyzer (Model: RVA-4, Newport Scientific Pty. Ltd., 
Sydney, Australia, 1995), which operated with Thermocline 
for Windows software. The starch sample (2.5 g) was 
weighed into a previously dried canister, and 25 ml of dis-
tilled water was dispensed and added. The suspension was 
then well mixed and fitted into the Rapid Visco Analyzer 
(RVA), which followed the standard profile 1: 1 min of mix-
ing, stirring, and warming up to 50°C; 3 min and 42 sec of 

Table 1.  Variations in starch yield, moisture content, and protein content of starches from sprouted and unsprouted cowpea varieties.

Cowpea variety Starch yield (%) Moisture content (%) Protein content (%)

Unsprouted Sprouted Unsprouted Sprouted Unsprouted Sprouted

AB *38.02b±0.05 26.61b±0.21 11.00a±0.49 10.80a±0.00 4.92d±0.01 *6.73b±0.01

BD *37.79c±0.21 26.45b±0.22 11.45a±0.71 10.00a±0.00 5.42a±0.01 *6.97a±0.01

CW *39.27a±0.67 27.49a±0.03 11.20a±0.42 10.95a±0.42 5.06c±0.01 *6.47c ±0.01

DS *36.75d±0.81 25.73c±0.56 11.02a±0.06 10.01a±0.37 5.26ab±0.01 *6.66bc±0.01

LSD 1.04 0.86 NS NS 0.25 0.24

Values are the means of  duplicate determinations.
a,b indicates that values with the same superscript in a column for each treatment are not significantly different (p > 0.05).
An asterisk (*) within a row indicates that the values for swelling power, total titratable acidity, water binding capacity, and total solids are significantly 
different (p < 0.05).
AB = Beans Variety IR48B; BD = Beans Variety IT89KD-288; CW = Beans Variety IT82D-716W; DS = Beans Variety TV32-36WS.
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treatments and varietal differences. Starch yield peaked 
at CW (unsprouted and sprouted) (39.27% and 27.49%) 
but was lowest at DS (unsprouted and sprouted) (36.75% 
and 25.73%), which is consistent with other cowpea data 
(38-40%) (Ashogbon and Akintayo, 2013) but appears 
higher than that of Indonesian cowpea (17.78-22.93%) 
(Ratnaningsih et al., 2016). The significantly lower 
starch yield of sprouted cowpea (p < 0.05) compared to 
unsprouted cowpea seems to reflect amylose/amylopec-
tin degradation, physiological state, genotype variations, 
and differing starch isolation methods. The moisture 
content of sprouted and unsprouted cowpea starch is 
lower than the <14% recommended for flours by NDSU 
(2018). Increased moisture content in flour naturally fos-
ters microbial growth and the production of off-odors 
and flavors. Lowering the initial moisture content would 
enhance storage stability (Fellows, 2000; Akubor and 
Badifu, 2004).

The protein content of unsprouted cowpea starch peaked 
at BD (5.42%) but was lowest at AB (4.92%), whereas in 
the sprouted samples, the protein content peaked at BD 
(6.97%) and was lowest at CW (6.47%). The protein con-
tent range (sprouted and unsprouted) was higher than 
the values (0.14–0.49% for cowpea starch) reported by 
Ratnaningsih et al. (2016) but lower than those (23.74–
27.01% for cowpea flour) reported by Ihediohanma et al. 
(2014). The sprouting process may increase the protein 
content in cowpea starch through net enzymatic synthe-
sis (Masood et al., 2014; Erba et al., 2018). Sprouting ini-
tiates the de novo synthesis of starch-degrading enzymes 
(α-amylase/glucosidase) within the scutellum/aleurone 
cells (Duke, 2009; Saman et al., 2008). Higher proteo-
lytic activity during germination might also contribute 
to the protein content in sprouted cowpea starch, due to 
a shift in protein distribution from high (less soluble) to 
low (more soluble) molecular constituents (Owuamanam 
et al., 2013; Lemmens et al., 2018; Nwosu et al., 2019). 
Leaching of water-soluble peptides in the steeping 
water (Afify et al., 2012; Elmaki et al., 1999) may not 

significantly decrease the protein content of legumes 
after sprouting (Lemmens et al., 2018), despite carbo-
hydrate loss via respiration (Mbithi-Mwikya et al., 2000; 
Tizazu et al., 2010). The presence of proteins, either as 
co-extractives or impurities, might have a functional 
influence on cowpea starch. For instance, proteins could 
enhance the water absorption capacity of cowpea starch, 
improving hydration and swelling during cooking, which 
would provide textural benefits in food products (Scott & 
Awika, 2023). Additionally, proteins could strengthen the 
emulsion capacity of cowpea starch, improving oil and 
water mixture stability. Protein interactions with starch 
during cooking could influence gelation properties, shap-
ing the product’s consistency and mouthfeel (Scott, G., & 
Awika, J. M. (2023).

Variations in pH, amylose, and amylopectin content of 
cowpea starch

The variations in pH, amylose, and amylopectin content 
of starches from sprouted and unsprouted cowpea of dif-
ferent varieties are shown in Table 2. The pH, amylose, 
and amylopectin content significantly differed (p<0.05) 
due to sprouting treatments (unsprouted and sprouted) 
and varietal differences. For unsprouted cowpeas, pH 
peaked at CW (6.30) and was lowest at BD (5.70), whereas 
in sprouted cowpeas, pH peaked at DS (4.70) and was 
lowest at BD (4.10). For unsprouted samples, amylose and 
amylopectin content peaked at BD (amylose  = 36.66%) 
and AB (amylopectin = 67.11%), respectively, and were 
lowest at AB (amylose = 32.89%) and BD (amylopectin = 
63.34%). For sprouted samples, both amylose and amylo-
pectin contents peaked at BD (amylose = 28.80%) and AB 
(amylopectin = 75.40%), respectively, and were lowest at 
AB (amylose = 24.60%) and BD (amylopectin = 71.20%). 
The pH of cowpea starch (sprouted and unsprouted) 
ranged between 4.10 and 6.30, which aligns well with 
legume data (pH = 5.10–6.40) reported by Benitez et al., 
(2013). 

Table 2.  Variations in pH, amylose content, and amylopectin content of starches from sprouted and unsprouted cowpea varieties.

Cowpea variety pH Amylose (%) Amylopectin (%)

Unsprouted Sprouted Unsprouted Sprouted Unsprouted Sprouted

AB *5.80ab±0.01 4.40b±0.01 *32.89c±0.20 24.60c±0.13 67.11a±0.22 *75.40a±0.02

BD *5.70b±0.01 4.10a±0.01 *36.66a±0.14 28.80a±0.55 63.34d±0.32 *71.20d±0.21

CW *6.30a±0.69 4.60a±0.01 *34.58b±0.07 26.50b±0.32 65.42c±0.56 *73.50c±0.11

DS *5.80b±0.03 4.70a±0.01 *33.61d±0.11 25.40d±0.15 66.39b±0.26 *74.60b±0.34

LSD 0.49 0.49 0.52 0.40 0.52 0.40

Values are the means of  duplicate determinations.
Values with the same superscript (a, b) within a column for each treatment are not significantly different (p > 0.05).
Values with an asterisk (*) within a row indicate significant differences (p < 0.05) for starch yield, pH, moisture content, and protein content.
AB = Beans Variety IR48B; BD = Beans Variety IT89KD-288; CW = Beans Variety IT82D-716W; DS = Beans Variety TV32-36WS
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Besides controlling the stability of bioactive compounds 
in food products (Sanchez-Moreno et al., 2006), the pH 
in flour-water suspension influences both emulsion and 
foaming properties (Benitez et al., 2013). High amylose 
content can affect the pasting, gelatinization, retro-
gradation, and swelling behavior of starch (Blazek and 
Copeland, 2008). In this study, sprouting affected the 
amylose content in cowpea starch, where the unsprouted 
samples had significantly higher amylose content 
(p<0.05) than the sprouted ones. This difference is poten-
tially attributable to hydrolysis of the legume starch 
(Benincasa et al., 2019; Morad et al., 1980; Otutu et al., 
2014). Moreover, cowpea naturally contains resistant 
starch and dietary fiber, which contribute to its low gly-
cemic index (GI) properties. Sprouting further improves 
this by altering the starch structure, increasing fiber, and 
lowering the glucose absorption rate (Jayathilake et al., 
2018; Abebe and Alemayehu, 2022). For health-conscious 
consumers and those managing diabetes, sprouted cow-
pea starch would be a valuable ingredient option, given 
its ability to lower the glycemic index and contribute to 
better overall health and well-being (Devi et al., 2015; 
Sunitha et al., 2023).

Variations in emulsion, gelation and water absorption 
capacities of cowpea starch 

The variations in water absorption capacity (WAC), 
emulsion capacity, and gelation capacity of starches from 
sprouted and unsprouted cowpea of different varieties 
are shown in Table 3. The emulsion capacity significantly 
differed (p<0.05) across sprouted and unsprouted cow-
pea varieties, but there were no significant differences for 
gelation capacity and WAC. Specifically, for unsprouted 
cowpeas, the emulsion capacity peaked at CW (36.96%) 

and was lowest at DS (30.73%). For sprouted cowpeas, 
the emulsion capacity peaked at CW (44.21%) and was 
lowest at DS (34.06%). For unsprouted cowpeas, the gela-
tion capacity was highest at AB, BD, and DS (8.00%) and 
lowest at CW (6.00%). For sprouted cowpeas, the gelation 
capacity peaked at AB, BD, and DS (6.00%) and was low-
est at CW (4.00%). For unsprouted cowpeas, the WAC 
peaked at DS (1.68 g/g) and was lowest at BD (1.52 g/g). 
For sprouted cowpeas, the WAC peaked at DS (1.75 g/g) 
and was lowest at BD (1.57 g/g). The emulsion capacity 
of sprouted and unsprouted cowpea starch remained 
lower than the 52% reported for sprouted cowpea flour 
(Owuamanam et al., 2013). The emulsion capacity of 
sprouted cowpea starch was noticeably higher (p<0.05) 
than that of unsprouted starch. 

The WAC of cowpea starch from sprouted varieties was 
significantly higher (p<0.05) than that of unsprouted 
varieties, which could be due to the increased protein 
content (refer to Table 3) (Otutu et al., 2014), given the 
insoluble dietary fiber and available starches that may 
differ across cowpea varieties (Benitez et al., 2013). This 
indicates that sprouted cowpea starch can absorb water 
more effectively, which is important for achieving the 
desired texture in food products. Polysaccharides could 
influence the WAC due to their affinity with water mol-
ecules, which are largely available in starch/polar amino 
acid residues (Ghavidel and Prakash, 2006). The lower 
WAC of unsprouted cowpea starch is likely associated 
with hydroxyl groups, forming hydrogen and covalent 
bonds between starch chains and water (Nawab et al., 
2014). The crux of WAC lies in controlling the hydration 
process, ensuring that a food system achieves the right 
consistency. This property can influence the formulation 
of gluten-free products, where water absorption is criti-
cal for mimicking the texture of traditional wheat-based 

Table 3.  Variations in water absorption, emulsion capacity, and gelation capacity of starches from sprouted and unsprouted cowpea 
varieties.

Cowpea Variety Water Absorption capacity (g/g) Emulsion capacity (%) Gelation capacity (%)

Unsprouted Sprouted Unsprouted Sprouted Unsprouted Sprouted

AB 1.53b±0.01 *1.72b±0.03 32.42b±0.01 *34.07b±0.75 *8.00b±0.00 6.00a±0.00

BD 1.52b±0.01 1.57b±0.27 36.81b±0.01 *42.12a±0.01 *8.00b±0.00 6.00a±0.00

CW 1.61b±0.01 *1.71b±0.01 36.96b±0.01 *44.21a±0.01 *6.00c±0.00 4.00b±0.00

DS 1.68b±0.01 *1.75b±0.01 30.73b±0.01 *34.06b±0.70 *8.00b±0.00 6.00a±0.00

LSD 0.19 0.19 7.02 7.02 0.80 0.80

Values are the means of  duplicate determinations.
Values with the same superscript (a, b) along a column for each treatment indicate no significant difference (p > 0.05).
Values with an asterisk (*) within a row indicate significant differences (p < 0.05) for water absorption, emulsion capacity, gelation capacity, solubility 
index, and bulk density.
AB = Beans Variety IR48B; BD = Beans Variety IT89KD-288; CW = Beans Variety IT82D-716W; DS = Beans Variety TV32-36WS; NS = Not 
Significant.
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peaked at BD (6.47%) and was lowest at DS (4.46%). 
For unsprouted starch, the solubility index peaked at 
CW (1.65%) but was lowest at AB (1.61%), whereas for 
sprouted starch, it peaked at AB (1.77%) but was low-
est at DS (1.73%). Sprouting significantly decreased the 
bulk density of cowpea starch, which is consistent with 
sorghum starch data reported by Otutu et al. (2014). 
Moreover, the sprouting process can influence the par-
ticle size distribution of cowpea starch (Elkhalifa and 
Bernhardt, 2010), which is important for determining 
packaging requirements, material handling, and wet pro-
cessing applications (Adebowale et al., 2005a). 

The swelling power of sprouted cowpea starches was 
significantly higher (p<0.05) than that of unsprouted 
starches, which probably resulted from the combined 
action of lower molecular proteins and proteolytic 
enzymes during sprouting, increasing the bioavailability 
of amino acids. The protein-starch matrix, more loosely 
bound by sprouting, increases water absorption and 
influences the swelling of legume flour (Henshaw and 
Adebowale, 2004; Phattanakulkaewmorie et al., 2011; 
Ihediohanma et al., 2014), which could improve the 
nutritional and product quality (Enujiugha et al., 2003). 
The lower swelling power of unsprouted cowpea starches 
might have inhibited the leaching of amylose chains, 
thereby preventing the starch granules from opening up 
(Chaisawang and Suphantharika, 2006). The solubility 
index of sprouted cowpea starches, being significantly 
higher (p<0.05), might suggest weaker bonding forces 
within the granules, as well as reduced compactness of 
internal starch molecules and increased water uptake 
(Chaisawang and Suphantharika, 2006). Additionally, 
sprouting initiates grain softening as the protein matrix 
interacts with the decreased starch endosperm granules, 
facilitated by peptidase and amylase action (Dziki et al., 
2015). The degree of interaction between starch chains 
in the amorphous/crystalline regions is influenced by the 
amylose-to-amylopectin ratio and specific characteristics, 

products. In addition to sprouting improving protein sol-
ubility and emulsification capacity (Owuamanam et  al., 
2013), it also enhances the formation of adsorption films 
around the globules, which is crucial for lowering the 
interfacial tension at the oil-water interface (Zayas, 1997). 
While emulsifying activity depends on the properties 
of proteins, the conditions of emulsification vary by the 
protein source, protein concentration, pH, ionic strength 
(salt type and concentration), and the viscosity of the 
food system (Zayas, 1997). However, the gelation capac-
ity of sprouted cowpea starch was significantly lower 
than that of unsprouted cowpea starch (consistent across 
the varieties) (Table 3). This might reflect the relative 
amounts of protein, lipids, and carbohydrates (Benitez 
et al., 2013; Ihediohanma et al., 2014). High protein and 
starch content in pulse/legume flours might influence the 
gelation capacity (Kaushal et al., 2012). During sprouting, 
enhanced amylase activity, which reduces the amylose 
chain lengths, might have limited the gelation capacity 
(Phattanakulkaewmorie et al., 2011; Wichamanee and 
Teerarat, 2012; Xu et al., 2012; Onyeka and Dibia, 2002).

Variations in bulk density, swelling power, solubility index 
of cowpea starch

The variations in solubility index, bulk density, and swell-
ing power of starches from sprouted and unsprouted 
cowpea of different varieties are shown in Table 4. The 
swelling power of cowpea starch (unsprouted and 
sprouted) significantly differed (p<0.05) across different 
varieties, but not for bulk densities and the solubility 
index (p>0.05). Specifically, for unsprouted starch, the 
bulk density peaked at BD (0.82 g/ml) but was lowest at 
both DS and CW (0.73 g/ml). In comparison, sprouted 
starch peaked at AB (0.73 g/ml) and was lowest at both 
DS and CW (0.67 g/ml). For unsprouted starch, the swell-
ing power peaked at CW (4.84%) but was lowest at DS 
(4.14%), whereas for sprouted starch, the swelling power 

Table 4.  Variations in solubility index, bulk density, and swelling power of starches from sprouted and unsprouted cowpea varieties.

Cowpea variety Solubility index (%) Bulk density (g/ml) Swelling power (%)

Unsprouted Sprouted Unsprouted Sprouted Unsprouted Sprouted

AB 1.61a±0.01 *1.77a±0.01 *0.81a±0.01 0.73a±0.01 4.19b±0.01 *4.79b±0.69

BD 1.59a±0.01 *1.75a±0.01 *0.82a±0.01 0.72a±0.01 4.37ab±0.01 *6.47a±0.01

CW 1.65a±0.01 *1.77a±0.01 *0.73a±0.08 0.67a±0.01 4.84a±0.01 *6.43a±0.01

DS 1.62a±0.00 *1.73a±0.01 *0.73a±0.08 0.67a±0.01 4.14b±0.01 4.46b±0.02

LSD NS NS 0.10 0.10 0.49 0.49

Values are the means of  duplicate determinations.
Values with the same superscript (a, b...) within a column for each treatment indicate no significant difference (p > 0.05).
Values with an asterisk (*) within a row indicate significant differences (p < 0.05) for swelling power, total titratable acidity, water binding capacity, and 
total solids.
AB = Beans Variety IR48B; BD = Beans Variety IT89KD-288; CW = Beans Variety IT82D-716W; DS = Beans Variety TV32-36WS.
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such as molecular weight/distribution, degree and length 
of branching, and conformation (Hoover, 2001).

Variations in pasting attributes of cowpea starches

Pasting occurs in starches upon further heating after 
gelatinization, which may include further granule swell-
ing and starch leaching, as well as increased viscosity due 
to the application of shear forces (Hoover et al., 2010). 
There were significant differences (p<0.05) in the pasting 
properties of cowpea starch from different varieties (refer 
to Tables 5 and 6). For peak viscosity, the unsprouted 
CW showed the highest (6250 cp), while sprouted EW 
showed the lowest (2232 cp). Peak viscosity suggests the 
water-binding capacity of starch, which freely swelled 
before physical breakdown. The relatively high viscosity 
in unsprouted cowpea starch and the low viscosity in 
sprouted cowpea starch suggest that the latter’s ability to 
decrease granule swelling resistance when forming a sta-
ble gel is significant. Thus, the unsprouted cowpea starch 
sample might be suitable for products requiring high gel 
elasticity/strength (Ikegwu et al., 2010). The breakdown 
viscosity peaked at unsprouted CW (1648 cp) but was 
lowest at sprouted BD (906 cp). High breakdown viscos-
ity suggests that the flour is unable to withstand heat-
ing and shear stress during cooking (Adebowale et al., 
2005b). Unsprouted CW obtained the peak trough vis-
cosity (4620 cp), while sprouted EW had the least (1319 
cp). Unsprouted CW also obtained the peak final vis-
cosity (7861 cp), while sprouted EW had the least (2662 
cp). The final viscosity, which is the change in viscosity 
after holding the cooked cowpea starch at 50°C, differed 
significantly (p<0.05) between sprouted and unsprouted 
samples. Final viscosity indicates the ability of the starch 
to form a stable and viscous paste or gel after cooking 
and cooling (Maziya-Dixon et al., 2007).

Furthermore, unsprouted EW recorded the highest peak 
time (6.20 min), while sprouted CW recorded the least 
peak time (4.90 min). The unsprouted BD showed the 
highest pasting temperature (87.35°C), whereas sprouted 
EW showed the least pasting temperature (71°C). 
Pasting temperature represents the minimum tempera-
ture required for a sample to cook and gel. A reduced 
pasting temperature translates to lower energy costs 
and better stability of other components. Unsprouted 
CW obtained the highest setback viscosity (3240 cp), 
whereas sprouted EW obtained the least (1343 cp). The 
low setback in sprouted cowpea starch samples may be 
associated with high resistance to cooked paste retro-
gradation (Sanni et al., 2001). Setback viscosity depicts 
the interaction between the leached amylose chains 
during the cooling cycle, despite the presence of intact 
and/or fragmented granules being embedded in the 
amylose network (Ambigaipalan et al., 2011). The lower Ta
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Table 6.  Mean values of peak time, pasting temperature, and setback of different varieties of sprouted and unsprouted cowpea.

Cowpea variety Peak time (min) Pasting temperature (°C) Setback viscosity (cp)

Unsprouted Sprouted Unsprouted Sprouted Unsprouted Sprouted

AB *6.17a±0.05 5.97b±0.06 *87.28a±0.04 86.40b±0.00 *1761.00c±11.31 1398.50c±14.85

BD 5.27c±0.00 5.27c±0.09 87.35a±0.00 87.25a±0.07 *3037.50a±60.10 2966.00b±43.24

CW 4.93d±0.00 4.90d±0.04 84.85c±0.07 84.78c±0.11 3240.50a±26.57 3241.50a±93.04

DS *5.50b±0.14 5.33c±0.00 86.43b±0.07 86.35b±0.10 *2959.00b±11.41 2421.00b±69.29

LSD 0.14 0.14 0.20 0.20 245.32 245.32

Values are the means of  duplicate determinations.
Values with the same superscript (a, b, etc.) along a column for each treatment are not significantly different (p > 0.05).
*Values with an asterisk (*) within a row indicate significant differences (p < 0.05) for peak time, pasting temperature, setback, and power.
AB = Beans Variety IR48B; BD = Beans Variety IT89KD-288; CW = Beans Variety IT82D-716W; DS = Beans Variety TV32-36WS.

setback viscosity in sprouted cowpea starch reveals, to 
a great extent, the magnitude of starch granule disrup-
tion during the heating cycle, largely due to the sprouting 
process. The pasting properties of the cowpea starches 
significantly decreased with sprouting, reflecting enzy-
matic (starch) degradation. Indeed, sprouting reduces 
the average molecular weights of β-glucans in the cowpea 
starches, thereby reducing their ability to form a viscous 
fluid (Juhasz et al., 2005 and Xu et al., 2012).

Comparisons and correlations involving cowpea starches

The comparison of some physicochemical properties 
(protein, amylose, swelling index, solubility power, water 
absorption capacity, pasting temperature, peak viscos-
ity, and setback viscosity) of sprouted and unsprouted 
cowpea starch with cereal (corn) and tuber (cassava) 
starch from previous literature is shown in Table 7. 
Cowpea starch exhibits higher peak viscosity, setback 
viscosity, pasting temperature, amylose, and protein 
content compared to corn and cassava starch. On the 
other hand, cowpea starch has a lower water absorption 
capacity (WAC) compared to cassava starch, but higher 

Table 7.  Comparison of some physicochemical properties of beans (sprouted and unsprouted) starch with cereal and tuber starch.

Parameters Cowpea starch Cassava starch Corn starch Reference(s)

Sprouted Unsprouted

Protein (%) 6.66 – 6.97 4.92 – 5.42 0.51 – 1.26 0.31 – 0.55 Ojo et al. (2017); Ali et al. (2016)

Amylose (%) 24.60 – 28.80 32.89 – 36.66 16.27 – 20.52 24.74 – 29.44 Chisenga et al. (2019); Onitilo et al. (2007)

Swelling power (g/g) 4.46 – 6.47 4.14 – 4.84 2.22 – 3.01 11.34 – 13.55 Oyeyinka et al. (2019); Mishra and Rai (2006)

Solubility index (%) 1.73 – 1.77 1.59 – 1.65 1.62 – 4.18 1.01 – 3.89 Onitilo et al. (2007); Mishra and Rai (2006)

Water absorption capacity (g/g) 1.57 – 1.75 1.52 – 1.68 2.79 – 3.53 1.01 – 1.15 Ali et al. (2016); Ojo et al. (2017)

Pasting temperature (oC) 84.78 – 87.25 84.85 – 87.35 80.2 – 83.2 78.3 – 65.22 Mishra and Rai (2006); Oyeyinka et al. (2019)

Peak viscosity (cp) 4097 – 6125 4191 – 6250 1769 – 1921 3096 – 4867 Ojo et al. (2017); Chisenga et al. (2019)

Setback viscosity 1148 – 3241 1761 – 3240 660 – 859 1444 – 2193 Oyeyinka et al. (2019); Ali et al. (2016)

than corn starch. The swelling index of cowpea starch is 
lower compared to corn starch but higher than cassava 
starch. These variations could be attributed to differences 
in crop type and composition. The quality and quantity 
of protein and starch content significantly influence the 
functionality of food systems. Protein and starch might 
account for legume flour swelling at low temperatures 
(Henshaw and Adebowale, 2004; Ihediohanma et al., 
2014). Cowpea starch could offer greater added-value 
potential, being more viscous than equivalent cereal or 
tuber starches, suggesting that it can form thicker gels 
and maintain stability during heating and cooling cycles. 
For food manufacturers, these properties are crucial 
when formulating products that require thickening or 
gelling agents. Higher viscosity can enhance the texture 
of sauces, soups, and gravies, making them more appeal-
ing to consumers. Additionally, the stability of cowpea 
starch during processing can lead to improved product 
consistency, which is essential for maintaining quality in 
mass-produced food items.

Amylose content and setback viscosity were directly cor-
related in both sprouted and unsprouted cowpea starch 
(refer to Table 8). This suggests that, during cooling, an 
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increase in amylose content could stabilize the starch 
gel. Additionally, the R² value for sprouted cowpea starch 
indicates a quality of fit at 0.5345 (less than 0.75), which 
is not satisfactory. This implies that 53.45% of the vari-
ations in the pasting property (setback viscosity) could 
be attributed to amylose content, while the remaining 
46.55% is due to circumstantial or unaccounted factors. 
The variable coefficient (b) for sprouted cowpea starch 
indicates that about 326.0350 cp of setback viscosity is 
produced for every percentage increase in amylose con-
tent. Similarly, the R² value for unsprouted cowpea starch 
shows a quality of fit at 0.395 (less than 0.75), which is 
also not satisfactory. This implies that 39.5% of the varia-
tions in pasting property (setback viscosity) are attributed 
to amylose content, while the remaining 60.51% is due to 
other factors. The variable coefficient (b) for unsprouted 
cowpea starch indicates that about 257.04 cp of setback 
viscosity is produced for every percentage increase in 
amylose. These differences suggest that cowpea variet-
ies, treatments, and variations in amylose content are 
responsible for the changes and variations in pasting 
properties (setback viscosity). Since the development of 
products such as puddings and custards require a stable 
gel structure, understanding this relationship is import-
ant. It allows for the optimization of starch blends to 
achieve the desired textural properties. For consumers, 
products made with sprouted cowpea starch may offer 
better mouthfeel and texture, enhancing the overall eat-
ing experience.

Conclusion

The physicochemical properties of sprouted cowpea 
starch across various varieties were investigated. The 
cowpea starch from different varieties exhibited distinct 
differences in yield, moisture, and protein content, indi-
cating that the selection of specific cultivars can optimize 
starch functionality for targeted applications. Overall, the 
study demonstrated that sprouting enhances the protein 
content, water absorption capacity, swelling power, solu-
bility, and emulsion capacity of cowpea starch, while also 
improving its pasting properties. The elevated protein 
levels in sprouted cowpea starch contribute not only to 
improved functional attributes but also to its nutritional 

value, positioning it as a versatile ingredient for use in 
plant-based yogurt, protein gels, and as a stabilizer in 
various food systems.

Moreover, the positive influence of sprouting on the 
pasting characteristics of cowpea starch highlights its 
potential for use in food products requiring specific tex-
tural properties, such as sauces, soups, and baked goods. 
Given its unique properties, sprouted cowpea starch 
presents opportunities for applications in the production 
of gluten-free foods, thickening agents, and emulsions. 
However, the research does have certain limitations. The 
investigation was limited to a small number of cowpea 
varieties, which may not fully capture the genetic diversity 
within the species. Additionally, the study did not exam-
ine the long-term storage stability of sprouted cowpea 
starch, which is an important consideration, given the ten-
dency of starches to retrograde over time. While the study 
identified unsatisfactory but positive correlation between 
amylose content and pasting properties, it did not delve 
into the mechanistic aspects of how the structural interac-
tions between starch and proteins influence functionality 
during processing. Further studies are needed to elucidate 
these interactions and transformations, especially during 
the process of sprouting and cooking.

Future research should also focus on exploring diverse 
processing techniques, including both thermal and 
non-thermal methods (such as ultrasound, microwave, 
pulsed electric fields, high-pressure processing, and 
radio frequency), to optimize the functionality of cowpea 
starch for specific industrial applications. Additionally, it 
is important to investigate how sprouted cowpea starch 
behaves in different food matrices, as this could impact 
the overall glycemic response when consumed. Further 
studies are needed to examine the effect of sprouting on in 
vitro starch digestibility, other functional properties (such 
as freeze-thaw stability, paste clarity, etc.), structural char-
acteristics, molecular interactions, and thermal profiles.
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