

The role of fiber in gut health and chronic diseases: a comprehensive review

Sammra Maqsood¹, Matteo Bordiga^{2*}, Baojun Xu^{3*}

¹National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan, and Department of Nutrition, Women University, Mardan, Khyber Pakhtunkhwa (KPK), Pakistan; ²Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy; ³Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong, China

*Corresponding Authors: Matteo Bordiga, Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy. Email: matteo.bordiga@uniupo.it; Baojun Xu, Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China. Email: baojunxu@uic.edu.cn

Academic Editor: Mehran Moradi, PhD., Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

Received: 1 November 2024; Accepted: 14 February 2025; Published: 1 April 2025 © 2025 Codon Publications

REVIEW PAPER

Abstract

The gut microbiota is vital for human health but contributes to various conditions ranging from inflammation to obesity if there is dysbiosis. Diets lacking in fiber contribute to gut health issues. Fiber acts as a prebiotic by feeding gut bacteria while encouraging microbial diversity. Decreased barrier functioning, resulting from low levels of fiber, has been linked to various gastrointestinal disorders. Through butyrate production, diets rich in fiber reduce the risk of chronic diseases, such as heart disease and type 2 diabetes. This review focuses on the role of dietary fiber in gut health and chronic diseases linked to the gut. Further, customized nutrition plans are followed as a way to upsurge fiber uptake to the extent based on lifestyle, genetics, and the composition of each person's gut microbiome. Increasing fiber intake rendering to one's requirements enhanced the benefits of improving gut health, reducing inflammation, and the prevention and treatment of chronic diseases, such as cancer, diabetes, and cardiovascular diseases.

Keywords: gut microbiome; gut-brain axis; dietary habits; fiber-rich diet

Introduction

Background on gut health

The human gut puts up a complex ecosystem consisting of billions of bacteria, viruses, fungi, and archaea, affecting the immune system, metabolism, and digestion processes (Amato *et al.*, 2021). The gut microbiota is affected by genetic, nutritional, environmental, and lifestyle features that determine the overall health and disease susceptibility of an individual (Chang *et al.*, 2021).

The gut microbiota has a strong impact on physiological functions by forming a symbiotic association with the host. In this regard, it aids energy metabolism by breaking down dietary fibers and producing short-chain fatty acids (SCFAs) that provide energy for intestinal epithelial cells and also regulate immunological responses (Delannoy-Bruno *et al.*, 2022). Moreover, through the stimulation of mucins and antimicrobial peptide synthesis, the microbiome manages the reliability of intestinal barrier and averts the colonization of pathogens (Schut *et al.*, 2021). Studies disclose that diseases, such

as inflammatory bowel disease, obesity, diabetes, and neurodegenerative disorders, have been related to dysbiosis, or a disruption in gut microbiota (Fu et al., 2022a). The gut microbiota instigates colonization at birth and is dynamic over time. A range of aspects influence the community's development, such as early nutrition, nursing, antibiotic use, and delivery methods (Beller et al., 2022). Species of Bifidobacterium and Lactobacillus, which endorse immune system maturation and digestion, are predominant in the gut microbiome during infancy. Diversity upsurges with age and matures in adulthood (Cobo-López et al., 2022). However, during the lifespan, the composition of microbiomes remains dynamic and has a variable impact from dietary habits and environmental exposures to medical considerations (Goyal et al., 2015). The novel investigation now focuses on the role of gut microbiota in chronic diseases. For instance, alteration in microbial composition relates to lipid metabolism and altered levels of insulin sensitivity that result in metabolic diseases (Lee et al., 2024). The immunological dysregulation induced through gut dysbiosis is further linked with inflammatory diseases, such as Crohn's disease and ulcerative colitis (Fachi et al., 2024). Microbial metabolites affect mental health as well as cognitive purpose through the gut-brain axis, an axis of bidirectional statement between the gut and the central nervous system (CNS; Oyarzun et al., 2022). The conservation of physiological balance and overall wellness is contingent on gut microbiota. Its configuration and purpose can be understood to help avert and accomplish disease. For better gut health and deterrence of chronic diseases, upcoming studies must emphasize on custom-made microbiome-centered treatments, which comprise probiotics, prebiotics, and dietary variations (Delannoy-Bruno et al., 2022).

Role of diet in gut health

The human gut microbiota influences immunological reactions, neurological procedures, and metabolic actions, all of which are vital for the overall health (Amato et al., 2021). Diet is probably one of the significant factors influencing the diversity, functioning, and robustness of gut microbes (Delannoy-Bruno et al., 2022). The current paper is centered on the investigation of the relationship between diet and gut health as influenced by macronutrients, micronutrients, dietary fiber, and specific food components. The gut microbial populaces are resolute by the specific functioning of macronutrients, such as proteins, lipids, and carbohydrates. The chief source of energy for gut microorganisms is dietary carbohydrates, mainly polysaccharides, which endorse the growth of beneficial bacteria (Beller et al., 2023). On the contrary, dysbiosis, characterized by reduced diversity and increased richness in taxa that

promote inflammation, is related to a high fat diet (Lee et al., 2024). Protein ingestion is also said to impact gut health, while on average, plant-based proteins can better sustain the diversity of microorganisms as opposed to animal-based proteins (Geng et al., 2021). Dietary fiber has been recognized to be essential for the maintenance of gut health, because it promotes the production of SCFAs and good bacterial populaces (Delannoy-Bruno et al., 2022). According to Chang et al. (2021), such SCFAs, such as butyrate, propionate, and acetate, are significant for immunomodulation, metabolic regulation, and gut barrier integrityet al.. Diets rich in fiber have been revealed to avert metabolic diseases and decrease inflammation by altering gut microbiota conformation (Cobo-López et al., 2022).

Vitamins, minerals, and other micronutrients play an important role in keeping the steadiness of gut microbes. Microbial metabolism and immunological functioning are regulated by vitamins D and B (Fu et al., 2022a). According to Fachi et al. (2024), minerals, such as iron and zinc, also affect the functioning of intestinal barrier and bacterial development, which, in turn, affect inflammation and infection. Some of the powerful dietary components altering gut microbiome include probiotics, polyphenols, and artificial sweeteners. Plant-based diets rich in polyphenols decrease gut-related inflammation, causing increased diversity (Osborn et al., 2022). Probiotics and prebiotics contribute toward increasing healthy counts of microbes by contributing to the overall digestive health as well as to more desirable metabolic output (Manrique et al., 2016).

Artificial sweeteners also are associated with variations in gut flora, and may lead to metabolic dysregulation as detected by Trevelline and Kohl (2022). Apart from digestion, there is a connection between gut flora, food, and health. Oyarzun et al. (2022) stated that dietary patterns affect the gut-brain axis, where metabolites produced by the microbiota impact mood regulation and neurological functioning. Additionally, nutritioninduced changes in the microbiota affect metabolic diseases, such as type 2 diabetes and obesity (Rowan et al., 2017). According to Gao et al. (2018), dietary variables and chronic pressure act synergistically to change the gut microbiota conformation, which effects inflammation and immunological reactions. Long-term dietary habits influence microbial variety, metabolic functions, and the overall health, thus establishing nutrition as an essential determinant of gut microbiota. The diet rich in nutrients and fiber supports a good gut flora, while excessive consumption of fat, sugar, and artificial additives can lead to dysbiosis and metabolic diseases. Understanding these dietary influences can help guide personalized nutritional therapies for enhancing gut fitness and systemic well-being.

Focus on fiber

Dietary fiber, tranquil, mostly of multifaceted carbohydrates, is the indigestible part of plant-based diets. It plays a significant role in both general metabolic functions and gut health (Martel et al., 2022). Two main forms of fiber exist: soluble and insoluble fiber. Soluble fiber liquefies in water to produce a gel-like material that binds to fatty molecules in the digestive tract, giving long-lasting satiety and potential compensation for managing weight and metabolic health (Suresh et al., 2024). Moreover, dietary fiber is one of the main regulators of gut microbiota composition that influences fermentative activity which is beneficial for SCFA and diversity of microorganisms (Loo et al., 2020; Martel et al., 2022). It is more and more acknowledged that the interaction between gut microbiota and dietary fiber intake assists in the deterrence of chronic diseases, such as obesity, diabetes, and cardiovascular diseases (CVDs) (Donovan, 2017; Gomaa, 2020; Zeng et al., 2018). Insoluble fiber absorbs water in the gut, adding mass to stool, and although both types of fiber are good for the gut, they work in different ways. Here soluble fiber, common in foods, such as oats, beans and apples, comes in handy (Bishehsari et al., 2018); it works hard at feeding friendly bacteria living (and working) inside the gut microbiome, which then produces SCFAs for the energy needed by the cells of colon lining (Carlson et al., 2018). Insoluble fiber, which is present in whole grains, nuts and vegetables, helps to avoid constipation and reduces the risk of colorectal cancer by speeding up food passage through the digestive tract, thereby limiting the period for which any harmful substances are in contact with internal walls (Calatayud et al., 2021).

A fiber-rich diet is linked with a reduced risk of numerous chronic illnesses, such as heart disease, type 2 diabetes, and definite types of cancers. Dietary fiber is more than just a gut therapist (Wang et al., 2021). These benefits are believed to be related to the gut microbiota-modulating effects of fiber. For example, regarding the etiology and pathophysiology of obesity-related diseases, other than hypertension, SCFA production by fiber-fermenting bacteria downregulates inflammatory cascades (Bishehsari et al., 2018), improves insulin sensitivity during development and instantaneous biological time, and regulates appetite while reducing body weight (Tremblay et al., 2020). It may also bind bile acids in the gut and help excrete them with faeces, lowering cholesterol levels, which are linked to heart diseases (Bishehsari et al., 2018).

Objective of the review

This review aims to deliver readers with a widespread understanding of how fiber-rich diet supports intestinal health and averts chronic diseases. The review deliberates the mechanisms through which fiber affects the gut bacteria composition, absorption of SCFAs, and the overall health of gut tissues. The review also highlights how the consumption of fiber helps in sustaining a balanced microbiota, boosts immunity, and is vital for preventing illnesses related to the gut. Such an approach of weighing both its advantages and possibly drawbacks, which may comprise causing gastrointestinal (GI) distress, the study considers numerous types of dietary fibers, their source, and possibly the effects thereof on different populations. A great deal could be made regarding diets that include much of fiber. High levels of fiber, when tailored definitely for an individual, help in a reduced risk of chronic diseases and eventually pave the way toward good health and well-being.

Understanding Gut Health

Microbiome composition: overview of gut microbiota and its role in health

Human gut microbiota is an extremely complex ecosystem, comprising trillions of bacteria, fungi, viruses, and archaea that are mainly present in the large intestine (Donovan, 2017; Rinninella *et al.*, 2019). These microorganisms, whose composition varies with environmental factors, age, and nutrition, play a critical role in immunological regulation, digestion, and metabolic health (Prasad and Bondy, 2019; Vinelli *et al.*, 2022). Dietary fibre types, especially soluble fibers, expressively participate in gut microbiota by encouraging the synthesis of advantageous SCFAs (Guan *et al.*, 2021; McRorie and McKeown, 2017 *et al.*). Recently, several chronic diseases have been associated with altered composition of microbiota, emphasizing the importance of fiber-rich diets to maintain gut health (Dong *et al.*, 2019; Matt *et al.*, 2018).

This microbial community contributes to various physiological functions, including digestion, nutrient absorption, immune modulation, and mental health (Cui et al., 2019). The modulation of composition of gut microbiota is a multifaceted process regulated by different factors, such as diet and genetic age or environmental exposure that represent lifestyle discriminant; among its modulators, the most relevant ones are related to what we eat. For example, fiber-rich diets stimulate the growth of beneficial bacteria, such as Bifidobacterium and Lactobacillus, which are involved in maintaining gut barrier function and producing SCFAs, having a number of human health benefits (Chen et al., 2019). Figure 1 illustrates the composition of gut microbiome and how dietary fiber impacts it.

The diversity and equilibrium of gut microbiota are the key factors to health. A healthy microbiome can confer

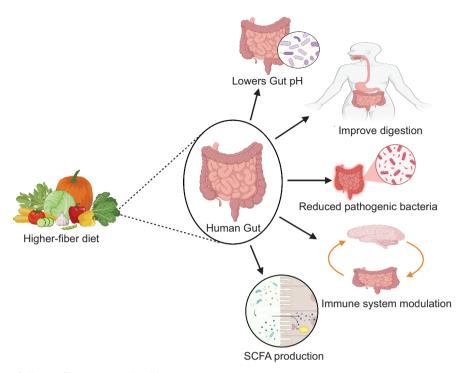


Figure 1. Impact of dietary fiber on gut microbiome.

multiple benefits, and a loss of diversity in the bacterial community dysbiosis is tightly associated with various diseases, such as inflammatory bowel disease (Chakrabarti et al., 2022), obesity, metabolic syndrome, etc. The common causes of dysbiosis are antibiotic therapies, infection, or a high-fat and low-fiber diet. Dysbiosis or disproportion of gut microbiota may promote the expansion of disease by facilitating the overgrowth of pathogenic bacteria, enhancing intestinal permeability, and endorsing chronic inflammation (Rinninella et al., 2019). Since dietary fibers play a key role in regulating the composition and activity of gut microbiota, the preservation of microbial diversity through diet and lifestyle is important for the overall health (Donovan, 2017; Vinelli et al., 2022). Both soluble and insoluble fibers enhance the development of SCFAs and aid in the advancement of a good bacterium, which has a key interaction with better immune and metabolic functions (Guan et al., 2021; Prasad and Bondy, 2019). Regular intake of fiber from fruits, vegetables, and whole grain helps decrease inflammation and upholds gut homeostasis (Cui et al., 2019; Joye, 2020).

Gut barrier function: explanation of gut lining and its role in immune function

The gut or intestinal barrier is an intricate system that contributes centrally to balance homeostasis and defend the body against harmful compounds. This barrier consists of a monolayer of intestinal epithelial cells linked by protein claudins and occludins that prevent pathogens, toxins, and undigested food particles from translocating into the bloodstream (Dai and Chau, 2017). This barrier provides a critical defense against systemic inflammation and immune tolerance. The gut microbiota plays many crucial roles in the proper functioning of intestinal lining, and one such role is that it helps to maintain the integrity of this barrier. SCFAs, particularly butyrate, are an energy source for colonocytes and one of the key signaling molecules that helps to maintain the integrity of gut barrier (Debnath et al., 2019). An intact and effective gut barrier protects the immune system from harmful substances (such as bacterial endotoxin), which would otherwise enter the general circulation, contributing to chronic inflammation that drives many diseases (Chen et al., 2019). The integrity of gut barrier is heavily influenced by dietary patterns. Diets rich in fiber strengthen GI barrier as they improve the production of SCFAs and promote eubiotic gut microbiota (Guan et al., 2021; Vinelli et al., 2022). The amendment of gut microbiota through fiber consumption largely inspires gut homeostasis and the overall health circumstances (Cui et al., 2019; Donovan, 2017).

Guts-brain axis: discussion on the connection between gut health and mental health

The gut-brain axis is a bidirectional network that links CNS with peripheral functioning of the enteric nervous system (ENS) (Bailén *et al.*, 2020). Motor activities in the

gut involve a complex interaction that employs neural innervation and hormonal and immunological signals, with an important impact on the microbiota present at this level (Chakrabarti et al., 2022). New studies even hint that the gut microbiota can control something as complex and diverse in expression as brain function, leading to anxiety, depression, or stress-related ailments (Calatayud et al., 2021). There are a few ways in which the gut-brain axis works. First, the most important way microorganisms in the gut influence brain functioning is by producing neurotransmitters and neuroactive compounds (Hills et al., 2019). Some gut bacteria strains, such as Clostridium sporogenes, have been shown to produce neurotransmitters, such as gamma-aminobutyric acid (GABA), serotonin, and dopamine, key molecules that control mood, anxiety, and cognition (Chakrabarti et al., 2022). Moreover, gut microbiota can modulate systemic levels of inflammatory cytokines that also affect brain function and behavior. Gut dysbiosis can drive this increased production of cytokines, which have subsequently been implicated in mood disorders and cognitive decline (Debnath et al., 2019). It becomes apparent that the health of these gut critters or their balance and the overall integrity of the wall is a key for mental functioning. Increased intestinal permeability can result in an abnormal lipopolysaccharide (LPS) and other endotoxins passage across the gut barrier responsible for inducing neuroinflammation, which has been linked to depression and mental pathologies (Chakrabarti et al., 2022). Accessory SCFAs generated by fiber fermenting gut bacteria also have neuroprotective benefits, further underscoring the critical roles of dietary fiber in maintaining wellness at both ends (Cui et al., 2019).

The gut microbiota associated with major mental health disorders has been proposed as a potential causative factor of these conditions, and diet has been indicated to influence prevention, alleviation or treatment (Dinan and Cryan, 2017). The composition of gut microbiota, its diversity, and the integrity of both GI barrier and the part directed to communicate with the brain, that is, the ENS, are the associated factors together contributing toward perturbing or controlling health over time (Shah *et al.*, 2020).

Dietary Fiber: Types and Sources

Types of dietary fiber: soluble vs. insoluble fiber and their distinct roles

One of the most important nutrients for any diet is fiber, which has two varieties: dietary soluble and insoluble fiber. Each type of fiber has a unique function in supporting health, especially gut health.

Soluble fiber

Soluble fiber dissolves in water to form a gel-like material and assists in controlling blood sugar and cholesterol levels (McRorie and McKeown, 2017). This type of fiber can easily be fermented by gut bacteria, and these bacteria break it down into SCFAs, such as butyrate, acetate, and propionate, that are important for health of the gut (Guan et al., 2021). SCFAs are a source of energy for colonocytes, decrease inflammation, and strengthen the gut barrier, thereby endorsing the overall GI homeostasis (Prasad and Bondy, 2019; Vinelli et al., 2022). When soluble fibre is fermented, it encourages Bifidobacteria and Lactobacilli to proliferate to promote more diversity of gut microflora, which leads to a preventional dysbiosis (Donovan, 2017; Holscher, 2017). Oatmeal, pulses, oranges, carrots, and barley are the staple diet containing more dietary soluble fiber because it benefits gut, lowers cardiac ailments, and controls blood sugar levels in diabetics (Jones, 2014; Rinninella et al., 2019). Besides, by absorbing water, deferring digestion, and boosting fullness, soluble fiber aids in weight control (Thompson et al., 2017). Such mechanisms comprise binding with bile acids in the colon and thus plummeting its availability for cholesterol metabolism (Khan et al., 2018). Given the plethora of health benefits, it is not surprising that dietary advice has progressively placed a premium on foods rich in soluble fiber for ornamental gut microbiota composition, metabolic health management, and longer-term well-being (Cui et al., 2019; He et al., 2022). Natural sources, their benefits, and impacts of soluble fiber are mentioned in Table 1.

Insoluble fiber

Insoluble fiber does not dissolve in water, contrary to soluble fiber. It also prevents constipation by bulking up stool, thereby enhancing ease of food passing through the gut (McRorie and McKeown, 2017). Insoluble fiber is mainly non-fermentable; thus, it doesn't contribute to SCFAs in the synthesis of gut microbiota. On the other hand, its structural features are vital for maintaining digestive integrity and preventing intestinal diseases, such as piles and diverticulosis (Donovan, 2017). Insoluble fiber is found in wheat bran, nuts, seeds, and fruit and vegetable peels. These foods encourage GI motility, accelerate the colonic transit time, and enhance fecal size (Esteban et al., 2017; Rinninella et al., 2019). Studies have shown that insoluble fiber reduces the development of chronic diseases in the gut by enhancing gut regularity and avoiding constipation (Vinelli et al., 2022).

In addition, mechanical possessions of insoluble fiber are connected to ornamental gut homeostasis through

Table 1. Soluble fibers and their impact on gut health.

Soluble fiber type	Natural sources	Benefits	Impact on gut health	References
Inulin	Chicory root, garlic, onion	Prebiotic effects	Promotes beneficial bacteria growth	Hiel et al., 2019
Pectin	Apples, citrus fruits	Reduces cholesterol	Enhances production of short-chain fatty acids (SCFAs)	Bishehsari et al., 2018
Beta-glucans	Oats, barley	Lowers LDL cholesterol	Stimulates immune function	Hills et al., 2019
Psyllium	Psyllium husks	Relieves constipation	Improves gut motility	Jha <i>et al.</i> , 2019; Jovanovski <i>et al.</i> , 2021
Guar gum	Legumes, guar beans	Controls blood sugar	Modifies gut microbiota composition	Carlson et al., 2018; Yasukawa et al., 2019
Arabinoxylans	Whole grains, bran	Antioxidant properties	Enhances microbiota diversity	Makki <i>et al.</i> , 2018
Fructooligosaccharides	Bananas, asparagus	Improves calcium absorption	Promotes bifidobacteria	Tanes et al., 2021
Resistant starch	Green bananas, potatoes	Supports weight management	Increases SCFA production	Koh <i>et al.</i> , 2016; Ojo <i>et al.</i> , 2020
Cellulose	Vegetables, grains	Adds bulk to stool	Supports gut integrity	Peredo-Lovillo <i>et al.</i> , 2020
Algal polysaccharides	Seaweed	Anti-inflammatory effects	Encourages beneficial microbiota	Mayrhofer, 2019; Spencer et al., 2021
Xylooligosaccharides	Corn, bamboo shoots	Improves gut metabolism	Stimulates lactobacilli	Fuller et al., 2016
Lactulose	Dairy products	Treats hepatic encephalopathy	Supports bifidobacteria growth	Holscher, 2017
Chitosan	Shellfish, fungi	Antibacterial properties	Regulates intestinal flora	Calatayud et al., 2021
Agar	Seaweed	Promotes satiety	Supports SCFA production	Mayrhofer, 2019
Hemicellulose	Whole grains	Reduces inflammation	Balances gut pH levels	Tangestani et al., 2020
Mucilage	Flaxseed, okra	Soothes GI tract	Protects gut lining	Nie et al., 2021
Polyphenol-associated	Tea, cocoa	Antioxidant activity	Modifies gut microbiome	Loo et al., 2020
Alginates	Seaweed	Reduces appetite	Enhances gut viscosity	Vinelli et al., 2022
Soluble Corn Fiber	Corn	Increases calcium absorption	Supports gut microbiome	Jakeman <i>et al.</i> , 2016; Tan <i>et al.</i> , 2020; Whisner <i>et al.</i> , 2016
Soluble dextrin fiber	Potato starch	Supports weight control	Improves gut dysbiosis	Czarnowski et al., 2024 Emilien et al., 2020
Blueberry soluble fiber	Blueberries	Reduces gestational diabetes risk	Enhances gut health	Basu <i>et al.</i> , 2021
Fenugreek soluble fiber	Fenugreek	Enhances physical endurance	Modifies gut microbiome	Herrick et al., 2020
Mixed soluble fibers	Various sources	Improves renal anemia	Alters gut microbiota composition	Li et al., 2022
Hydrolyzed guar gum	Guar beans	Improves fecal characteristics	Modifies gut microbiota	Yasukawa et al., 2019
High-soluble fiber spaghetti	Wheat-based pasta	Modifies glycemic response	Supports gut metabolism	Papakonstantinou <i>et al</i> 2022
Novel dietary fiber	Various plant sources	Enhances satiety, lowers glucose levels	Alters gut microbiome	Wu et al., 2023

modulation of the structure of microbiota and reinforcement of intestinal barrier integrity (Baky *et al.*, 2024; Prasad and Bondy, 2019). Because dietary insoluble fiber may help to dilute possible carcinogens and speed their elimination from the intestines, its deficiency is associated with augmented risks for cancer development of the

colon and rectum (Ran *et al.*, 2021). In addition, through its roles in aiding weight control and reducing the potential for complications because of obesity, insoluble fiber positively affects metabolic health (Dong *et al.*, 2019; He *et al.*, 2022). A diet containing adequate insoluble fiber is necessary for the overall GI health. Its significance

in supporting intestinal rhythm, diversity of microbiome, and reducing the incidence of chronic diseases is reflected in the latest dietary guidelines (Cui *et al.*, 2019; Hussain *et al.*, 2020; Lamothe *et al.*, 2021). Future investigations into the complex interplay between insoluble fiber, gut microbiota, and metabolic health should be conducted to maximize its functional benefits in human nutrition (Han *et al.*, 2023; Meldrum and Yakubov, 2024). Insoluble fiber types and their impact on gut health are shown in Table 2.

Natural Sources of Fiber

Many foods come from plants or plant-based items, such as whole grains, legumes, and fruits, which make the gut happy when consumed in larger amounts (Rezende *et al.*, 2021). Good sources of dietary fiber are fruits, vegetables, whole grains (brown rice or whole wheat pasta, legumes, beans, and peas), nuts, and seeds. This way, one gets diverse fiber types and other nutrients from each group in a compounded manner that generally encourages good health. Figure 2 shows soluble and insoluble fiber types in various foods (Afzaal *et al.*, 2022; Benítez-Páez *et al.*, 2016; Carlson *et al.*, 2018; Dinan and Cryan, 2017; Holscher, 2017; Joye, 2020; Koh *et al.*, 2016; Kumar *et al.*, 2020; Rezende *et al.*, 2021).

Fruits and vegetables

Fruits and vegetables are filled with both soluble and insoluble fiber. Fruits that are high in soluble fiber, such as berries, oranges, pears, and apples, decrease cholesterol and keep blood sugars under control (Hussain *et al.*, 2020). Fruit skins (not bananas, but that of apples and pears) are the best source of insoluble fiber that aids digestion and does not cause constipation (Cui *et al.*, 2019). Broccoli, brussel sprouts, and carrots contain a healthy dose of fiber, providing combination of soluble fiber that acts as prebiotics to keep good bacteria in the gut strong.

Leafy greens have less fiber than root vegetables listed, but they should still be included as part of an overall fiber-rich diet because leafy greens are a rich source of other essential nutrients, such as vitamins A, C, and K (Dinan and Cryan, 2017).

Whole Grains

Whole grains, such as amaranth grain, contain tremendously smooth insoluble fiber, another outstanding source of dietary fiber. Brown rice can avert many gut disorders and endorses a healthy intestine because of a high fiber reserve (Joye, 2020). Whole grains, including oats, contain soluble fiber, which is especially effective at helping reduce LDL cholesterol and improve heart health. In whole grains, more insoluble fiber can be found in the bran section, making it a very effective tool for adding bulk to stool and regularizing bowel movements (Jha et al., 2019).

Legumes

Many types of beans, as well as lentils, chickpeas (garbanzo beans), and peas, are the legumes especially high in fiber. A balanced combination of soluble and insoluble fiber, these nutrients result in a healthy digestive track, with controlled blood sugar level, that keeps a person feeling full (Jha *et al.*, 2019). If anyone wants to increase the intake of fiber in diet, legumes are the best option because they are rich in fiber and are highly beneficial, particularly for vegetarians and vegans. Legumes are also a rich source of potassium, magnesium, iron, and protein (Korczak and Slavin, 2020).

Nuts and seeds

Seeds and nuts, including almonds, flaxseeds, chia seeds, and walnuts, are rich in dietary fiber. Soluble and insoluble fiber types, together with healthy fats, proteins, and numerous vitamins and minerals, are abundantly found in these foods (Benítez-Páez *et al.*, 2016). Flaxseeds and chia seeds are the top picks for soluble fiber, which can

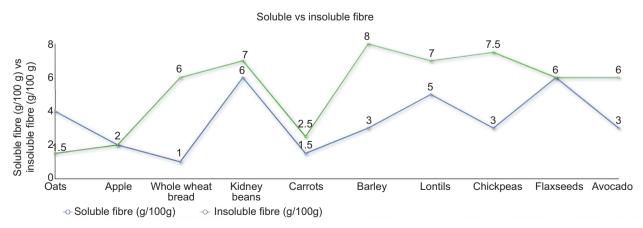


Figure 2. Soluble versus insoluble fiber.

Table 2. Insoluble fiber types and impact on gut health.

Insoluble fiber type	Natural sources	Benefits	Impact on gut health	References
Cellulose	Whole grains, fruits, and vegetables	Supports bowel regularity	Promotes stool bulk and enhances peristalsis	Kudou et al., 2022; Turner and Lupton, 2021
Hemicellulose	Cereal grains, nuts, and legumes	Increases water-holding capacity	Facilitates softer stools and improved transit time	Hiel <i>et al.</i> , 2019; Moreira <i>et al.</i> , 2024
Lignin	Flaxseeds, carrots, and wheat bran	Antioxidant properties	Protects gut lining and aids microbiota diversity	Cantero et al., 2017; Holscher, 2017
Resistant starch	Unripe bananas and cooked/cooled potatoes	Enhances satiety	Produces short-chain fatty acids (SCFAs) upon fermentation	Jha <i>et al.</i> , 2019; Liu <i>et al.</i> , 2020; Miao <i>et al.</i> , 2024
Chitin	Shellfish and mushrooms	Binds toxins in the gut	Contributes to detoxification and gut health	Morrison et al., 2020
Raffinose	Beans and Brussels sprouts	Prebiotic effects	Promotes growth of beneficial bacteria	Makki <i>et al.</i> , 2018
Arabinoxylans	Wheat and corn bran	Enhances stool consistency	Reduces inflammatory markers	Iversen et al., 2022; Merenkova et al., 2020
Polyphenolic fibers	Berries and tea leaves	Combats oxidative stress	Modulates gut microbiota composition	Arikawa <i>et al.</i> , 2017; Loo <i>et al.</i> , 2020
Pectic substances	Apples and citrus peels	Supports bile acid metabolism	Improves microbiota integrity	Mayrhofer, 2019
Xylan	Corn husk and barley	Improves digestibility	Aids mucosal barrier strengthening	Martin-Gallausiaux et al., 2021
Glucan	Oats and barley	Lowers cholesterol	Enhances SCFA production	Korcz et al., 2018
Mannans	Guar gum and locust bean gum	Enhances stool bulk	Influences gut bacteria diversity	Nie et al., 2021
Galactans	Lentils and chickpeas	Prebiotic activity	Increases bifidobacteria	Hiel et al., 2019
Fructooligosaccharides	Onions and garlic	Reduces pathogen adherence	Supports gut barrier functions	Tang et al., 2017
Psyllium	Psyllium husk	Soothes GI distress	Enhances stool bulk and SCFA production	Kudou <i>et al.</i> , 2022; Shah <i>et al.</i> , 2020
Beta-glucans	Oats and barley	Immunomodulation	Improves gut epithelial health	Holingue et al., 2020
Inulin	Chicory root and asparagus	Prebiotic effects	Enhances bifidobacteria and SCFA production	Hiel et al., 2019
Resistant dextrins	Corn fiber and wheat fiber	Improves glycemic control	Promotes SCFA production	Mao et al., 2021
Mucilages	Cactus and aloe vera	Soothes intestinal lining	Reduces GI inflammation	Malipatlolla et al., 2021; Remes-Troche et al., 202
Tannins	Tea and coffee	Antioxidant properties	Modulates microbiota to reduce inflammation	Koh <i>et al.</i> , 2016; van Trijp <i>et al.</i> , 202
Konjac glucomannan	Konjac root	Improves stool bulk and lipid metabolism	Alters gut microbiota in obese individuals	Li et al., 2022

help reduce cholesterol and grow good gut bacteria (Korcz *et al.*, 2018). Furthermore, the fiber in nuts and seeds decreases blood sugar levels and assist in averting type 2 diabetes (He *et al.*, 2022).

Recommended fiber intake: overview of dietary guidelines for fiber consumption

No specific daily recommended intake (DRI) of fiber is established because referrals may differ with age, gender,

and health status. Typically, adults have a DRI of fiber set at 25–38 g/day (Fu-Shin *et al.*, 2022). According to the National Academy of Medicine, an individual should take at least 25 g/day of fiber. Males aged <50 years should consume up to 38 g/day of fiber (Xie *et al.*, 2021). For individuals aged \geq 50 years, a slightly reduced intake of fiber is recommended. The requirement for males after this age increases to about 30 g/day, and for females, the requirement is 21g/day, which is explained by a drop in calorie intake with age (Li *et al.*, 2020; Liu *et al.*, 2020). The studies have found that the mean intake of fiber

in most industrialized nations is still manifold lower, although dietary guidelines call for its adequate intake (Baky *et al.*, 2024). For instance, the average consumption of dietary fiber is only around 15 g/day in the United States. In contrast to what is usually suggested, this intake is remarkably small (Cui *et al.*, 2019). 'Fiber gap,' is associated with increased risk for chronic diseases, including coronary heart disease, type 2 diabetes, and numerous forms of cancers (He *et al.*, 2022; Korczak and Slavin, 2020). A key reason for the gap in fiber intake is the lack of dietary fiber in fruits, vegetables, and whole grains, which are crucial for gut health and overall metabolic balance (Joye, 2020).

Studies have shown that the structure and activities of gut microbiota are beneficially altered by insoluble dietary fiber, which is for the most part, not subject to degradation in the digestive system (Baky et al., 2024; Wang et al., 2021). The insoluble fiber maintains homeostasis of the gut and reduces inflammation through the modulation of gut motility and through being a fermentable substrate to the Probiotics (Hussain et al., 2020; Katsirma et al., 2021). With relationship to its impact on gut microbiota, the preventive role of fiber against chronic diseases is well established. Studies showed that insoluble dietary fiber, especially in cereals and plant foods, enhances metabolic health, increases the production of SCFAs, and alters gut microbial diversity (Han et al., 2023; Wang et al., 2019). Dietary fiber influences the body's immune response and decreases the prevalence of metabolic illnesses by acting upon intestinal mucus layers and biochemical pathways (Capuano, 2017; Meldrum and Yakubov, 2024). Reducing the fiber gap, therefore, requires a multilevel approach, including the development of new products rich in fibers, public health campaigns, and education about the benefits of fiber-enriched food. This variance may be addressed by cumulative ingesting of fruits, vegetables, whole grains, and underutilized plant-based fiber sources, with the possibility of advancing public health consequences (Barrett et al., 2020; Stephen et al., 2017). In addition, personalized nutrition plans that individualize fiber intake recommendations based on person's specific gut microbiota composition are likely to be more beneficial for health (De Roos and Brennan, 2017; Jinnette et al., 2021). This is demonstrated by the huge health risk that the existing fiber gap presents in affluent countries.

Studies have revealed that insoluble dietary fiber plays a key role in the deterrence of chronic diseases and the general promotion of health (Dreher, 2018; Tosh and Bordenave, 2020). The development of gut and metabolic health of the population would be certified by rectifying this nutritional gap through diet variation and public health policies. Therefore, increasing the consumption

of fiber-rich foods is essential to bridge fiber gap, considering the overall public health. The best form of dietary fiber comes from whole, plant-based foods, and there is no shortage of healthy options that can be included in a well-rounded diet (Miller, 2020). Figure 3 shows data comparing the recommended daily fiber intake with the average intake in different regions (Afzaal *et al.*, 2022; Benítez-Páez *et al.*, 2016; Carlson *et al.*, 2018; Dinan and Cryan, 2017; Gill *et al.*, 2021; Holscher, 2017; Hussain *et al.*, 2020; Katsirma *et al.*, 2021; Kumar *et al.*, 2020; Venter *et al.*, 2022).

Role of fiber in gut health

Fiber is vital for a healthy microbiome because it helps to determine the abundance and types of ends in the colon, promotes normal bowel movements crucial to prevent autointoxication by removing waste products quickly from the body at least once daily, and supports gut lining integrity (Loo et al., 2020). Arguably, the most important factor in gut health is a diverse diet rich in fiber, which can help to maintain balance between various species of beneficial bacteria and pathogens that form part of person's normal flora (Fuller et al., 2016). In the presence of fiber in the diet, it is fermented by gut bacteria to form SCFAs. They offer several health benefits: immune-boosting, anti-inflammatory, and a possible anticancer effect for colon cancer (Koh et al., 2016). Dietary fiber binds with water, which is essential to support health of the digestive system, because this provides stool a greater volume and improves the speed with which it moves through the digestive system. Apart from the treatment of constipation, this procedure decreases the prevalence of GI disorders by aiding the removal of old impacted waste (Baky et al., 2024). Fiber intake is also important for gut homeostasis because it manifests that the balance of microbiota is maintained and averts diseases, such as diverticulosis and irritable bowel syndrome (IBS; Cui et al., 2019; Hussain et al., 2020). While soluble fiber is vital in the regulation of cholesterol and for the production of SCFAs, which are beneficial for gut health, insoluble dietary fiber, which is found in whole grains, fruits, and vegetables, assists immensely with bowel regularity (Joye, 2020; Korczak and Slavin, 2020). Fiber plays an important role in the regulation of gut microbiota, influencing metabolic health, and averting chronic conditions, such as obesity and CVDs, as demonstrated by recent studies (Tosh and Bordenave, 2020; Wang et al., 2021). The optimal intake of dietary fiber, from both natural and added sources, including whole fruits, vegetables, legumes, and nuts, is necessary to sustain long-term health and reduce the risk of diseases, considering the widespread 'fiber gap' that is impacting various populations (Ioniță-Mîndrican et al., 2022; Stephen et al., 2017).

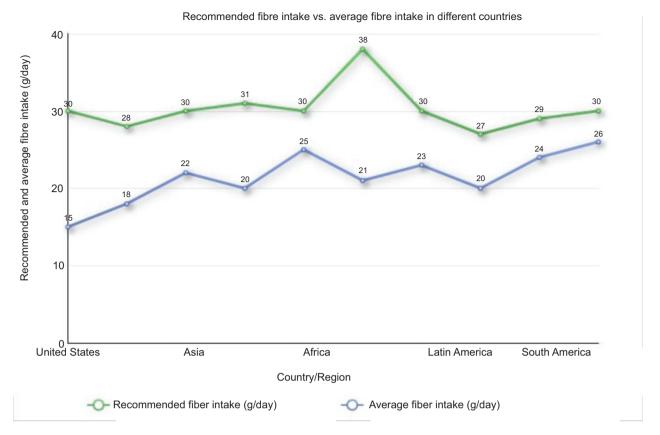


Figure 3. Recommended fiber intake versus average intake in different countries.

Mechanisms by which fiber influences gut health

Dietary fiber is an essential component of gut health and acts through multiple pathways. The breakdown of fiber by bacteria in the colon leads to production of SCFA, prebiotic effects on the composition and functioning of gut microbiota, effects motility, and stimulates to improve gut barrier. The more one knows about these mechanisms, the better one can understand how a fiber-rich diet benefits the digestive health and helps to prevent GI disorders. Figure 4 shows how dietary fiber influences gut health.

Fermentation and short-chain fatty acids

Gut bacteria require dietary fiber for performing fermentative process to produce SCFAs, such as butyrate, propionate, and acetate. Delannoy-Bruno *et al.* (2022) stated that some fiber polysaccharides impact the synthesis of SCFA and the composition of gut microbiota to impact proteome profiles within plasma and thereby the health conditions. As their study suggests, dietary interventions may specifically enhance SCFA production to support immunological reaction and the reliability of gut barricade. Similarly, Fachi *et al.* (2024) highlighted the

relationship between SCFA production and the defense of microbiota in contradiction to enteric infections. According to their study, changes in interleukin 22 (IL-22) signaling influence microbial metabolism, thereby enhancing the anti-inflammatory properties of SCFAs and strengthening host apologetic system. These consequences demonstrate the importance of fiber-mediated SCFA synthesis in ensuring both GI and immunological homeostasis.

The most important mechanism by which dietary fiber affects gut health is fermentation, particularly that of the SCFAs produced when certain bacterial species ferment fibers (Portincasa *et al.*, 2022). SCFAs are produced during fermentation when bacteria break down fiber into components that include acetate (precursor energy and a signaling molecule), propionate (which influences the liver) and butyrate; SCFA plays a major role in gut health and metabolism (Lee and Kim, 2021). Figure 5 shows the fermentation and production of SCFAs.

Butyrate

Butyrate serves as a major source of energy for colonocytes (i.e., the cells lining the bowels). SCFAs, such as butyrate, support the preservation of gut barrier integrity, helping to enhance mucus production and promoting

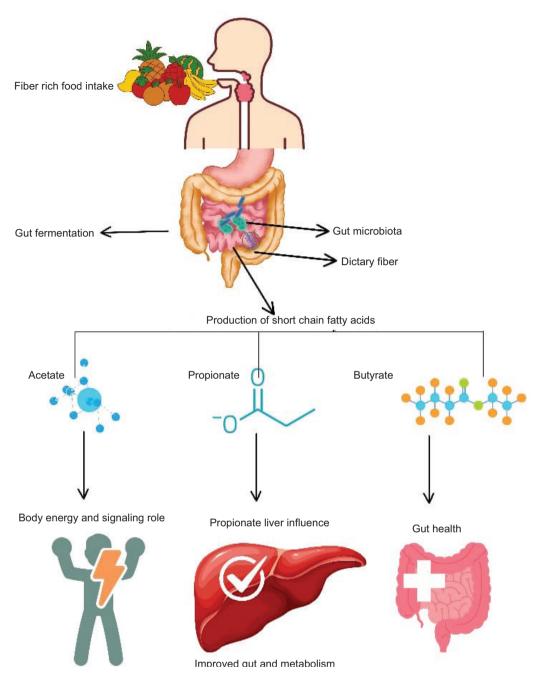


Figure 4. Influence of dietary fiber on gut health.

tight junctions between cells that inhibit harmful pathogens from moving through microscopic openings into the blood (Salamone *et al.*, 2021). Furthermore, butyrate is anti-inflammatory, reduces the risk of chronic inflammation, and IBD and decreases probability of colorectal cancer (Martin-Gallausiaux *et al.*, 2021).

Acetate and propionate

Acetate and propionate play a second important role in gut health, acting as signaling molecules that can change many metabolic processes (Koh et al., 2016). The most abundant SCFA, that is acetate, is also responsible for regulating appetite and energy homeostasis (Carlson et al., 2018). More importantly, it may penetrate the blood brain barrier and act on the hypothalamus to reduce appetite, potentially affecting weight control (La Torre et al., 2021). Propionate is mainly absorbed in the liver and enters gluconeogenesis (Martin-Gallausiaux et al., 2021) and participates in glucose regulation. The acidic pH of the colon also suppresses pathogenic

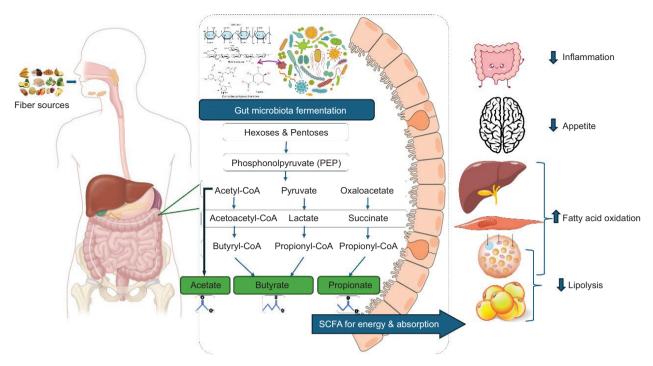
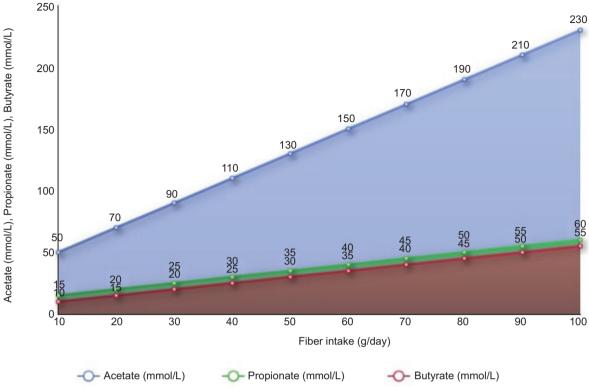


Figure 5. Fermentation and production of short-chain fatty acids.

bacteria and increases the concentration of more beneficial bacterial species (Fuller *et al.*, 2016), which is a gain for gut health: SCFAs and their organic processing in the gut are associated with better immune functioning due to their capacity to affect immune cells and suppress proinflammatory cytokines production (Martin-Gallausiaux *et al.*, 2021). Figure 6 shows sample data on the production of SCFAs at different levels of fiber intake (Calatayud *et al.*, 2021; Camerotto *et al.*, 2019; Carlson *et al.*, 2018; Koh *et al.*, 2016; Makki *et al.*, 2018).

Prebiotic effects

Dietary fibers, especially fermentable fibers, are prebiotic compounds that encourage the growth and activity of beneficial gut bacteria. Prebiotics (e.g., inulin, fructo-oligosaccharides [FOS], and galacto-polysacharides) help to feed good gut bugs, such as *Bifidobacteria* or *Lactobacilli*, which have been associated with various health benefits (Lee and Kim, 2021). They keep the gut healthy by preventing pathogens from adhering to host cells and causing infection by competing for resources and adhesion sites on intestinal epithelium (Seradj *et al.*, 2018). Prebiotic fibers provide a more populated and healthier area while avoiding soil disruption. Selectively stimulating beneficial bacteria by prebiotic fiber helps to maintain microbial diversity, which is essential for gut resiliency and stability. It also increases the production


of SCFAs when prebiotic fibers are consumed, further supporting the later effects (Mörkl *et al.*, 2020). Consumption of prebiotic substrate is suggested to confer health benefits through their association with the well-being of probiotics. Prebiotics feed beneficial bacteria (probiotics), perpetuating a symbiotic gastrointestinal tract (GIT) ecosystem (Peredo-Lovillo *et al.*, 2020).

Impact on gut motility

Gut motility, or how quickly and efficiently one poops, is a separate issue but also a very important aspect of digestive health influenced by fiber (Kranz *et al.*, 2017). Dietary fiber is important for preserving GI health because it preseves gut motility and prevents a number of digestive glitches. Insoluble fiber does not dissolve in water, which makes stool more voluminous and upsurges its passage through the digestive system. This increases the bulk stimulating stretch receptors within the colon to initiate peristalsis, wave-like muscular contractions that move food down the digestive tract, according to McRorie Jr. and McKeown (2017) and Baky *et al.* (2024).

Soluble fiber reduces the risk of constipation and conditions, such as diverticulosis, in which small sacs in the walls of the colon are inflamed and infected, by stimulating the movement of bulky stool (Baky *et al.*, 2024; Dreher, 2018). Fiber assists is in the prevention

210 190 170 150 130

Fiber fermentation and SCFA production

Figure 6. Fiber fermentation and production of short-chain fatty acids.

of diarrhea but also in the treatment of constipation. Soluble fiber slows digestion, which manifests that loose stool becomes firmer and evades coming out in a liquid form; insoluble fiber makes the size of stool bigger (McRorie and McKeown, 2017). Soluble fiber also delivers a gel inside the stomach. It shows the multimodal role of fiber in gut health by firming stools in the case of diarrhea and ornamental stool production in constipated patients (He et al., 2022).

Insoluble fiber makes bowel motions easier and faster by keeping water in stool (Wang et al., 2021). Colon health is preserved, and the risk of diverticulosis is reduced by frequent bowel movements (Dreher, 2018). Thus, in a more direct way, by encouraging sound bowel functioning and eliminating digestive disorders, ingesting high amounts of both soluble and insoluble fiber improves gut health in general. Moreover, indirect interactions with microbiome are shown to support gut homeostasis through fiber-rich diet available from whole fruits, vegetables, and grains (Cui et al., 2019; He et al., 2022). Such interaction of fiber with microbiome is essential for topnotch digestion and the overall health. Furthermore, its role in gut motility may also have repercussions for preventing other GI issues, such as IBS. Alternating periods of constipation and diarrhea are hallmark symptoms associated with IBS (Makki et al., 2018). Still, dietary fiber, especially soluble fiber, such as psyllium, has been demonstrated to lessen these ailments by normalizing bowel functioning in humans.

Fiber and gut barrier integrity

The intestinal lining of the GIT provides an important barrier between the gut lumen and systemic circulation, thus preventing the translocation of toxic substances that, after being absorbed through inflammatory processes, contribute significantly toward the prevention of different diseases (Chen et al., 2024). Gut barrier is a layer of precisely connected epithelial cells, topped by protective mucus. One of the keys to keep this barrier healthy is the dietary fiber (Carlson et al., 2018). Butyrate is one of the most critical SCFAs formed from fiber, and is catabolized by gut bacteria. Butyrate enhances goblet cell production of mucus that protects gut lining from damage and infections (Meldrum and Yakubov, 2024). Intestinal permeability also decreases because of an increase in tight junction protein expression due to butyrate, thus hindering the influx of toxic substances (He et al., 2022). Further, secretory immunoglobulin A (IgA), which helps to neutralize pathogens and inhibit them from breaking through the intestinal barrier, is produced in larger amounts when a fiber-rich diet is taken (Wang *et al.*, 2021). These processes show the importance of fiber for functioning of the immune system and intestinal homeostasis (Baky *et al.*, 2024; McRorie and McKeown, 2017).

Fiber also acts in the gut immune system by affecting dendritic cell and macrophage action that detect pathogens (Mayrhofer, 2019; Fu et al., 2022b). Some more indirect fiber-related effects on the gut barrier are due to changes within human microbiome, and it helps to maintain balance and microbial diversity. A diverse and balanced microbiota is less likely to contain pathogenic bacteria, which breaches gut barrier and causes inflammation (Liang et al., 2018). In the end, the effects of dietary fiber on gut health are multifaceted. Gut bacteria help to ferment fiber and create SCFAs, contribute to the integrity of gut barrier, modulation of immune functioning and healthy microbiota (Basith et al., 2022). The gut uses it as food for beneficial bacteria and has a role in the efficient functioning of bowel motility, thus preventing GI diseases. Owing to their support in gut barrier function, fiber-rich diet protects against chronic inflammation and associated diseases, thus demonstrating the necessity of adequate dietary fiber intake for the overall digestive health. Figure 7 presents sample data on gut permeability markers at different levels of fiber intake (Bishehsari et al., 2018; Cui et al., 2019; Basu et al., 2021; He et al., 2022).

Health Benefits of a Fiber-Rich Diet on Gut Health

Addition of dietary fiber to a diet provides positive health effects, especially for the intestines. The benefits of fiber go way beyond keeping a person regular in bathroom; it helps to prevent several digestive disorders and aids with weight management, among other things, such as reducing risk for chronic diseases, such as heart disease and diabetes. Figure 8 shows the importance of fiber intake by humans.

Prevention of gut-related disorders

Dietary fiber is critical in preventing and managing a variety of GI disorders, including IBS, Crohn's disease, and ulcerative colitis (Malipatlolla et al., 2021). Dietary fiber also supports gut health by promoting colonic regularity and increasing stool bulkiness, resulting in improved transit time, which is a key to prevent constipation and associated ailments (Wang et al., 2019). One of the important mechanisms by which fiber prevents gut-related disorders is inducing a fermentation process carried out by gut microbes. Consequently, SCFAs, such as acetate, propionate and butyrate, which exert antiinflammatory effects (Wang et al., 2019) while preserving gut barrier integrity, are produced in this process. These SCFAs are luminal energy substrates for colonocytes and exert anti-inflammatory effects on colonic mucosa, playing a pivotal role in suppressing inflammation, as

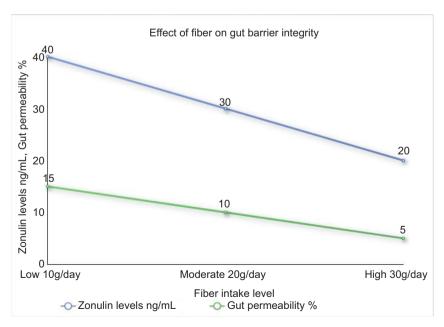


Figure 7. Effect of fiber intake on gut barrier integrity.

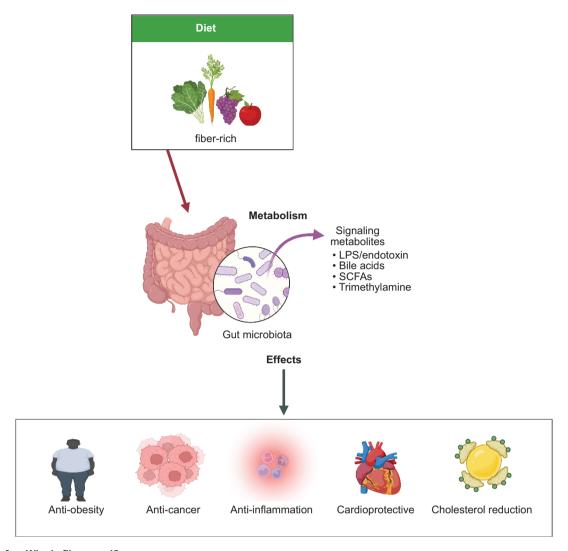


Figure 8. Why is fiber good?

observed in Crohn's disease or ulcerative colitis (Vinelli *et al.*, 2022). Fiber also prevents the disruption of intestinal microbiota balance, as dysbiosis is associated with different chronic GI diseases (Wang *et al.*, 2015).

Role in weight management

Dietary fiber has remained a valuable tool in weight management with properties such as its role in satiety, modification of gut microbiota, and reduced energy intake. According to Jovanovski *et al.* (2021), viscous fiber types, such as psyllium, produce a gel-like substance within the digestive tract that slows down stomach emptying and prolongs satiety. Meta-analyses of randomized controlled trials (RCTs) showed that the inclusion of these fibers in calorie-restricted diets significantly decreases waist circumference and body mass index (BMI). It not only changes the gut microbiota composition by increasing

the abundance of bacteroidetes but also lowers the content of firmicutes, a ratio correlated to a more enhanced effect on weight management results (Delzenne *et al.*, 2020).

Long-term consumption of fibers produces systemic benefits as evidenced in case studies from the MyNewGut Consortium revealing that, in addition to their efficacy for weight-related measures, long-term consumption of fiber reduces the metabolic dysregulations attributed to obesity. The gut flora plays a crucial role in the impact of dietary fiber on weight management and metabolic health. Based on the contribution of fiber to microbial diversity and SCFA production, Waddell and Orfila (2023) studied the molecular mechanisms that link fiber intake with the prevention of obesity. These SCFAs influence energy homeostasis through the regulation of hunger hormones, such as ghrelin and leptin. Case studies through manipulation of gut microbiota exhibited

significant reduction in obesity markers, such as those involving mice fed with soybean insoluble fibers (Wang et al., 2021). Lee et al. (2024) studied the role of palmitic acid hydroxy stearic acids (PAHSAs) in diet fed to obese mice and established that their beneficial metabolic properties were reliant on gut flora. The microbiota is crucial for the regulation of metabolic reactions to dietary interferences, as the study demonstrated that PAHSAs increased insulin sensitivity and reduced inflammation, but these relations were not detected in chow-fed mice (Lee et al., 2024). Moreover, dietary fibers were able to overwhelm several of the manifestations of metabolic syndrome, including reduced visceral adiposity and improved insulin sensitivity, based on clinical involvements such as the RESOLVE research (Tremblay et al., 2020). All these consequences accentuate the position of dietary fiber as a foundational element for gut health and weight control. Because fiber is so filling and can help to keep full for longer period, it also plays an important role in controlling body weight (Camerotto et al., 2019).

In contrast, soluble fiber types, such as those in oats, legumes, and some fruits that form a gel-like substance in the digestive tract, reduce the overall processing speed while promoting satiety (Turner and Lupton, 2021). Furthermore, the gut bacteria fermentation of fiber produces SCFAs that significantly affect energy homeostasis and appetite regulation. Acetate and propionate are two major SCFAs that are able to act as signaling molecules in gut hormones and neural pathways, which modulate energy balance (and control satiety), leading to decreased food intake, implicating a key role in weight management (Vinelli *et al.*, 2022; Wang *et al.*, 2019). Regular fiber consumption is associated with a healthy body mass index (BMI) and lower rates of obesity. (Tangestani *et al.*, 2020).

Impact on chronic diseases

It is widely known that dietary fiber, gut health, and prevention of chronic diseases are interrelated. Fiber consumption is associated with a decreased risk of developing diseases such as diabetes, heart disease, and colon cancer. Dietary fiber influences gut microbiota, which governs the course of chronic diseases. A substrate for gut microbiota, dietary fiber endorses the production of beneficial bacteria and SCFAs, both of which contribute to the reliability of gut barriers and the overall health (Feng et al., 2020; Lin et al., 2024). The intake of fiber modifies microbial connections, which are related to improved metabolic health and abridged inflammation. This helps to avert diseases, such as diabetes, obesity, and neurodegeneration (Laranjeiro et al., 2019; Provensi et al., 2019). Furthermore, it has been recognized that diet variations that adapt microbiome affect immunological responses, cognitive functioning, and pathogen resistance (Chen et al., 2022; Querdasi et al., 2023). This affects the prevention of chronic diseases; gut bacteria have structural functions and functional roles on host health (Mark Welch et al., 2017; Rashidi et al., 2021). Diet choices to exploit healthy consequences for longer periods may also be derived by considering these microbial paths.

Diabetes

Dietary fiber is one of the major contributors to prevent and manage type 2 diabetes. A fiber-rich diet can facilitate glycemic control by delaying glucose absorption rate, resulting in more stable blood sugar concentrations (Kaye *et al.*, 2020; Reynolds *et al.*, 2022). This is important, especially for people who have or are at risk of developing type 2 diabetes (Tangestani *et al.*, 2020). In addition, SCFAs generated through fiber fermentation enhance insulin sensitivity and decrease systemic inflammation, providing additional support for managing diabetes (Tang *et al.*, 2017; Turner and Lupton, 2021).

Through its interface with gut microbiota, dietary fiber significantly impacts the controlling and deterrence of diabetes through the regulation of metabolic pathways and inflammatory responses (Salamone *et al.*, 2021). Gut bacteria ferment fiber, producing SCFAs, such as butyrate, propionate, and acetate, which regulate glucose levels and enhance sensitivity to insulin (Fu *et al.*, 2022a; Salamone *et al.*, 2021). By favorably altering the composition of gut microbes, resistant starch, a type of dietary fiber, regulates blood sugar and reduces obesity risk (Liu *et al.*, 2020). According to case studies and an experimental study, inulin is a fermentable fiber, which enhances type 1 diabetes by elevating IL-22 and synthesis of SCFAs, thus reducing intestinal permeability and inflammation (Zou *et al.*, 2021).

A meta-analysis of soluble fiber supplementation established that soluble fiber supplementation significantly improves glycemic control and lowers hemoglobin A1C (HbA1C) in patients with type 2 diabetes. This suggests that fiber could be used as an adjuvant therapy (Xie et al., 2021). In addition, systematic studies showed that through the promotion of beneficial bacterial species, such as Bifidobacterium and Akkermansia muciniphila in the gut microbiome, dietary fiber decreases insulin resistance and enhances glycemic control (Makki et al., 2018; Mao et al., 2021). For instance, controlled research established that patients on fiber-rich diets had better postprandial glucose control than those on low fiber diets (Ojo et al., 2020).

Specific beneficial effects on gut microbiota with antidiabetic action are supported by bioactive dietary fiber types that increase SCFA generation and reduce oxidative stress and chronic inflammation (Nie *et al.*, 2021). The therapeutic efficacy of fiber is highlighted in a case report

involving the dietary habits of patients with type 2 diabetes who received a diet rich in fermentable fiber, resulting in improvement in their lipid profiles and fasting blood sugar levels (Chi, 2023). In addition, since dietary fiber assists in enhancing metabolic parameters and diminishing systemic inflammation, it reduces the neuropathic effects of diabetes, including diabetic neuropathy (Fu et al., 2022b; Hopek and Siniak, 2020).

According to Gao et al. (2018), long-term stress deranges the gut microbiota composition, raises intestinal permeability, and induces inflammation. These effects lead to metabolic diseases, such as diabetes. Their studies were able to prove that gut dysbiosis induced by stress triggers immune responses, along with exacerbating insulin resistance and impairing glycemic management. Thus, Gao et al. (2018) concluded that gut microbiota can significantly connect to metabolic well-being and psychological stress (et al.). A deeper understanding of the critical role that fiber plays in managing diabetes is underscored by the involvement of fiber in regulating gut microbiota and metabolic health (Adeshirlarijaney and Gewirtz, 2020; Schlesinger, 2022).

Cardiovascular disease

Soluble fiber is shown to reduce serum cholesterol levels by binding to bile acids in the gut and promoting their excretion (Davey *et al.*, 2024). Fiber also helps to maintain a healthy gut microbiota, which indirectly supports cardiovascular health, as disruptions in the population of microorganisms residing in the intestines (dysbiosis) are associated with an elevated risk for heart disease (Tang *et al.*, 2017). Dietary fiber meaningfully subsidizes to cardiovascular health by dropping the risk of CVD by lowering systemic inflammation, boosting gut microbial diversity, and improving lipid profiles (Reynolds *et al.*, 2022). Diets elevated in fiber are shown to reduce cholesterol and blood pressure, thus reducing vital risk factors for CVD (Trautwein and McKay, 2020).

According to Kaye *et al.* (2020), prebiotic fibers facilitate the fermentation of gut microbes in SCFAs, directly affecting metabolic pathways and lowering systemic inflammation. SCFAs such as butyrate modulate inflammation markers and endothelial functionality to regulate vascular function as well as prevent atherosclerosis and ischemic heart disease (Ruscica *et al.*, 2021). Longterm benefits of dietary fiber intake were noted by the NutriNet-Santé cohort trial, which revealed a relationship between rich fiber intake and decreased risks of CVD and mortality (Partula *et al.*, 2020).

On a similar note, Tosh and Bordenave, (2020) highlighted the cardiovascular benefits of soluble fibers extracted from barley and oats by reducing cholesterol and improving glycemic responses (Tosh and Birdenave, 2020). Global evaluations emphasize the need for fiberrich dietary interventions to address this avoidable risk factor, because the burden of ischemic heart disease increases due to inadequate intake of dietary fiber (Wei *et al.*, 2024). In addition, fiber supplementation decreases inflammation and low-density lipoprotein (LDL) cholesterol in dyslipidemic individuals, thereby proving its ability to avoid CVD (Trautwein and McKay, 2020). Fiber influences gut microbiota composition by promoting beneficial bacteria that enhance the production of SCFA and reduce inflammation (Zhang and Gérard, 2022).

Low fiber intake has been linked to poor gut metabolite-sensing receptor signaling, which is related to increased CVD and hypertension risk (Kaye *et al.*, 2020). Whole grain is able to improve gut microbial diversity and lower oxidative stress, thus having good effects on heart health (Garutti *et al.*, 2022). Consistent with these results, positive effects are found to be associated with cardiovascular outcomes from plant-based, fiber-rich diets in patients suffering with familial hypercholesterolemia (Barkas *et al.*, 2020). In a nutshell, gut microbiota and dietary fiber play a crucial role in cardiovascular health. Because of substantiation from case studies and cohort research on the significance of fiber in plummeting the risk of CVD, it is an integral part of preventive healthcare strategies (Partula *et al.*, 2020; Reynolds *et al.*, 2022).

Cancer

Consuming a fiber-rich diet, especially one high in insoluble fibers, is related to lower rates of bowel cancer (Merenkova et al., 2020). Soluble fiber produces bulkier stool, faster to transit through the colon, thus lessening the exposure time of potential carcinogens to intestinal linings (Tangestani et al., 2020). Moreover, butyrate, one of the SCFAs produced from plant fiber fermentation, has anti-carcinogenic effects. It increases apoptotic body formation (programmed cell death) in colon cancer cells and slows the growth and proliferation of those who proliferate (Vinelli et al., 2022). The impact of dietary fiber on cancer is through the alteration of gut microbiota, enhancement of immunological responses, and changes in metabolic pathways (Partula et al., 2020). Butyrate has anti-inflammatory and anti-carcinogenic effects as it inhibits histone deacetylase activity and promotes death of cancer cells (Mirzaei et al., 2021; Sun et al., 2024). Butyrate demonstrates potential therapeutic target by its well-established role in preventing colorectal cancer (Shen et al., 2020).

The National Institutes of Health and American Association of Retired Persons (NIH-AARP) Diet and Health Study discovered that high dietary fiber intake was inversely associated with colon cancer incidence, indicating the protective role of whole grains and fibers in cancer prevention (Hullings *et al.*, 2020). Dietary

patterns characterized by high consumption of plant-based foods and high fiber intake decrease cancer risk and mortality, and this could be due to increased SCFA production and gut microbial diversity (Molina-Montes et al., 2020). Probiotics and fiber-rich diets enhance immune checkpoint therapy outcomes according to melanoma immunotherapy research, pointing to the role of fiber in modulating immune responses to cancer (Spencer et al., 2021). In addition, survival in pancreatic cancer has been linked to immune cell population and alignment of stroma fibers, emphasizing complex interactions between gut microbiota, tumor microenvironment, and dietary factors (Bolm et al., 2020).

Dietary fiber alters gut microbiota, which impacts immune response and systemic inflammation, helping to prevent different cancers (Tao *et al.*, 2020). A Mediterranean diet rich in fiber significantly alters gut microbiota and metabolism, hence potentially lowering the risk of cancer (Ismael *et al.*, 2021). Stromal fiber alignment in cancer microenvironments is shown to affect cellular migration and energy use, providing insights into the mechanisms driving cancer progression (Zanotelli *et al.*, 2024). Low fiber intake in Western diet increases the menace of cancer because of dysbiosis. It leads to chronic inflammation, which emphasizes the need for dietary treatments to restore microbial balance (Clemente-Suárez *et al.*, 2023).

Studies on neuronal biomarkers and nerve density also indicate how dietary factors influence brain pathways

related to the development of cancer (Ali *et al.*, 2022). In conclusion, the fact that case studies and experimental consequences indicate the association between dietary fiber and gut microbiota provides a bright prospect for cancer prevention as well as treatment (Clinton *et al.*, 2020). Clinical guidelines may offer an inexpensive way to alleviate the risk of cancer or enhance results if fiberrich diets are a part of life. Figure 9 shows data on the relative risk of chronic diseases at various fiber intake levels (Fu *et al.*, 2022a; Li *et al.*, 2020; Liu *et al.*, 2020; Mao *et al.*, 2021; Ojo *et al.*, 2020; Xie *et al.*, 2021).

In short, the benefits of a high-fiber diet are much more than just healthy pooping (Ortega-Santos and Whisner et al., 2019). Dietary fiber plays a key role in maintaining GI health, which is crucial to prevent digestive system diseases as well as to control and manage body weight that help to reduce chronic degenerative conditions, such as diabetes, CVD, and colorectal cancer (Baidoun et al., 2021). The myriad benefits of fiber truly speak about its role in gut health and hence overall wellness, re-emphasizing the necessity for incorporating dietary fiber in everyday meals (Turner and Lupton, 2021; Vinelli et al., 2022). Table 3 explains the role of fiber in managing gut-related disorders.

Challenges and Considerations in Fiber Intake

There are many issues and caveats to consumption for the best dietary experience—from individual variability in

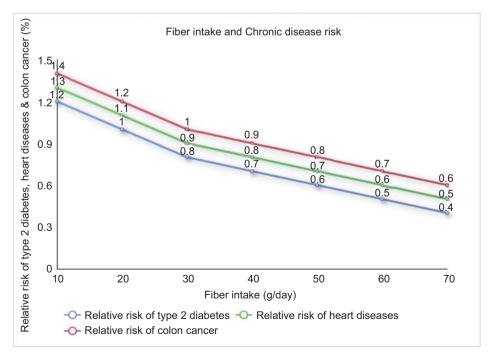


Figure 9. Fiber intake and risk of chronic diseases.

Disorder	Role of fiber	References
Obesity	Modulates gut microbiota to improve metabolic functioning and regulate appetite	Guan et al., 2021; Iversen et al., 2022; Li et al., 2022; Makki et al., 2018; Perler et al., 2023; Venter et al., 2022
Metabolic syndrome	Enhances insulin sensitivity by promoting the production of short-chain fatty acids (SCFAs)	Koh <i>et al.</i> , 2016; Ojo <i>et al.</i> , 2020; Ye <i>et al.</i> , 2022; Eriksen <i>et al.</i> , 2020
Constipation	Increases stool bulk and improves bowel movement regularity	Gill et al., 2021; Han et al., 2023; Klinder et al., 2016
rritable bowel syndrome (IBS)	Alters fermentation patterns in the gut, reducing symptoms of bloating and discomfort	Armstrong et al., 2021; Gill et al., 2021; Klinder et al., 2016; Korczak and Slavin, 202
nflammatory bowel disease (IBD)	Maintains gut epithelial integrity and modulates immune responses to reduce inflammation	Armstrong et al., 2021; Bishehsari et al., 2018; Partula et al., 2020; Perler et al., 2020
Colon cancer	Promotes SCFA production, especially butyrate, which suppresses tumor growth and promotes apoptosis in cancerous cells	Benítez-Páez et al., 2016; Guan et al., 2021 Martin-Gallausiaux et al., 2021; Venter et al 2022; So et al., 2021b
But dysbiosis	Supports beneficial bacterial growth, such as bifidobacterium and lactobacillus species, by acting as a prebiotic	Adams et al., 2018; Hiel et al., 2019; Kumar et al., 2020; Li et al., 2022; Tanes et al., 202
Small intestinal bacterial overgrowth SIBO)	Modifies gut transit times, reducing the risk of bacterial overgrowth	Fuller et al., 2016; Gill et al., 2021; Nolte Fong et al., 2022
Diverticulitis	Reduces intraluminal pressure in the colon, preventing diverticula formation	Gill et al., 2021; Partula et al., 2020
ype 2 diabetes mellitus	Slows glucose absorption and improves glycemic control by reducing postprandial blood sugar spikes	Jovanovski et al., 2020; Ojo et al., 2020; Perler et al., 2023
Cardiovascular diseases (CVDs)	Lowers cholesterol levels by binding bile acids and promoting their excretion	Guan et al., 2021; He et al., 2022; Korcz et al., 2018; Liu et al., 2020; Partula et al., 2020
Gastroesophageal reflux disease GERD)	Enhances gastric emptying, reducing acid reflux	Debnath <i>et al.</i> , 2019; Eriksen <i>et al.</i> , 2020; Venter <i>et al.</i> , 2022
Celiac disease	Provides alternative sources of gluten-free dietary fibers to support gut health	Esteban et al., 2017; He et al., 2022; Makki et al., 2018; So et al., 2021a
Allergic gut disorders	Modulates immune responses by influencing gut- associated lymphoid tissue (GALT)	Budden et al., 2024; Venter et al., 2022
Chronic diarrhea	Absorbs excess water in the gut, solidifying stool consistency	Adams et al., 2018; Gill et al., 2021; Klinder et al., 2016
Mental health (gut-brain axis)	Positively influences the gut–brain axis by promoting the production of neuroactive metabolites, such as serotonin precursors	Chakrabarti et al., 2022; Dinan and Cryan, 2017; Kumar et al., 2020; Perler et al., 2023 Sowah et al., 2022
iver disorders	Reduces systemic inflammation and endotoxemia by improving gut barrier function	Hiel et al., 2019; Makki et al., 2018; van Trij et al., 2021; Ye et al., 2022
Fatty liver disease	Promotes bile acid metabolism and lipid clearance, reducing hepatic fat accumulation	Benítez-Páez et al., 2016; Bishehsari et al., 2018; Cantero et al., 2017; He et al., 2022
Stress and anxiety	Reduces cortisol levels by promoting SCFA production and gut microbiota diversity	Lee and Kim, 2021; Sowah et al., 2022; Tanes et al., 2021; Venter et al., 2022; Singh et al., 2022
Radiation enteritis	Protects intestinal mucosa from radiation-induced injury by promoting epithelial repair	Malipatlolla et al., 2021; Martin-Gallausiaux et al., 2021; Morrison et al., 2020
Pancreatic health	Improves enzyme activity and supports pancreatic health by maintaining a balanced microbiota	Adams et al., 2018; Carlson et al., 2018; Han et al., 2023
Post-antibiotic recovery	Accelerates microbiota recovery after antibiotic treatment, restoring gut equilibrium	Hiel et al., 2019; Partula et al., 2020; Tanes et al., 2021; Ye et al., 2022
Chronic respiratory diseases	Complex carbohydrates mediate protection against conditions such as chronic obstructive pulmonary disease (COPD) through gut microbiota modulation	Budden et al., 2024
Ovarian cancer recovery	High-fiber diet improves survival outcomes in ovarian cancer patients	Thomson et al., 2023

Table 3. Continued.

Disorder	Role of fiber	References
Colorectal cancer risk reduction	Increased fiber intake correlates with lower colorectal cancer risk	Doroudi et al., 2017; So et al., 2021b
Hunger and satiety control	Dietary fiber influences satiety and hunger regulation, reducing calorie intake	Shearrer et al., 2016
Hormonal balance	Fiber impacts hormonal metabolism, influencing estrogen and insulin levels	Miles et al., 2017

response to fiber, potentially unpleasant adverse effects, such as bloating or gas, and a universal struggle to hit the recommended daily intake of diet.

Individual Variability

The pattern between the effects of dietary fiber can be serious and depend on individual backgrounds, such as gut microbiota configuration, genetic characteristics, and whole diet. The capacity of fermentation and metabolism changes to produce SCFAs (and other metabolites) in response to dietary fibers, likely reflecting differences between the gut microbiome communities (Ye et al., 2022; Zhang, 2022). As an example, some people may have a gut microbiota composition that is very efficient in fermenting fiber, producing more SCFAs. In contrast, others may produce less, as they host different microbial communities. Such variability may play a role in the realization of some of fiber's benefits, including improved gut health and reduced inflammation (Ye et al., 2022; Zhang et al., 2022). In addition, fiber may affect blood glucose levels and have different effects on cholesterol metabolism or digestive health, depending on genetic variation (Duque et al., 2021). These discrepancies highlight the need for individualized nutritional approaches that consider not only fiber recommendations but also host genetics and microbiome profiles (Zhang, 2022; Zeng et al., 2018).

Potential negative effects

Although fiber has many benefits, increasing its intake can cause problems, especially if its intake is increased in quick successions. Typically, it can lead to bloating or gas and abdominal discomfort because of the fermentation of nutrients in the colon (Kirthi *et al.*, 2021). This particularly happens if there is a rapid increase in dietary fiber and insufficient adaptation time for gut microbiota to adjust (Ye *et al.*, 2022). To counteract these, one should slowly introduce fiber in the diet, allowing a transition time for the gut. Be sure to drink lots of water, because insufficient fluids lead to constipation, as fiber absorbs

water and fluids. Furthermore, mixing different fiber types (soluble vs insoluble) could be beneficial, because they may exert opposite effects on digestion and fermentation (Ye *et al.*, 2022).

Challenges in meeting fiber requirements

Most people think that some quantity of dietary fiber is good for maintaining intestinal microbiota hence they don't consume sufficient fiber. Low fiber intake is a common issue in Western diets and individual intake is usually below the threshold recommendation of 25-30 g/ day (Stephen et al., 2017; Zeng et al., 2014). A key reason is that the diets tend to skew toward processed and refined foods, which are generally low in fiber (Kumar et al., 2020). In addition, modern diets have been tailored for convenience, always devoid of whole grains, fruits, vegetables, and legumes, which are rich source of dietary fiber (Wiertsema et al., 2021). A combination of individual efforts and public health policies is needed to confront these barriers. Raising the awareness of fiber supplementation, enhancing the availability of fiber-rich foods, and pushing food companies to enrich products with added fibers are important strategies for bridging this gap.

Furthermore, inclusion of fiber-rich foods at least in two meals per day (such as vegetables with lunch and dinner), substituting refined grains with whole grains, and intake of fruit and nuts during snacks are the means by which one can gradually increase dietary fiber to achieve a threshold of 25-30 g/day (Stephen et al., 2017; Zeng et al., 2014). Although the advantages of a high-fiber diet are clear, one must also consider challenges, such as inter-individual differences in response, adverse effects, and difficulties in meeting recommended levels of dietary fiber (Dimidi et al., 2017). Customized dietary guidance, offering slow modifications in diet, and implementation of public health tactics have great potential to optimize benefits from the consumption of dietary fibers for improving gut health (Ye et al., 2022; Zhang, 2022). Table 4 illustrates the challenges and solutions for meeting fiber intake.

Table 4. Challenges and solutions for meeting fiber intake.

Challenge	Description	Potential solutions	References
Low dietary fiber awareness	Many individuals are unaware of the benefits of fiber, leading to low consumption rates	Educating the public through health campaigns and dietary guidelines can increase fiber awareness. Fiber-rich food labeling may also promote awareness	Gill <i>et al.</i> , 2021; Venter <i>et al.</i> , 2022
Limited access to fiber-rich foods	In some regions, there is a limited access to fresh fruits, vegetables, and whole grains, reducing fiber intake	Increasing the availability of affordable, fiber-rich foods through local farming, community gardens, and subsidies	Kumar et al., 2020
Low consumption of whole grains	Many diets are focused on refined grains, which are low in fiber, compared to whole grains	Public health campaigns that promote whole grains over refined grains and the incorporation of whole grains into processed food products	He <i>et al.</i> , 2022; Perler <i>et al.</i> , 2023
Overconsumption of processed foods	Highly processed foods, often low in fiber, dominate modern diets, leading to inadequate fiber intake	Reducing processed food consumption by substituting with fiber-rich foods such as legumes and vegetables	Benítez-Páez et al., 2016; Morrison et al., 2020
Inadequate meal planning	Many individuals do not plan meals that include fiber-rich foods, resulting in low intake	Meal planning education, apps for tracking fiber intake, and cooking workshops can help people include fiber-rich foods in their meals	Guan et al., 2021; Tanes et al., 2021
Fad diets and fiber exclusion	Certain fad diets, such as low-carb or ketogenic diets, often limit fiber intake by excluding fiber-rich plant foods	Encouraging diet balance and educating individuals on the importance of fiber as part of a healthy eating plan	Kumar et al., 2020
Fiber tolerance issues	Some people may experience bloating, gas, or discomfort when increasing fiber intake too quickly	Gradual introduction of fiber into the diet and ensuring adequate water intake to prevent gastrointestinal discomfort	He et al., 2022; Morrison et al., 2020
ack of fiber in processed foods	Many processed foods, including snacks and ready meals, lack sufficient fiber content	Reformulating processed foods to include more fiber and encouraging consumers to choose high-fiber products	Venter et al., 2022
Cultural dietary preferences	Some cultural or traditional diets may not emphasize fiber-rich foods, contributing to lower intake	Incorporating fiber-rich foods into traditional diets while maintaining cultural preferences	He et al., 2022; Ye et al., 2022
Age-related factors	As individuals age, changes in digestive health and metabolism can decrease the ability to tolerate high-fiber foods	Adapting fiber intake to the individual's tolerance and gradually increasing fiber to support digestion	Armstrong <i>et al.</i> , 2021; Ye <i>et al.</i> , 2022
Medical conditions	Certain health conditions, such as irritable bowel syndrome (IBS) or inflammatory bowel disease (IBD), may limit fiber intake due to intolerance	Personalized dietary plans to include fiber sources that are easier to digest, and using supplements when necessary	Armstrong et al., 2021; Gill et al., 2021
Misconceptions about fiber	Many people mistakenly believe that all fiber types are the same, overlooking the specific benefits of different types of fiber	Providing education on soluble versus insoluble fiber types and their distinct health benefits	Kumar et al., 2020; Morrison et al., 2020
Low fiber content in animal products	Animal products typically do not contain fiber, making it challenging for individuals with animal-based diets to meet their fiber needs	Encouraging plant-based meals or the addition of fiber-rich side dishes to animal-based meals	Jha and Mishra, 202 Ye <i>et al.</i> , 2022
Fiber interactions with medications	Some medications, such as laxatives or antibiotics, may interfere with the digestion or absorption of fiber	Consulting healthcare providers about proper medication and dietary fiber management	He <i>et al.</i> , 2022; Ojo <i>et al.</i> , 2020
Food preferences and picky eating	Picky eating habits, particularly in children, can make it difficult to incorporate fiber-rich foods into their diets	Introducing fiber-rich foods in a fun and appealing manner to encourage consumption among children	Armstrong <i>et al.</i> , 2021; Jha and Mishra, 202
Fiber loss during cooking	The fiber content of some foods can be reduced during cooking, especially in vegetables and grains	Encouraging cooking methods that preserve fiber, such as steaming or microwaving, instead of boiling	He et al., 2022; Kumar et al., 2020

Table 4. Continued.

Challenge	Description	Potential solutions	References
Lack of knowledge about fiber sources	Many individuals do not know which foods are good sources of fiber beyond fruits and vegetables	Providing information on lesser-known fiber-rich foods, such as legumes, seeds, and whole grains	Perler <i>et al.</i> , 2023; Tanes <i>et al.</i> , 2021
Cost of fiber-rich foods	Whole grains, fruits, and vegetables can be expensive, especially in the areas with limited access to fresh produce, making it hard for some to afford fiber-rich foods	Providing subsidies or programs that reduce the cost of fiber-rich foods for lower-income populations	Kumar et al., 2020; Tanes et al., 2021
Challenges about fiber supplementation	While fiber supplements can help increase fiber intake, they may not be as beneficial as whole food sources and can cause digestive issues if overused	Promoting whole foods as the preferred source of fiber, with supplementation used as a last resort	Ojo <i>et al.</i> , 2020; Perler <i>et al.</i> , 2023

Research Requirements in Fiber and Gut Health

Dietary fiber and its effects on gut health are one of the most discussed topics in this field, but in this modern area, it still requires the resolution of many key issues surrounding how the bodies take up consumed fibers (Miranda-Galvis et al., 2021). Since the evolution of this field, there are several specific areas where future investigations could have particularly larger impacts. This encompasses new research areas, the prospect of an individualized gut microbiome-based approach to nutrition, and broad population-level dietary strategies for increasing fiber consumption (Schimmel et al., 2022). Research is underway to explore recent progress in understanding the complex connection between dietary fiber and the gut. A promising area of future research is investigating the impact of dietary fiber on the gut, specifically how different types of fiber can alter the microbiome in various populationsIt is evident that fiber has potential to improve bacterial and SCFA production, but how different fiber types impact microbial diversity and functioning within various demographic groups or health states remain relatively unexplored (Benítez-Páez et al., 2016; Bishehsari et al., 2018). For instance, fiber-rich diets have been investigated for their potentially protective effects through host microbiome interactions and inflammation-related mechanisms against various diseases, including cancer (Bishehsari et al., 2018) and CVDs or metabolic diseases (Bailén et al., 2020). The emergence of these research areas underscores that much additional work is required to elaborate the many-layered benefits of dietary fiber. Table 5 outlines key emerging research areas and their focus within the fiber and gut health field.

Personalized Nutrition

What might work best in optimizing fiber intake for improving gut health and prevent chronic diseases is personalized nutrition that focuses on individual's specific gut microbiota (Tobar et al., 2023). Fiber modulates the composition of microbiota, encouraging beneficial bacteria to maintain the reliability of intestinal barricade and metabolic health (Semenkovich et al., 2016; Tobar et al., 2023). Specific microbial interactions alter immune functions, circadian rhythms, and gut-liver interference that impact disease consequences, such as obesity, diabetes, and inflammatory illnesses (Watkins et al., 2018; Zhang et al., 2023). Structural elements of gut bacteria further shape gut health, including the S-layer musters and serine-rich repeat proteins that mediate host interfaces (Sagmeister et al., 2024; Sequeira et al., 2018). In addition, it has been shown that dietary sugar evokes beneficial colonization factors, emphasizing the need for high-fiber diets (Townsend et al., 2019). Microbial attempts to detoxify toxins and maintain symbiosis further illustrate the role of fiber in maintaining a stable gut environment (Wexler et al., 2016). It is established that drugs such as trametinib may reduce the pace of aging-associated degradation of the gut, thus paving the way for targeted nutritional strategies (Ureña et al., 2024). Customized fiber therapies must be developed to enhance long-term health outcomes by considering these complex interactions of microbes.

Personalized nutrition, the idea that the diet is modified based on an individual's genetics and lifestyle, to better maintain health status, such as body composition and functioning, is considered as a new concept for improving health outcomes (Carlson *et al.*, 2018). As the importance of gut microbiome in influencing dietary fiber-mediated human health outcomes grows further, personalized nutrition allows for more precise dietary interventions. For example, certain types of fibers that selectively enhance the growth of beneficial microbes or the production-specific SCFAs (Afzaal *et al.*, 2022) could have greater benefits for individuals with a distinct gut microbiota composition. This can be considered as one

Table 5. Emerging res	Emerging research areas in fiber and gut health.	nealth.				
Research area	Focus	Key mechanisms	Potential impact	Challenges	Future directions	References
Gut microbiome and fiber interactions	Exploring how different types of fiber interact with the gut microbiome, influencing its composition and functioning	Fermentation by gut bacteria, production of short-chain fatty acids (SCFAs), modulation of microbial diversity	Personalized dietary recommendations for improving gut health	Individual variability in microbiome composition, lack of standardized fiber classifications	Integration of metagenomics and AI for personalized nutrition strategies	Loo <i>et al</i> , 2020; Makki <i>et al</i> , 2018
Fiber and immune system modulation	Investigating the role of fiber in modulating immune responses and its impact on inflammatory conditions, such as IBD and allergies	Regulation of gut-associated lymphoid tissue (GALT), SCFAmediated immune modulation	Dietary strategies to reduce inflammation and improve immune-related diseases	Complex interactions between fiber, immune cells, and gut microbiota	Development of precision fiber-based therapies for immune disorders	Malipatlolla <i>et al.</i> , 2021; Mayrhofer, 2019
Role of fiber in metabolism	Understanding how fiber influences metabolic processes, including insulin sensitivity, lipid metabolism, and weight regulation	SCFA effects on glucose metabolism, gut hormone modulation, and bile acid recycling	Improved metabolic health, new dietary interventions for diabetes and obesity	Differences in fiber types and metabolic responses	Personalized fiber intake recommendations based on metabolic phenotypes	Liu <i>et al.</i> , 2020; Mao <i>et al.</i> , 2021
Prebiotic fiber and gut-brain axis	Researching how fiber affects the gut-brain connection, particularly in terms of mental health and cognitive functioning	Microbial metabolite signaling (SCFAs, neurotransmitters), vagus nerve modulation	Potential interventions for depression, anxiety, and cognitive decline	Limited clinical trials, difficulty in measuring direct effects	Multi-omic approaches to link fiber intake with mental health biomarkers	Liang <i>et al.</i> , 2018; Mörkl <i>et al.</i> , 2020
Fiber and gut barrier functioning	Examining how dietary fiber affects intestinal barrier functioning, reducing gut permeability, and preventing "leaky gut."	SCFA reinforcement of tight junctions, mucus layer enhancement	Prevention and treatment of gastrointestinal disorders such as IBS	Need for more human trials to confirm findings	Development of fiber-based nutraceuticals targeting gut integrity	Morrison <i>et al.</i> , 2020; Perler <i>et al.</i> , 2023
Individual variability in fiber response	Studying how genetic, environmental, and microbiome factors influence individual responses to fiber intake	Host-microbiome interactions, genetic polymorphisms affecting fiber digestion	Personalized fiber recommendations for optimal health outcomes	Complexity of data integration, cost of personalized nutrition	Al-driven dietary planning based on microbiome sequencing	Armstrong <i>et al.</i> , 2021; Guan <i>et al.</i> , 2021
Fiber and SCFAs	Investigating the role of fiber in producing SCFAs through fermentation and their effects on gut and systemic health	Microbial fermentation, SCFA signaling pathways in host metabolism	Potential use of SCFAs in therapeutic applications for inflammation and metabolism	Inter-individual differences in SCFA production	Targeted microbiome interventions to enhance SCFA benefits	Martin-Gallausiaux et al., 2021; Perler et al., 2023
						(continues)

Table 5. Continued.						
Research area	Focus	Key mechanisms	Potential impact	Challenges	Future directions	References
Sustainable fiber sources	Identifying alternative and sustainable sources of dietary fiber, including plant-based fibers and fiber-rich byproducts	Extraction and fortification techniques, environmental impact assessment	Eco-friendly solutions to meet global dietary fiber needs while supporting sustainability	Cost and scalability of fiber extraction methods	Development of novel fiberenriched food products with minimal processing	Tanes <i>et al.</i> , 2021; Ye <i>et al.</i> , 2022
Fiber and microbial diversity	Investigating the impact of fiber on gut microbial diversity and its role in maintaining microbiome balance	Prebiotic effects, competition among microbial species for fiber fermentation	Enhanced digestive health, reduced chronic disease risk, improved microbiome resilience	Need for more long-term human studies	Use of next-generation sequencing to track microbial shifts with fiber intake	He <i>et al.</i> , 2022; Venter <i>et al.</i> , 2022
Fiber in pediatric health	Examining the effects of fiber on childhood growth, development, and prevention of childhood diseases	Gut microbiome development, immune system priming, metabolic programming	Improved guidelines for fiber intake in pediatric populations	Variability in dietary habits and early-life microbiome exposure	Inclusion of fiber in early-life nutrition policies and public health initiatives	Armstrong <i>et al.</i> , 2021; Jha and Mishra, 2021

of the most promising strategies that would lead to personalized nutrition and try to understand why the same quantity of dietary fiber might cause a different effect in different individuals. Age, gender, and underlying medical conditions could influence such differences. Research should help to suggest specific types and amounts of fiber that would minimize the adverse effects of bloating or pain but maximize health benefits by exploring an individual's microbiota (So *et al.*, 2021a; Wang *et al.*, 2019). Further investigation is required to deliver easy-to-access methods to monitor microbiota variations and connect them to fiber functionality to fully understand the possibility of tailored nutrition (De Roos and Brennan, 2017; Moore, 2020).

Chronic diseases, particularly those associated with gut health, can be better controlled through personalized nutrition, which tailors recommendations based on individual's genetic profile, microbiome composition, and lifestyle considerations (Fu et al., 2022a). Knowing how specific dietary fibers may interact with a person's microbiome could potentially improve the health outcome in cases such as CVDs and type 2 diabetes (Makki et al., 2018). Because some of the fibers selectively induce the growth of beneficial gut microorganisms responsible for creating SCFAs that are essential in maintaining healthy guts, it may also vary according to individual's microbiome (Fu et al., 2022a). Personalized fiber-based therapies have shown great promise in managing chronic diseases, such as type 2 diabetes (Zou et al., 2021). Inulin, a fermentable fiber, increases the production of SCFAs, such as butyrate and propionate, and improves insulin sensitivity and glycemic control in type 2 diabetes patients (Zou et al., 2021). In addition, resistant starch is another type of fiber that has a beneficial effect on gut microbiota composition, thus enhancing metabolic health, managing diabetes, and preventing obesity (Liu et al., 2020).

Personalized intake of fiber leads to health benefits through consumption of fiber without any adverse affects, such as bloating (Liu et al., 2020). Moreover, because it has been associated with improved lipid profiles and low inflammation, a personalized diet carries a lot of promise as a CVD therapy (Kaye et al., 2020; Reynolds et al., 2022). Preventing and managing cardiovascular complications could be possible with the proper utilization of different fiber types that work best with the given metabolic profiles of individuals. More research in the field of customized nutrition is required to better implement its application with microbiome analysis and the functioning of fibers at clinical levels (Ioniță-Mîndrican et al., 2022). Advances through these techniques can produce customized nutrition to be a part of life that can lead toward precise as well as effective management and treatment of chronic diseases.

Although well-recognized as beneficial, dietary fiber is globally underconsumed by populations. This gap illustrates the necessity of public health strategies to enhance fiber intake at population levels (Loo *et al.*, 2020). In addition, policy efforts need to focus on producing more readily available and cheaper fiber-rich foods. Eventually that means subsidizing fruit and vegetable cultivators or pushing food manufacturers to fortify their products with whole grains. Schools and workplaces could also play a role by providing fiber-rich meals and by raising awareness about fiber to improve the general health status (Adams *et al.*, 2018). Moreover, studies investigating optimal public health strategies to improve fiber intake among diverse populations are required to help facilitate broader dietary changes.

Conclusion and Future Perspectives

In summary, dietary fiber is an important nutrient for maintaining gut health and preventing chronic diseases. The benefits of fiber for the overall health include enhancing digestive health by modulating gut microbiota, fermentation into healthy SCFAs, and fiber's role in gut barrier integrity. A fiber-rich diet is linked to lower instances of chronic diseases, such as diabetes, cancer, and CVD, improved weight management, and a reduced risk of GI disorders. Although fiber offers many benefits, it has been found that its intake varies with individual body response, and some may experience GI adverse effects. Promoting ideal gut health and long-term prevention of diseases could be possible by promoting a diverse and adequate intake of fiber from whole food items.

While further research is needed, the future of dietary fiber is promising, particularly in areas like gut health, personalized nutrition, and the connection between fiber and brain function. However, translating these scientific advancements into practical, population-wide strategies to increase fiber intake remains a challenge. These investigations are a key to unleashing the powerful ability of dietary fiber to support health and prevent diseases. More research is needed to fully understand the health benefits of fiber for the gut. Studies must probe into how different fiber types affect human body in ways other than by just resulting in bulk stool, identify potential dietary recommendations based on individualized gut microbiomes, and overcome the obstacles that prevent its adequate intake. Personalized nutrition to optimize the advantages of dietary fiber is important when considering differences in gut flora, chronic diseases, and metabolic responses. Future studies should aim toward developing specific dietary guidelines that could improve gut health and prevent chronic illnesses. Public health campaigns should feature increased fiber consumption as a merit worthy of public discourse and their goals must include targets to reach various communities with knowledge followed by act as changing the policies promoting anti-fiber foods in all their forms. In theory and practice refined dietary fiber science has shown that we can unlock natural fibers potential within health promotion and disease prevention through an improved understanding of optimal methods to understand the food matrix and perform real world applications. Overall, incorporating fiber-rich foods in daily dietary practices (backed by solid research) and sometimes public health efforts have a large potential to combat poor gut health plaguing the modern society.

Author Contributions

Sammra Maqsood conducted the literature review, analyzed the data, and wrote the manuscript. Matteo Bordiga was involved in writing of original draft, reviewing, and editing, visualization as well as supervision. Baojun Xu guided the research process, reviewed the manuscript, and contributed to writing and editing the final document. All the authors approved the submission of the final version of the manuscript.

Conflict of Interest

The authors declared that there was no conflict of interest regarding the publication of this paper.

Funding

This research received no specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

Adams, S., Che, D., Qin, G., Rui, H., Sello, C.T. and Hailong, J., 2018. Interactions of dietary fibre with nutritional components on gut microbial composition, function and health in monogastrics. Current Protein and Peptide Science 19(10): 1011–1023. https://doi.org/10.2174/1389203719666180508111843

Adeshirlarijaney, A. and Gewirtz, A.T., 2020. Considering gut microbiota in treatment of type 2 diabetes mellitus. Gut Microbes 11(3): 253–264. https://doi.org/10.1080/19490976.2020.1717719

Afzaal, M., Saeed, F., Shah, Y.A., Hussain, M., Rabail, R., Socol, C.T., Hassoun, A., Pateiro, M., Lorenzo, J.M., Rusu, A.V. and Aadil, R.M., 2022. Human gut microbiota in health and disease: unveiling the relationship. Frontiers in Microbiology 13: 999001. https://doi.org/10.3389/fmicb.2022.999001

Ali, S.R., Jordan, M., Nagarajan, P. and Amit, M., 2022. Nerve density and neuronal biomarkers in cancer. Cancers 14(19): 4817. https://doi.org/10.3390/cancers14194817

- Amato, K.R., Arrieta, M.C., Azad, M.B., Bailey, M.T., Broussard, J.L., Bruggeling, C.E., Claud, E.C., et al. 2021. The human gut microbiome and health inequities. Proceedings of the National Academy of Sciences 118(25): e2017947118. https://doi.org/10.1073/pnas.2017947118
- Arikawa, A.Y., Samavat, H., Gross, M. and Kurzer, M.S., 2017. Plasma F2-isoprostanes are positively associated with glycemic load, but inversely associated with dietary polyunsaturated fatty acids and insoluble fiber in postmenopausal women. Journal of Nutrition 147(9): 1693–1699. https://doi.org/10.3945/jn.117.254631
- Armstrong, H., Mander, I., Zhang, Z., Armstrong, D. and Wine, E., 2021. Not all fibers are born equal; variable response to dietary fiber subtypes in IBD. Frontiers in Pediatrics 8: 620189. https://doi.org/10.3389/fped.2020.620189
- Baidoun, F., Elshiwy, K., Elkeraie, Y., Merjaneh, Z., Khoudari, G., Sarmini, M.T., Gad, M., Al-Husseini, M. and Saad, A., 2021. Colorectal cancer epidemiology: recent trends and impact on outcomes. Current Drug Targets 22(9): 998–1009. https://doi. org/10.2174/1389450121999201117115717
- Bailén, M., Bressa, C., Martínez-López, S., González-Soltero, R., Montalvo Lominchar, M.G., San Juan, C. and Larrosa, M., 2020. Microbiota features associated with a high-fat/low-fiber diet in healthy adults. Frontiers in Nutrition 7: 583608. https://doi. org/10.3389/fnut.2020.583608
- Baky, M.H., Salah, M., Ezzelarab, N., Shao, P., Elshahed, M.S. and Farag, M.A., 2024. Insoluble dietary fibers: structure, metabolism, interactions with human microbiome, and role in gut homeostasis. Critical Reviews in Food Science and Nutrition 64(7): 1954–1968. https://doi.org/10.1080/10408398. 2022.2119931
- Barkas, F., Nomikos, T., Liberopoulos, E. and Panagiotakos, D., 2020. Diet and cardiovascular disease risk among individuals with familial hypercholesterolemia: systematic review and meta-analysis. Nutrients 12(8): 2436. https://doi.org/10.3390/ pu12082436
- Barrett, E.M., Foster, S.I. and Beck, E.J., 2020. Whole grain and high-fibre grain foods: how do knowledge, perceptions and attitudes affect food choice? Appetite 149: 104630. https://doi.org/10.1016/j.appet.2020.104630
- Basith, S., Manavalan, B., Shin, T.H., Park, C.B., Lee, W.S., Kim, J. and Lee, G., 2022. The impact of fine particulate matter 2.5 on the cardiovascular system: a review of the invisible killer. Nanomaterials 12(15): 2656. https://doi.org/10.3390/nano12152656
- Basu, A., Feng, D., Planinic, P., Ebersole, J.L., Lyons, T.J. and Alexander, J.M., 2021. Dietary blueberry and soluble fiber supplementation reduces risk of gestational diabetes in women with obesity in a randomized controlled trial. Journal of Nutrition 151(5): 1128–1138. https://doi.org/10.1093/jn/nxaa435
- Beller, L., Deboutte, W., Vieira-Silva, S., Falony, G., Tito, R.Y., Rymenans, L., Yinda, C.K., et al. 2022. The virota and its transkingdom interactions in the healthy infant gut. Proceedings of the National Academy of Sciences 119(13): e2114619119. https:// doi.org/10.1073/pnas.2114619119.
- Beller, Z.W., Wesener, D.A., Seebeck, T.R., Guruge, J.L., Byrne, A.E., Henrissat, S., Terrapon, N., et al. 2023. Inducible

- CRISPR-targeted "knockdown" of human gut bacteroides in gnotobiotic mice discloses glycan utilization strategies. Proceedings of the National Academy of Sciences 120(39): e2311422120. https://doi.org/10.1073/pnas.2311422120.
- Benítez-Páez, A., Del Pulgar, E.M.G., Kjølbæk, L., Brahe, L.K., Astrup, A., Larsen, L. and Sanz, Y., 2016. Impact of dietary fiber and fat on gut microbiota re-modeling and metabolic health. Trends in Food Science & Technology 57: 201–212. https://doi.org/10.1016/j.tifs.2016.11.001
- Bishehsari, F., Engen, P.A., Preite, N.Z., Tuncil, Y.E., Naqib, A., Shaikh, M., Rossi, M., Wilber, S., Green, S.J., Hamaker, B.R. and Khazaie, K., 2018. Dietary fiber treatment corrects the composition of gut microbiota, promotes SCFA production, and suppresses colon carcinogenesis. Genes 9(2): 102. https://doi. org/10.3390/genes9020102
- Bolm, L., Zghurskyi, P., Lapshyn, H., Petrova, E., Zemskov, S., Vashist, Y.K., Deichmann, S., Honselmann, K.C., Bronsert, P., Keck, T. and Wellner, U.F., 2020. Alignment of stroma fibers, microvessel density and immune cell populations determine overall survival in pancreatic cancer—an analysis of stromal morphology. PLoS One, 15(7): 0234568. https://doi.org/10.1371/ journal.pone.0234568
- Budden, K.F., Shukla, S.D., Bowerman, K.L., Vaughan, A., Gellatly, S.L., Wood, D.L., Lachner, N., Idrees, S., Rehman, S.F., Faiz, A. and Patel, V.K., 2024. Faecal microbial transfer and complex carbohydrates mediate protection against COPD. Gut 73(5): 751–769. https://doi.org/10.1136/gutjnl-2023-330521
- Calatayud, M., Van den Abbeele, P., Ghyselinck, J., Marzorati, M., Rohs, E. and Birkett, A., 2021. Comparative effect of 22 dietary sources of fiber on gut microbiota of healthy humans in vitro. Frontiers in Nutrition 8: 700571. https://doi.org/10.3389/ fnut.2021.700571
- Camerotto, C., Cupisti, A., D'Alessandro, C., Muzio, F. and Gallieni, M., 2019. Dietary fiber and gut microbiota in renal diets. Nutrients 11(9): 2149. https://doi.org/10.3390/nu11092149
- Cantero, I., Abete, I., Monreal, J.I., Martinez, J.A. and Zulet, M.A., 2017. Fruit fiber consumption specifically improves liver health status in obese subjects under energy restriction. Nutrients 9(7): 667. https://doi.org/10.3390/nu9070667
- Capuano, E., 2017. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Critical Reviews in Food Science and Nutrition 57(16): 3543–3564. https://doi.org/10.1080/10408398.2016.1180501
- Carlson, J.L., Erickson, J.M., Lloyd, B.B. and Slavin, J.L., 2018.
 Health effects and sources of prebiotic dietary fiber. Current Developments in Nutrition 2(3): nzy005. https://doi.org/10.1093/cdn/nzy005
- Chakrabarti, A., Geurts, L., Hoyles, L., Iozzo, P., Kraneveld, A.D., La Fata, G., Miani, M., Patterson, E., Pot, B., Shortt, C. and Vauzour, D., 2022. The microbiota–gut–brain axis: pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. Cellular and Molecular Life Sciences 79(2): 80. https://doi.org/10.1007/s00018-021-04060-w
- Chang, H.W., McNulty, N.P., Hibberd, M.C., O'Donnell, D., Cheng, J., Lombard, V., Henrissat, B., Ilkayeva, O., Muehlbauer, M.J.,

- Newgard, C.B., Barratt, M.J., Lin, X., Odle, J., and Gordon, J.I., et al. 2021. Gut microbiome contributions to altered metabolism in a pig model of undernutrition. Proceedings of the National Academy of Sciences 118(21): e2024446118. https://doi.org/10.1073/pnas.2024446118.
- Chen, J., Byun, H., Liu, R., Jung, I.-J., Pu, Q., Zhu, C.Y., Tanchoco, E., Alavi, S., Degnan, P.H., Madan, A.T., Roggiani, M., Beld, J., Goulian, M., Hsiao, A., and Zhu, J., 2022. A commensal-encoded genotoxin drives restriction of *Vibrio cholerae* colonization and host gut microbiome remodeling. Proceedings of the National Academy of Sciences 119(11): e2121180119.
- Chen, J., Nouzova, M., Noriega, F.G., and Tatar, M., 2024. Gutto-brain regulation of Drosophila aging through neuropeptide F, insulin, and juvenile hormone. Proceedings of the National Academy of Sciences 121(43): e2411987121. https://doi.org/10.1073/pnas.2411987121
- Chen, Y., Wang, Z., Ding, J., Ming, D., Wang, W., Jiang, Z., Liu, L. and Wang, F., 2019. Effects of dietary fiber content and different fiber-rich ingredients on endogenous loss of fat and fatty acids in growing pigs. Journal of Animal Science and Biotechnology 10: 1–14. https://doi.org/10.1186/s40104-019-0348-3
- Chi, M., 2023 CEd. Sheiladevi Sukumaran. Research progress of dietary fiber and its regulation of intestinal flora to improve type 2 diabetes mellitus. In: International Conference on Modern Medicine and Global Health (ICMMGH 2023), Oxford, Oxfordshire, UK. Vol. 12789; pp. 224–228. SPIE. https://doi. org/10.1117/12.2692594
- Clemente-Suárez, V.J., Beltrán-Velasco, A.I., Redondo-Flórez, L., Martín-Rodríguez, A. and Tornero-Aguilera, J.F., 2023. Global impacts of western diet and its effects on metabolism and health: a narrative review. Nutrients 15(12): 2749. https://doi.org/10.3390/nu15122749
- Clinton, S.K., Giovannucci, E.L. and Hursting, S.D., 2020. The world cancer research fund/American institute for cancer research third expert report on diet, nutrition, physical activity, and cancer: impact and future directions. Journal of Nutrition 150(4): 663–671. https://doi.org/10.1093/jn/nxz268
- Cobo-López, S., Gupta, V.K., Sung, J., Guimerà, R. and Sales-Pardo, M., 2022. Stochastic block models reveal a robust nested pattern in healthy human gut microbiomes. Proceedings of the National Academy of Sciences of the United States of America (PNAS Nexus) 1(3): pgac055. https://doi.org/10.1093/pnasnexus/pgac055
- Cui, J., Lian, Y., Zhao, C., Du, H., Han, Y., Gao, W., Xiao, H. and Zheng, J., 2019. Dietary fibers from fruits and vegetables and their health benefits via modulation of gut microbiota. Comprehensive Reviews in Food Science and Food Safety 18(5): 1514–1532. https://doi.org/10.1111/1541-4337.12489
- Czarnowski, P., Bałabas, A., Kułaga, Z., Kulecka, M., Goryca, K., Pyśniak, K., Unrug-Bielawska, K., Kluska, A., Bagińska-Drabiuk, K., Głowienka-Stodolak, M. and Piątkowska, M., 2024. Effects of soluble dextrin fiber from potato starch on body weight and associated gut dysbiosis are evident in western dietfed mice but not in overweight/obese children. Nutrients 16(7): 917. https://doi.org/10.3390/nu16070917

- Dai, F.J. and Chau, C.F., 2017. Classification and regulatory perspectives of dietary fiber. Journal of Food and Drug Analysis 25(1): 37–42. https://doi.org/10.1016/j.jfda.2016.09.006
- Davey, M., Puelz, C., Rossi, S., Smith, M.A., Wells, D.R., Sturgeon, G.M., Segars, W.P., Vavalle, J.P., Peskin, C.S. and Griffith, B.E., 2024. Simulating cardiac fluid dynamics in the human heart. Proceedings of the National Academy of Sciences of the United States of America (PNAS Nexus) 3(10): 392. https://doi.org/10.1093/pnasnexus/pgae392
- Debnath, S., Jawahar, S., Muntaj, H., Purushotham, V., Sharmila, G., Sireesha, K. and Babu, M.N., 2019. A review on dietary fiber and its application. Research Journal of Pharmacognosy and Phytochemistry 11(3): 109–113. http://dx.doi.org/10.5958/ 0975-4385.2019.00019.0
- Delannoy-Bruno, O., Desai, C., Castillo, J.J., Couture, G., Barve, R.A., Lombard, V., Henrissat, B., Cheng, J., Han, N., Hayashi, D.K., Meynier, A., Vinoy, S., Lebrilla, C.B., Marion, S., Heath, A.C., Barratt, M.J., and Gordon, J.I., 2022. An approach for evaluating the effects of dietary fiber polysaccharides on the human gut microbiome and plasma proteome. Proceedings of the National Academy of Sciences 119(20): e2123411119. https://doi.org/10.1073/pnas.2123411119
- Delzenne, N.M., Olivares, M., Neyrinck, A.M., Beaumont, M., Kjølbæk, L., Larsen, T.M., Benítez-Páez, A., Romaní-Pérez, M., Garcia-Campayo, V., Bosscher, D. and Sanz, Y., 2020. Nutritional interest of dietary fiber and prebiotics in obesity: lessons from the MyNewGut consortium. Clinical Nutrition 39(2): 414–424. https://doi.org/10.1016/j.clnu.2019.03.002
- De Roos, B. and Brennan, L., 2017. Personalised interventions—a precision approach for the next generation of dietary intervention studies. Nutrients 9(8): 847. https://doi.org/10.3390/nu9080847
- Dimidi, E., Christodoulides, S., Scott, S.M. and Whelan, K., 2017.
 Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation. Advances in Nutrition 8(3): 484–494. https://doi.org/10.3945/an.116.014407
- Dinan, T.G. and Cryan, J.F., 2017. The microbiome-gut-brain axis in health and disease. Gastroenterology Clinics 46(1): 77–89. https://doi.org/10.1016/j.gtc.2016.09.007
- Dong, Y., Chen, L., Gutin, B. and Zhu, H., 2019. Total, insoluble, and soluble dietary fiber intake and insulin resistance and blood pressure in adolescents. European Journal of Clinical Nutrition 73(8): 1172–1178. https://doi.org/10.1038/s41430-018-0372-y
- Donovan, S.M., 2017. Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health. Gut Microbes 8(2): 75–81. https://doi.org/10.1080/19490976.2017.1299309
- Doroudi, M., Schoen, R.E. and Pinsky, P.F., 2017. Early detection versus primary prevention in the PLCO flexible sigmoidoscopy screening trial: which has the greatest impact on mortality?. Cancer 123(24): 4815–4822. https://doi.org/10.1002/cncr.31034
- Dreher, M.L., 2018. Whole fruits and fruit fiber emerging health effects. Nutrients 10(12): 1833. https://doi.org/10.3390/nu10121833

- Duque, A., Mediano, M.F.F., De Lorenzo, A. and Rodrigues Jr, L.F., 2021. Cardiovascular autonomic neuropathy in diabetes: pathophysiology, clinical assessment and implications. World Journal of Diabetes 12(6): 855. https://doi.org/10.4239/wjd.v12.i6.855
- Emilien, C.H., Hsu, W.H., and Hollis, J.H., 2020. The effect of soluble fiber dextrin on subjective and physiological markers of appetite: a randomized trial. Nutrients 12(11): 3341. https://doi.org/10.3390/nu12113341
- Eriksen, A.K., Brunius, C., Mazidi, M., Hellström, P.M., Risérus, U., Iversen, K.N., Fristedt, R., Sun, L., Huang, Y., Nørskov, N.P. and Knudsen, K.E.B., 2020. Effects of whole-grain wheat, rye, and lignan supplementation on cardiometabolic risk factors in men with metabolic syndrome: a randomized crossover trial. American Journal of Clinical Nutrition 111(4): 864–876. https://doi.org/10.1093/ajcn/nqaa026
- Esteban, R.M., Mollá, E. and Benítez, V. 2017. Soucres of fiber. In: Rodney A. Samaan (Ed.) Dietary Fiber for the Prevention of Cardiovascular Disease. Academic Press, New York, NY, Chap. 7, pp. 121–146. https://doi.org/10.1016/B978-0-12-805130-6.00007-0
- Fachi, J.L., Di Luccia, B., Gilfillan, S., Chang, H.W., Song, C., Cheng, J., Cella, M., Vinolo, M.A., Gordon, J.I., and Colonna, M., 2024. Deficiency of IL-22-binding protein enhances the ability of the gut microbiota to protect against enteric pathogens. Proceedings of the National Academy of Sciences 121(19): e2321836121. https://doi.org/10.1073/pnas.2321836121
- Feng, L., Raman, A.S., Hibberd, M.C., Cheng, J., Griffin, N.W., Peng, Y., Leyn, S.A., Rodionov, D.A., Osterman, A.L., and Gordon, J.I., 2020. Identifying determinants of bacterial fitness in a model of human gut microbial succession. Proceedings of the National Academy of Sciences 117(5): 2622–2633. https:// doi.org/10.1073/pnas.1918951117
- Fu, T., Li, Y., Oh, T.G., Cayabyab, F., He, N., Tang, Q., Coulter, S., Truitt, M., Medina, P., He, M., Yu, R.T., Atkins, A., Zheng, Y., Liddle, C., Downes, M., and Evans, R.M., 2022. FXR mediates ILC-intrinsic responses to intestinal inflammation. Proceedings of the National Academy of Sciences 119(51): e2213041119. https://doi.org/10.1073/pnas.2213041119
- Fu, J., Zheng, Y., Gao, Y. and Xu, W., 2022a. Dietary fiber intake and gut microbiota in human health. Microorganisms 10(12): 2507. https://doi.org/10.3390/microorganisms10122507
- Fuller, S., Beck, E., Salman, H. and Tapsell, L., 2016. New horizons for the study of dietary fiber and health: a review. Plant Foods for Human Nutrition 71: 1–12. https://doi.org/10.1007/s11130-016-0529-6
- Fu-Shin, X.Y., Lee, P.S., Yang, L., Gao, N., Zhang, Y., Ljubimov, A.V., Yang, E., Zhou, Q. and Xie, L., 2022. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Progress in Retinal and Eye Research 89: 101039. https://doi.org/10.1016/j.preteyeres.2021.101039
- Gao, X., Cao, Q., Cheng, Y., Zhao, D., Wang, Z., Yang, H., Wu, Q., You, L., Wang, Y., Lin, Y., Li, X., Wang, Y., Bian, J.-S., Sun, D., Kong, L., Birnbaumer, L., and Yang, Y., 2018. Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proceedings of the National Academy of Sciences 115(13): E2960–E2969. https://doi.org/10.1073/pnas.1720696115

- Garutti, M., Nevola, G., Mazzeo, R., Cucciniello, L., Totaro, F., Bertuzzi, C.A., Caccialanza, R., Pedrazzoli, P. and Puglisi, F., 2022. The impact of cereal grain composition on the health and disease outcomes. Frontiers in Nutrition 9: 888974. https://doi. org/10.3389/fnut.2022.888974
- Geng, J., Ji, B., Li, G., López-Isunza, F., and Nielsen, J., 2021. CODY enables quantitatively spatiotemporal predictions on *in vivo* gut microbial variability induced by diet intervention. Proceedings of the National Academy of Sciences 118(13): e2019336118. https://doi.org/10.1073/pnas.2019336118
- Gill, S.K., Rossi, M., Bajka, B. and Whelan, K., 2021. Dietary fibre in gastrointestinal health and disease. Nature Reviews Gastroenterology & Hepatology 18(2): 101–116. https://doi. org/10.1038/s41575-020-00375-4
- Gomaa, E.Z., 2020. Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 113(12): 2019–2040. https://doi.org/10.1007/s10482-020-01474-7
- Goyal, M.S., Venkatesh, S., Milbrandt, J., Gordon, J.I., and Raichle, M.E., 2015. Feeding the brain and nurturing the mind: linking nutrition and the gut microbiota to brain development. Proceedings of the National Academy of Sciences 112(46): 14105–14112. https://doi.org/10.1073/pnas.1511465112
- Guan, Z.W., Yu, E.Z. and Feng, Q., 2021. Soluble dietary fiber, one of the most important nutrients for the gut microbiota. Molecules 26(22): 6802. https://doi.org/10.3390/molecules26226802
- Han, X., Ma, Y., Ding, S., Fang, J. and Liu, G., 2023. Regulation of dietary fiber on intestinal microorganisms and its effects on animal health. Animal Nutrition 14: 356–369. https://doi. org/10.1016/j.aninu.2023.06.004
- He, Y., Wang, B., Wen, L., Wang, F., Yu, H., Chen, D., Su, X. and Zhang, C., 2022. Effects of dietary fiber on human health. Food Science and Human Wellness 11(1): 1–10. https://doi.org/10.1016/j.fshw.2021.07.001
- Herrick, L.P., Goh, J., Menke, W., Campbell, M.S., Fleenor, B.S., Abel, M.G. and Bergstrom, H.C., 2020. Effects of curcumin and fenugreek soluble fiber on the physical working capacity at the fatigue threshold, peak oxygen consumption, and time to exhaustion. Journal of Strength & Conditioning Research 34(12): 3346–3355. https://doi.org/10.1519/jsc.000000000000003852
- Hiel, S., Bindels, L.B., Pachikian, B.D., Kalala, G., Broers, V., Zamariola, G., Chang, B.P., Kambashi, B., Rodriguez, J., Cani, P.D. and Neyrinck, A.M., 2019. Effects of a diet based on inulin-rich vegetables on gut health and nutritional behavior in healthy humans. American Journal of Clinical Nutrition 109(6): 1683–1695. https://doi.org/10.1093/ajcn/nqz001
- Hills, R.D., Pontefract, B.A., Mishcon, H.R., Black, C.A., Sutton, S.C. and Theberge, C.R., 2019. Gut microbiome: profound implications for diet and disease. Nutrients 11(7): 1613. https://doi.org/10.3390/nu11071613
- Holingue, C., Budavari, A.C., Rodriguez, K.M., Zisman, C.R., Windheim, G. and Fallin, M.D., 2020. Sex differences in the gutbrain axis: implications for mental health. Current Psychiatry Reports 22: 1–11. https://doi.org/10.1007/s11920-020-01202-y
- Holscher, H.D., 2017. Dietary fiber and prebiotics and the gastro-intestinal microbiota. Gut Microbes 8(2): 172–184. https://doi.org/10.1080/19490976.2017.1290756

- Hopek, S. and Siniak, G., 2020. Diabetic neuropathy: new perspectives on early diagnosis and treatments. Journal of Current Diabetes Reports 1(01): 12–14.
- Hullings, A.G., Sinha, R., Liao, L.M., Freedman, N.D., Graubard, B.I. and Loftfield, E., 2020. Whole grain and dietary fiber intake and risk of colorectal cancer in the NIH-AARP Diet and Health Study cohort. American Journal of Clinical Nutrition 112(3): 603–612. https://doi.org/10.1093/ajcn/nqaa161
- Hussain, S., Jöudu, I. and Bhat, R., 2020. Dietary fiber from underutilized plant resources—a positive approach for valorization of fruit and vegetable wastes. Sustainability 12(13): 5401. https://doi.org/10.3390/su12135401
- Ioniţă-Mîndrican, C.B., Ziani, K., Mititelu, M., Oprea, E., Neacşu, S.M., Moroşan, E., Dumitrescu, D.E., Roşca, A.C., Drăgănescu, D. and Negrei, C., 2022. Therapeutic benefits and dietary restrictions of fiber intake: a state of the art review. Nutrients 14(13): 2641. https://doi.org/10.3390/nu14132641
- Ismael, S., Silvestre, M.P., Vasques, M., Araújo, J.R., Morais, J., Duarte, M.I., Pestana, D., Faria, A., Pereira-Leal, J.B., Vaz, J. and Ribeiro, P., 2021. A pilot study on the metabolic impact of Mediterranean diet in type 2 diabetes: is gut microbiota the key?. Nutrients 13(4): 1228. https://doi.org/10.3390/nu13041228
- Iversen, K.N., Dicksved, J., Zoki, C., Fristedt, R., Pelve, E.A., Langton, M. and Landberg, R., 2022. The effects of high fiber rye, compared to refined wheat, on gut microbiota composition, plasma short chain fatty acids, and implications for weight loss and metabolic risk factors (the RyeWeight Study). Nutrients 14(8): 1669. https://doi.org/10.3390/nu14081669
- Jakeman, S.A., Henry, C.N., Martin, B.R., McCabe, G.P., McCabe, L.D., Jackson, G.S., Peacock, M. and Weaver, C.M., 2016. Soluble corn fiber increases bone calcium retention in postmenopausal women in a dose-dependent manner: a randomized crossover trial. American Journal of Clinical Nutrition 104(3): 837–843. https://doi.org/10.3945/ajcn.116.132761
- Jha, R., Fouhse, J.M., Tiwari, U.P., Li, L. and Willing, B.P., 2019.
 Dietary fiber and intestinal health of monogastric animals. Frontiers in Veterinary Science 6: 48. https://doi.org/10.3389/fvets.2019.00048
- Jha, R. and Mishra, P., 2021. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. Journal of Animal Science and Biotechnology 12: 1–16. https://doi.org/10.1186/ s40104-021-00576-0
- Jinnette, R., Narita, A., Manning, B., McNaughton, S.A., Mathers, J.C. and Livingstone, K.M., 2021. Does personalized nutrition advice improve dietary intake in healthy adults? A systematic review of randomized controlled trials. Advances in Nutrition 12(3): 657–669. https://doi.org/10.1093/advances/ nmaa144
- Jovanovski, E., Komishon, A., Au-Yeung, F., Zurbau, A., Jenkins, A.L., Sung, M.K., Josse, R. and Vuksan, V., 2020. Vascular effects of combined enriched Korean Red ginseng (Panax Ginseng) and American ginseng (Panax Quinquefolius) administration in individuals with hypertension and type 2 diabetes: a randomized controlled trial. Complementary Therapies in Medicine 49: 102338. https://doi.org/10.1016/j.ctim.2020.102338

- Jovanovski, E., Mazhar, N., Komishon, A., Khayyat, R., Li, D., Blanco Mejia, S., Khan, T., Jenkins, A.L., Smircic-Duvnjak, L., Sievenpiper, J.L. and Vuksan, V., 2021. Effect of viscous fiber supplementation on obesity indicators in individuals consuming calorie-restricted diets: a systematic review and meta-analysis of randomized controlled trials. European Journal of Nutrition 60: 101–112. https://doi.org/10.1007/s00394-020-02224-1
- Joye, I.J., 2020. Dietary fibre from whole grains and their benefits on metabolic health. Nutrients 12(10): 3045. https://doi. org/10.3390/nu12103045
- Katsirma, Z., Dimidi, E., Rodriguez-Mateos, A. and Whelan, K., 2021. Fruits and their impact on the gut microbiota, gut motility and constipation. Food & Function 12(19): 8850–8866. https:// doi.org/10.1039/D1FO01125A
- Kaye, D.M., Shihata, W.A., Jama, H.A., Tsyganov, K., Ziemann, M., Kiriazis, H., Horlock, D., Vijay, A., Giam, B., Vinh, A. and Johnson, C., 2020. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease. Circulation 141(17): 1393–1403. https://doi. org/10.1161/CIRCULATIONAHA.119.043081
- Khan, K., Jovanovski, E., Ho, H.V.T., Marques, A.C.R., Zurbau, A., Mejia, S.B., Sievenpiper, J.L. and Vuksan, V., 2018. The effect of viscous soluble fiber on blood pressure: a systematic review and meta-analysis of randomized controlled trials. Nutrition, Metabolism and Cardiovascular Diseases 28(1): 3–13. https:// doi.org/10.1016/j.numecd.2017.09.007
- Kirthi, V., Perumbalath, A., Brown, E., Nevitt, S., Petropoulos, I.N., Burgess, J., Roylance, R., Cuthbertson, D.J., Jackson, T.L., Malik, R.A. and Alam, U., 2021. Prevalence of peripheral neuropathy in pre-diabetes: a systematic review. BMJ Open Diabetes Research and Care 9(1): e002040. https://doi.org/10.1136/ bmjdrc-2020-002040
- Klinder, A., Shen, Q., Heppel, S., Lovegrove, J.A., Rowland, I. and Tuohy, K.M., 2016. Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota. Food & Function 7(4): 1788–1796. https://doi.org/10.1039/c5fo01096a
- Koh, A., De Vadder, F., Kovatcheva-Datchary, P. and Bäckhed, F., 2016. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165(6): 1332–1345. https://doi.org/10.1016/j.cell.2016.05.041
- Korcz, E., Kerényi, Z. and Varga, L., 2018. Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: potential health benefits with special regard to cholesterol-lowering effects. Food & Function 9(6): 3057–3068. https://doi.org/10.1039/C8FO00118A
- Korczak, R. and Slavin, J.L., 2020. Definitions, regulations, and new frontiers for dietary fiber and whole grains. Nutrition Reviews 78(Supplement 1): 6–12. https://doi.org/10.1093/ nutrit/nuz061
- Kranz, S., Dodd, K.W., Juan, W.Y., Johnson, L.K. and Jahns, L., 2017.
 Whole grains contribute only a small proportion of dietary fiber to the US diet. Nutrients 9(2): 153. https://doi.org/10.3390/nu9020153
- Kudou, K., Kimura, K., Tsutsumi, R., Hashimoto, N., Wada, H. and Ikeda, T., 2022. Use of insoluble dietary fiber and probiotics for bowel preparation before colonoscopy: a prospective study.

- Surgical Laparoscopy Endoscopy & Percutaneous Techniques 32(2): 153–158. https://doi.org/10.1097/sle.0000000000000995
- Kumar, J., Rani, K. and Datt, C., 2020. Molecular link between dietary fibre, gut microbiota and health. Molecular Biology Reports 47(8): 6229–6237. https://doi.org/10.1007/s11033-020-05611-3
- Laranjeiro, R., Harinath, G., Hewitt, J.E., Hartman, J.H., Royal, M.A., Meyer, J.N., Vanapalli, S.A., and Driscoll, M., 2019. Swim exercise in *Caenorhabditis elegans* extends neuromuscular and gut healthspan, enhances learning ability, and protects against neurodegeneration. Proceedings of the National Academy of Sciences 116(47): 23829–23839. https://doi.org/10.1073/pnas.1909210116
- La Torre, D., Verbeke, K. and Dalile, B., 2021. Dietary fibre and the gut–brain axis: microbiota-dependent and independent mechanisms of action. Gut Microbiome 2: e3. https://doi.org/10.1017/gmb.2021.3
- Lamothe, L.M., Cantu-Jungles, T.M., Chen, T., Green, S., Naqib, A., Srichuwong, S. and Hamaker, B.R., 2021. Boosting the value of insoluble dietary fiber to increase gut fermentability through food processing. Food & Function, 12(21): 10658--10666. https://doi.org/10.1039/D1FO02146J
- Lee, Y. and Kim, Y.K., 2021. Understanding the connection between the gut-brain axis and stress/anxiety disorders. Current Psychiatry Reports 23: 1–7. https://doi.org/10.1007/s11920-021-01235-x
- Lee, J., Wellenstein, K., Rahnavard, A., Nelson, A.T., Holter, M.M., Cummings, B.P., Yeliseyev, V., Castoldi, A., Clish, C.B., Bry, L., Siegel, D., and Kahn, B.B., 2024. Beneficial metabolic effects of PAHSAs depend on the gut microbiota in diet-induced obese mice but not in chow-fed mice. Proceedings of the National Academy of Sciences 121(28): e2318691121. https://doi. org/10.1073/pnas.2318691121
- Li, Y., Han, M., Song, J., Liu, S., Wang, Y., Su, X., Wei, K., Xu, Z., Li, H. and Wang, Z., 2022. The prebiotic effects of soluble dietary fiber mixture on renal anemia and the gut microbiota in end-stage renal disease patients on maintenance hemodialysis: a prospective, randomized, placebo-controlled study. Journal of Translational Medicine 20(1): 599. https://doi.org/10.1186/ s12967-022-03812-x
- Li, Y., Kang, Y., Du, Y., Chen, M., Guo, L., Huang, X., Li, T., Chen, S., Yang, F., Yu, F. and Hong, J., 2022. Effects of Konjaku flour on the gut microbiota of obese patients. Frontiers in Cellular and Infection Microbiology 12: 771748. https://doi.org/10.3389/ fcimb.2022.771748
- Li, W.Z., Stirling, K., Yang, J.J. and Zhang, L., 2020. Gut microbiota and diabetes: from correlation to causality and mechanism. World Journal of Diabetes 11(7): 293. https://doi.org/10.4239/wjd.v11.i7.293
- Liang, S., Wu, X. and Jin, F., 2018. Gut-brain psychology: rethinking psychology from the microbiota-gut-brain axis. Frontiers in Integrative Neuroscience 12: 33. https://doi.org/10.3389/fnint.2018.00033
- Lin, A.Z., Fu, X., Jiang, Q., Zhou, X., Hwang, S.H., Yin, H.H., Ni, K.D., Pan, Q.J., He, X., Zhang, L.T., Meng, Y.W., Liu, Y.N., Hammock, B.D., and Liu, J.Y., 2024. Metabolomics reveals soluble epoxide hydrolase as a therapeutic target for high-sucrose diet-mediated gut barrier dysfunction. Proceedings of the

- National Academy of Sciences 121(48): e2409841121. https://doi.org/10.1073/pnas.2409841121
- Liu, H., Zhang, M., Ma, Q., Tian, B., Nie, C., Chen, Z. and Li, J., 2020.
 Health beneficial effects of resistant starch on diabetes and obesity via regulation of gut microbiota: a review. Food & Function 11(7): 5749–5767. https://doi.org/10.1039/D0FO00855A
- Loo, Y.T., Howell, K., Chan, M., Zhang, P. and Ng, K., 2020. Modulation of the human gut microbiota by phenolics and phenolic fiber-rich foods. Comprehensive Reviews in Food Science and Food Safety 19(4): 1268–1298. https://doi. org/10.1111/1541-4337.12563
- Makki, K., Deehan, E.C., Walter, J. and Bäckhed, F., 2018. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe 23(6): 705–715. https://doi.org/10.1016/j.chom.2018.05.012.
- Malipatlolla, D.K., Devarakonda, S., Patel, P., Sjöberg, F., Rascón, A., Grandér, R., Skokic, V., Kalm, M., Danial, J., Mehdin, E. and Warholm, M., 2021. A fiber-rich diet and radiation-induced injury in the murine intestinal mucosa. International Journal of Molecular Sciences 23(1): 439. https://doi.org/10.3390/ijms23010439
- Manrique, P., Bolduc, B., Walk, S.T., van der Oost, J., de Vos, W.M., and Young, M.J., 2016. Healthy human gut phageome. Proceedings of the National Academy of Sciences 113(37): 10400–10405. https://doi.org/10.1073/pnas.1601060113
- Mao, T., Huang, F., Zhu, X., Wei, D. and Chen, L., 2021. Effects of dietary fiber on glycemic control and insulin sensitivity in patients with type 2 diabetes: a systematic review and meta-analysis. Journal of Functional Foods 82: 104500. https:// doi.org/10.1016/j.jff.2021.104500
- Mark Welch, J.L., Hasegawa, Y., McNulty, N.P., Gordon, J.I., and Borisy, G.G., 2017. Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proceedings of the National Academy of Sciences 114(43): E9105–E9114. https://doi.org/10.1073/pnas.1711596114
- Martel, J., Chang, S.H., Ko, Y.F., Hwang, T.L., Young, J.D. and Ojcius, D.M., 2022. Gut barrier disruption and chronic disease. Trends in Endocrinology & Metabolism 33(4): 247–265. https://doi.org/10.1016/j.tem.2022.01.002
- Martin-Gallausiaux, C., Marinelli, L., Blottière, H.M., Larraufie, P. and Lapaque, N., 2021. SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society 80(1): 37–49. https://doi.org/10.1017/S0029665120006916
- Matt, S.M., Allen, J.M., Lawson, M.A., Mailing, L.J., Woods, J.A. and Johnson, R.W., 2018. Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice. Frontiers in Immunology 9: 1832. https://doi.org/10.3389/fimmu.2018.01832
- Mayrhofer, G., 2019. Physiology of the Intestinal Immune System. In: Newby, Timothy J. and Stokes, Christopher R. (Eds.) Local Immune Responses of Gut. CRC Press, Boca Raton, FL, Chap. 1. pp. 1–96. https://doi.org/10.1201/9780429279508
- McRorie Jr, J.W. and McKeown, N.M., 2017. Understanding the physics of functional fibers in the gastrointestinal tract: an evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. Journal of the Academy of Nutrition and Dietetics 117(2): 251–264. https://doi. org/10.1016/j.jand.2016.09.021

- Meldrum, O.W., and Yakubov, G.E. (2024). Journey of dietary fiber along the gastrointestinal tract: role of physical interactions, mucus, and biochemical transformations. Critical Reviews in Food Science and Nutrition 1–29. https://doi.org/10.1080/1040 8398.2024.2390556
- Merenkova, S.P., Zinina, O.V., Stuart, M., Okuskhanova, E.K. and Androsova, N.V., 2020. Effects of dietary fiber on human health: a review. Human Sport Medicine 20(1): 106–113. https://doi.org/10.14529/hsm200113
- Miao, T., Zhang, X., Zhang, C., Wu, J., Zhu, Y., Xiao, M., Zhang, N., Zhong, Y., Liu, Y., Lin, Y. and Wu, Y., 2024. Type 3 resistant starch from canna edulis reduce lipid levels in patients with mild hyperlipidemia through altering gut microbiome: a double-blind randomized controlled trial. Pharmacological Research 107232. https://doi.org/10.1016/j.phrs.2024.107232
- Miles, F.L., Navarro, S.L., Schwarz, Y., Gu, H., Djukovic, D., Randolph, T.W., Shojaie, A., Kratz, M., Hullar, M.A., Lampe, P.D. and Neuhouser, M.L., 2017. Plasma metabolite abundances are associated with urinary enterolactone excretion in healthy participants on controlled diets. Food & Function 8(9): 3209–3218. https://doi.org/10.1039/c7fo00684e
- Miller, K.B., 2020. Review of whole grain and dietary fiber recommendations and intake levels in different countries. Nutrition Reviews 78(Supplement 1): 29–36. https://doi.org/10.1093/nutrit/nuz052
- Miranda-Galvis, M., Loveless, R., Kowalski, L.P. and Teng, Y., 2021. Impacts of environmental factors on head and neck cancer pathogenesis and progression. Cells 10(2): 389. https://doi. org/10.3390/cells10020389
- Mirzaei, R., Afaghi, A., Babakhani, S., Sohrabi, M.R., Hosseini-Fard, S.R., Babolhavaeji, K., Akbari, S.K.A., Yousefimashouf, R. and Karampoor, S., 2021. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomedicine & Pharmacotherapy 139: 111619. https://doi.org/10.1016/j.biopha.2021.111619
- Molina-Montes, E., Salamanca-Fernández, E., Garcia-Villanova, B. and Sánchez, M.J., 2020. The impact of plant-based dietary patterns on cancer-related outcomes: a rapid review and meta-analysis. Nutrients 12(7): 2010. https://doi.org/10.3390/nu12072010
- Moore, J.B., 2020. From personalised nutrition to precision medicine: the rise of consumer genomics and digital health. Proceedings of the Nutrition Society 79(3): 300–310. https://doi.org/10.1017/S0029665120006977
- Moreira, F.D., Mendes, G.F., Nascimento, G.D., Reis, C.E., Gallassi, A.D. and Welker, A.F., 2024. Postprandial hyperglycemia in patients with type 2 diabetes is reduced by raw insoluble fiber: a randomized trial. Nutrition, Metabolism and Cardiovascular Diseases 34(12): 2673–2679. https://doi.org/10.1016/j.numecd.2023.09.013
- Mörkl, S., Wagner-Skacel, J., Lahousen, T., Lackner, S., Holasek, S.J., Bengesser, S.A., Painold, A., Holl, A.K. and Reininghaus, E., 2020. The role of nutrition and the gut-brain axis in psychiatry: a review of the literature. Neuropsychobiology 79(1): 80–88. https://doi.org/10.1159/000492834

- Morrison, K.E., Jašarević, E., Howard, C.D. and Bale, T.L., 2020. It's the fiber, not the fat: significant effects of dietary challenge on the gut microbiome. Microbiome 8: 1–11. https://doi.org/10.1186/s40168-020-0791-6
- Nie, Q., Hu, J., Gao, H., Li, M., Sun, Y., Chen, H., Zuo, S., Fang, Q., Huang, X., Yin, J. and Nie, S., 2021. Bioactive dietary fibers selectively promote gut microbiota to exert antidiabetic effects. Journal of Agricultural and Food Chemistry 69(25): 7000–7015. https://doi.org/10.1021/acs.jafc.1c01465
- Nolte Fong, J.V., Miketinas, D., Moore, L.W., Nguyen, D.T., Graviss, E.A., Ajami, N. and Patterson, M.A., 2022. Precision nutrition model predicts glucose control of overweight females following the consumption of potatoes high in resistant starch. Nutrients 14(2): 268. https://doi.org/10.3390/nu14020268
- Ojo, O., Feng, Q.Q., Ojo, O.O. and Wang, X.H., 2020. The role of dietary fibre in modulating gut microbiota dysbiosis in patients with type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Nutrients 12(11): 3239. https://doi.org/10.3390/nu12113239
- Ortega-Santos, C.P. and Whisner, C.M., 2019. The key to successful weight loss on a high-fiber diet may be in gut microbiome Prevotella abundance. Journal of Nutrition 149(12): 2083–2084. https://doi.org/10.1093/jn/nxz248
- Osborn, L.J., Schultz, K., Massey, W., DeLucia, B., Choucair, I., Varadharajan, V., ... and Claesen, J., 2022. A gut microbial metabolite of dietary polyphenols reverses obesity-driven hepatic steatosis. Proceedings of the National Academy of Sciences 119(48): e2202934119. https://doi.org/10.1073/pnas.2202934119
- Oyarzun, J.P., Kuntz, T.M., Stussi, Y., Karaman, O.T., Vranos, S., Callaghan, B.L., Huttenhower, C., LeDoux, J.E., and Phelps, E.A., 2022. Human threat learning is associated with gut microbiota composition. Proceedings Of The National Academy Of Sciences Of The United States Of America PNAS Nexus 1(5): pgac271. https://doi.org/10.1093/pnasnexus/pgac271
- Papakonstantinou, E., Xaidara, M., Siopi, V., Giannoglou, M., Katsaros, G., Theodorou, G., Maratou, E., Poulia, K.A., Dimitriadis, G.D. and Skandamis, P.N., 2022. Effects of spaghetti differing in soluble fiber and protein content on glycemic responses in humans: a randomized clinical trial in healthy subjects. International Journal of Environmental Research and Public Health 19(5): 3001. https://doi.org/10.3390/ijerph19053001
- Partula, V., Deschasaux, M., Druesne-Pecollo, N., Latino-Martel, P., Desmetz, E., Chazelas, E., Kesse-Guyot, E., Julia, C., Fezeu, L.K., Galan, P. and Hercberg, S., 2020. Associations between consumption of dietary fibers and the risk of cardiovascular diseases, cancers, type 2 diabetes, and mortality in the prospective NutriNet-Santé cohort. American Journal of Clinical Nutrition 112(1): 195–207. https://doi.org/10.1093/ajcn/nqaa063
- Peredo-Lovillo, A., Romero-Luna, H.E. and Jiménez-Fernández, M., 2020. Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism. Food Research International 136: 109473. https://doi.org/10.1016/j.foodres. 2020.109473

- Perler, B.K., Friedman, E.S. and Wu, G.D., 2023. The role of the gut microbiota in the relationship between diet and human health. Annual Review of Physiology 85(1): 449–468. https://doi.org/10.1146/annurev-physiol-031522-092054
- Portincasa, P., Bonfrate, L., Vacca, M., De Angelis, M., Farella, I., Lanza, E., Khalil, M., Wang, D.Q.H., Sperandio, M. and Di Ciaula, A., 2022. Gut microbiota and short chain fatty acids: implications in glucose homeostasis. International Journal of Molecular Sciences 23(3): 1105. https://doi.org/10.3390/ ijms23031105
- Prasad, K.N. and Bondy, S.C., 2019. Dietary fibers and their fermented short-chain fatty acids in prevention of human diseases. Bioactive Carbohydrates and Dietary Fibre 17: 100170. https://doi.org/10.1016/j.bcdf.2018.09.001
- Provensi, G., Schmidt, S.D., Boehme, M., Bastiaanssen, T.F.S., Rani, B., Costa, A., Busca, K., Fouhy, F., Strain, C., Stanton, C., Blandina, P., Izquierdo, I., Cryan, J.F., and Passani, M.B., 2019.
 Preventing adolescent stress-induced cognitive and microbiome changes by diet. Proceedings of the National Academy of Sciences 116(19): 9644–9651. https://doi.org/10.1073/pnas.1820832116
- Querdasi, F.R., Enders, C., Karnani, N., Broekman, B., Yap Seng, C., Gluckman, P.D., Daniele, L.M., Yap, F., Eriksson, J.G., Cai, S., Chong, M.F.F., Toh, J.Y., Godfrey, K., Meaney, M.J., and Callaghan, B.L., 2023. Multigenerational adversity impacts on human gut microbiome composition and socioemotional functioning in early childhood. Proceedings of the National Academy of Sciences 120(30): e2213768120. https://doi.org/10.1073/ pnas.2213768120
- Ran, Y., Long, J., Xu, Z., Yin, Y., Hu, D., Long, X., Zhang, Y., Liang, L., Liang, H. and Guan, B.O., 2021. Harmonic optical microfiber Bragg grating immunosensor for the accelerative test of cardiac biomarker (cTn-I). Biosensors and Bioelectronics 179: 113081. https://doi.org/10.1016/j.bios.2021.113081
- Rashidi, A., Ebadi, M., Weisdorf, D.J., Costalonga, M., and Staley, C., 2021. No evidence for colonization of oral bacteria in the distal gut in healthy adults. Proceedings of the National Academy of Sciences 118(42): e2114152118. https://doi.org/10.1073/ pnas.2114152118
- Remes-Troche, J.M., Taboada-Liceaga, H., Gill, S., Amieva-Balmori, M., Rossi, M., Hernández-Ramírez, G., García-Mazcorro, J.F. and Whelan, K., 2021. Nopal fiber (Opuntia ficus-indica) improves symptoms in irritable bowel syndrome in the short term: a randomized controlled trial. Neurogastroenterology & Motility 33(2): e13986. https://doi.org/10.1111/nmo.13986
- Reynolds, A.N., Akerman, A., Kumar, S., Diep Pham, H.T., Coffey, S. and Mann, J., 2022. Dietary fibre in hypertension and cardiovascular disease management: systematic review and meta-analyses. BMC Medicine 20(1): 139. https://doi.org/10.1186/s12916-022-02328-x
- Rezende, E.S.V., Lima, G.C. and Naves, M.M.V., 2021. Dietary fibers as beneficial microbiota modulators: a proposed classification by prebiotic categories. Nutrition 89: 111217. https://doi. org/10.1016/j.nut.2021.111217
- Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G.A.D., Gasbarrini, A. and Mele, M.C., 2019. What is the healthy gut

- microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7(1): 14. https://doi.org/10.3390/microorganisms7010014
- Rowan, S., Jiang, S., Korem, T., Szymanski, J., Chang, M.-L., Szelog, J., Cassalman, C., et al. 2017. Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proceedings of the National Academy of Sciences 114(22): E4472–E4481. https://doi.org/10.1073/ pnas.1702302114
- Ruscica, M., Penson, P.E., Ferri, N., Sirtori, C.R., Pirro, M., Mancini, G.J., Sattar, N., Toth, P.P., Sahebkar, A., Lavie, C.J. and Wong, N.D., 2021. Impact of nutraceuticals on markers of systemic inflammation: potential relevance to cardiovascular diseases—a position paper from the International Lipid Expert Panel (ILEP). Progress in Cardiovascular Diseases 67: 40–52. https://doi.org/10.1016/j.pcad.2021.06.010
- Sagmeister, T., Gubensäk, N., Buhlheller, C., Grininger, C., Eder, M.,
 Đordić, A., Millán, C., Medina, A., Sánchez Murcia, P.A., Berni, F.,
 Hynönen, U., Vejzović, D., Damisch, E., Kulminskaya, N.,
 Petrowitsch, L., Oberer, M., Palva, A., Malanović, N., Codée, J.,
 Keller, W., Usón, I., and Pavkov-Keller, T., 2024. The molecular architecture of *Lactobacillus* S-layer: assembly and attachment to teichoic acids. Proceedings of the National Academy of Sciences 121(24): e2401686121. https://doi.org/10.1073/pnas.2401686121
- Salamone, D., Rivellese, A.A. and Vetrani, C., 2021. The relationship between gut microbiota, short-chain fatty acids and type 2 diabetes mellitus: the possible role of dietary fibre. Acta Diabetologica 58(9): 1131–1138. https://doi.org/10.1007/s00592-021-01727-5
- Schimmel, K., Ichimura, K., Reddy, S., Haddad, F. and Spiekerkoetter, E., 2022. Cardiac fibrosis in the pressure overloaded left and right ventricle as a therapeutic target. Frontiers in Cardiovascular Medicine 9: 886553. https://doi.org/10.3389/ fcvm.2022.886553
- Schlesinger, S., 2022. Diet and diabetes prevention: is a plant-based diet the solution? Diabetes Care 46(1): 6. https://doi.org/10.2337/dci22-0041
- Schut, G.J., Thorgersen, M.P., Poole, F.L., Haja, D.K., Putumbaka, S., and Adams, M.W., 2021. Tungsten enzymes play a role in detoxifying food and antimicrobial aldehydes in the human gut microbiome. Proceedings of the National Academy of Sciences 118(43): e2109008118. https://doi.org/10.1073/pnas.2109008118
- Semenkovich, N.P., Planer, J.D., Ahern, P.P., Griffin, N.W., Lin, C.Y., and Gordon, J.I., 2016. Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes. Proceedings of the National Academy of Sciences 113(51): 14805–14810. https://doi.org/10.1073/pnas.1617793113
- Sequeira, S., Kavanaugh, D., MacKenzie, D.A., Šuligoj, T., Walpole, S., Leclaire, C., Gunning, A.P., Latousakis, D., Willats, W.G.T., Angulo, J., Dong, C., and Juge, N., 2018. Structural basis for the role of serine-rich repeat proteins from *Lactobacillus reuteri* in gut microbe–host interactions. Proceedings of the National Academy of Sciences 115(12): E2706–E2715. https://doi.org/10.1073/pnas.1715016115
- Seradj, A.R., Balcells, J., Morazan, H., Alvarez-Rodriguez, J., Babot, D. and De la Fuente, G., 2018. The impact of reducing

- dietary crude protein and increasing total dietary fiber on hindgut fermentation, the methanogen community and gas emission in growing pigs. Animal Feed Science and Technology 245: 54–66. https://doi.org/10.1016/j.anifeedsci.2018.09.005
- Shah, B.R., Li, B., Al Sabbah, H., Xu, W. and Mráz, J., 2020. Effects of prebiotic dietary fibers and probiotics on human health: with special focus on recent advancement in their encapsulated formulations. Trends in Food Science & Technology 102: 178–192. https://doi.org/10.1016/j.tifs.2020.06.010
- Shearrer, G.E., O'Reilly, G.A., Belcher, B.R., Daniels, M.J., Goran, M.I., Spruijt-Metz, D. and Davis, J.N., 2016. The impact of sugar sweetened beverage intake on hunger and satiety in minority adolescents. Appetite 97: 43–48. https://doi. org/10.1016/j.appet.2015.11.015
- Shen, W., Sun, J., Li, Z., Yao, F., Lin, K. and Jiao, X., 2020. Food intake and its effect on the species and abundance of intestinal flora in colorectal cancer and healthy individuals. Korean Journal of Internal Medicine 36(3): 568. https://doi.org/10.3904/ kijm.2019.373
- So, W.K., Chan, J.Y., Law, B.M., Choi, K.C., Ching, J.Y., Chan, K.L., Tang, R.S., Chan, C.W., Wu, J.C. and Tsui, S.K., 2021b. Effects of a rice bran dietary intervention on the composition of the intestinal microbiota of adults with a high risk of colorectal cancer: a pilot randomised-controlled trial. Nutrients 13(2): 526. https:// doi.org/10.3390/nu13020526
- Singh, S., Sharma, P., Pal, N., Kumawat, M., Shubham, S., Sarma, D.K., Tiwari, R.R., Kumar, M. and Nagpal, R., 2022. Impact of environmental pollutants on gut microbiome and mental health via the gut-brain axis. Microorganisms, 10(7): 1457. https://doi.org/10.3390/microorganisms10071457
- So, D., Gibson, P.R., Muir, J.G. and Yao, C.K., 2021a. Dietary fibres and IBS: translating functional characteristics to clinical value in the era of personalised medicine. Gut 70(12): 2383–2394. https://doi.org/10.1136/gutjnl-2021-324891
- Sowah, S.A., Milanese, A., Schübel, R., Wirbel, J., Kartal, E., Johnson, T.S., Hirche, F., Grafetstätter, M., Nonnenmacher, T., Kirsten, R. and López-Nogueroles, M., 2022. Calorie restriction improves metabolic state independently of gut microbiome composition: a randomized dietary intervention trial. Genome Medicine 14(1): 30. https://doi.org/10.1186/s13073-022-01030-0
- Spencer, C.N., McQuade, J.L., Gopalakrishnan, V., McCulloch, J.A., Vetizou, M., Cogdill, A.P., Khan, M.A.W., Zhang, X., White, M.G., Peterson, C.B. and Wong, M.C., 2021. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374(6575): 1632–1640. https://doi.org/10.1126/science.aaz7015
- Stephen, A.M., Champ, M.M.J., Cloran, S.J., Fleith, M., Van Lieshout, L., Mejborn, H. and Burley, V.J., 2017. Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutrition Research Reviews 30(2): 149–190. https://doi. org/10.1017/S095442241700004X
- Sun, J., Chen, S., Zang, D., Sun, H., Sun, Y. and Chen, J., 2024. Butyrate as a promising therapeutic target in cancer: from pathogenesis to clinic. International Journal of Oncology 64(4): 44. https://doi.org/10.3892/ijo.2024.5632

- Suresh, A., Shobna, Salaria, M., Morya, S., Khalid, W., Afzal, F.A., Khan, A.A., Safdar, S., Khalid, M.Z. and Mukonzo Kasongo, E.L., 2024. Dietary fiber: an unmatched food component for sustainable health. Food and Agricultural Immunology 35(1): 2384420. https://doi.org/10.1080/09540105.2024.2384420
- Tan, W.S.K., Chia, P.F.W., Ponnalagu, S., Karnik, K. and Henry, C.J., 2020. The role of soluble corn fiber on glycemic and insulin response. Nutrients 12(4): 961. https://doi.org/10.3390/ nu12040961
- Tanes, C., Bittinger, K., Gao, Y., Friedman, E.S., Nessel, L., Paladhi, U.R., Chau, L., Panfen, E., Fischbach, M.A., Braun, J. and Xavier, R.J., 2021. Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. Cell Host & Microbe 29(3): 394–407. https://doi.org/10.1016/j.chom.2020.12.012
- Tang, W.W., Kitai, T. and Hazen, S.L., 2017. Gut microbiota in cardiovascular health and disease. Circulation Research 120(7): 1183–1196. https://doi.org/10.1161/CIRCRESAHA.117.309715
- Tangestani, H., Emamat, H., Ghalandari, H. and Shab-Bidar, S., 2020. Whole grains, dietary fibers and the human gut microbiota: a systematic review of existing literature. Recent Patents on Food, Nutrition & Agriculture 11(3): 235–248. https://doi.org/ 10.2174/2212798411666200316152252
- Tao, J., Li, S., Gan, R.Y., Zhao, C.N., Meng, X. and Li, H.B., 2020.
 Targeting gut microbiota with dietary components on cancer: effects and potential mechanisms of action. Critical Reviews in Food Science and Nutrition 60(6): 1025–1037. https://doi.org/10.1080/10408398.2018.1555789
- Thomson, C.A., Crane, T.E., Miller, A., Gold, M.A., Powell, M., Bixel, K., Van Le, L., DiSilvestro, P., Ratner, E., Lele, S. and Guntupalli, S., 2023. Lifestyle intervention in ovarian cancer enhanced survival (LIVES) study (NRG/GOG0225): recruitment, retention and baseline characteristics of a randomized trial of diet and physical activity in ovarian cancer survivors. Gynecologic Oncology 170: 11–18. https://doi.org/10.1016/j.ygyno.2022.12.017
- Thompson, S.V., Hannon, B.A., An, R. and Holscher, H.D., 2017. Effects of isolated soluble fiber supplementation on body weight, glycemia, and insulinemia in adults with overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. American Journal of Clinical Nutrition 106(6): 1514–1528. https://doi.org/10.3945/ajcn.117.163246
- Tobar, N., Rocha, G.Z., Santos, A., Guadagnini, D., Assalin, H.B., Camargo, J.A., Gonçalves, A.E.S.S., Pallis, F.R., et al. 2023. Metformin acts in the gut and induces gut–liver crosstalk. Proceedings of the National Academy of Sciences 120(4): e2211933120. https://doi.org/10.1073/pnas.2211933120
- Tosh, S.M. and Bordenave, N., 2020. Emerging science on benefits of whole grain oat and barley and their soluble dietary fibers for heart health, glycemic response, and gut microbiota. Nutrition Reviews 78(Supplement 1): 13–20. https://doi.org/10.1093/nutrit/nuz085
- Townsend, G.E., Han, W., Schwalm III, N.D., Raghavan, V., Barry, N.A., Goodman, A.L., and Groisman, E.A., 2019. Dietary sugar silences a colonization factor in a mammalian gut symbiont. Proceedings of the National Academy of Sciences 116(1): 233–238. https://doi.org/10.1073/pnas.1813780115

- Trautwein, E.A. and McKay, S., 2020. The role of specific components of a plant-based diet in management of dyslipidemia and the impact on cardiovascular risk. Nutrients 12(9): 2671. https://doi.org/10.3390/nu12092671
- Tremblay, A., Clinchamps, M., Pereira, B., Courteix, D., Lesourd, B., Chapier, R., Obert, P., Vinet, A., Walther, G., Chaplais, E. and Bagheri, R., 2020. Dietary fibres and the management of obesity and metabolic syndrome: the RESOLVE study. Nutrients 12(10): 2911. https://doi.org/10.3390/nu12102911
- Trevelline, B.K., and Kohl, K.D., 2022. The gut microbiome influences host diet selection behavior. Proceedings of the National Academy of Sciences 119(17): e2117537119. https://doi.org/10.1073/pnas.2117537119
- Turner, N.D. and Lupton, J.R., 2021. Dietary fiber. Advances in Nutrition 12(6): 2553–2555. https://doi.org/10.1093/advances/ nmab116
- Ureña, E., Xu, B., Regan, J.C., Atilano, M.L., Minkley, L.J., Filer, D., Lu, Y.-X., Bolukbasi, E., Khericha, M., Alic, N., and Partridge, L., 2024. Trametinib ameliorates aging-associated gut pathology in *Drosophila* females by reducing Pol III activity in intestinal stem cells. Proceedings of the National Academy of Sciences 121(4): e2311313121. https://doi.org/10.1073/pnas.2311313121
- van Trijp, M.P., Schutte, S., Esser, D., Wopereis, S., Hoevenaars, F.P., Hooiveld, G.J. and Afman, L.A., 2021. Minor changes in the composition and function of the gut microbiota during a 12-week whole grain wheat or refined wheat intervention correlate with liver fat in overweight and obese adults. Journal of Nutrition 151(3): 491–502. https://doi.org/10.1093/jn/nxaa312
- Venter, C., Meyer, R.W., Greenhawt, M., Pali-Schöll, I., Nwaru, B., Roduit, C., Untersmayr, E., Adel-Patient, K., Agache, I., Agostoni, C. and Akdis, C.A., 2022. Role of dietary fiber in promoting immune health—an EAACI position paper. Allergy 77(11): 3185–3198. https://doi.org/10.1111/all.15430
- Vinelli, V., Biscotti, P., Martini, D., Del Bo', C., Marino, M., Meroño, T., Nikoloudaki, O., Calabrese, F.M., Turroni, S., Taverniti, V. and Unión Caballero, A., 2022. Effects of dietary fibers on short-chain fatty acids and gut microbiota composition in healthy adults: a systematic review. Nutrients 14(13): 2559. https://doi.org/10.3390/nu14132559
- Waddell, I.S. and Orfila, C., 2023. Dietary fiber in the prevention of obesity and obesity-related chronic diseases: from epidemiological evidence to potential molecular mechanisms. Critical Reviews in Food Science and Nutrition 63(27): 8752–8767. https://doi.org/10.1080/10408398.2022.2061909
- Wang, M., Wichienchot, S., He, X., Fu, X., Huang, Q. and Zhang, B., 2019. *In vitro* colonic fermentation of dietary fibers: fermentation rate, short-chain fatty acid production and changes in microbiota. Trends in Food Science & Technology 88: 1–9. https://doi.org/10.1016/j.tifs.2019.03.005
- Wang, L., Xu, H., Yuan, F., Pan, Q., Fan, R. and Gao, Y., 2015. Physicochemical characterization of five types of citrus dietary fibers. Biocatalysis and Agricultural Biotechnology 4(2): 250–258. https://doi.org/10.1016/j.bcab.2015.02.003
- Wang, B., Yu, H., He, Y., Wen, L., Gu, J., Wang, X., Miao, X., Qiu, G. and Wang, H., 2021. Effect of soybean insoluble dietary fiber on prevention of obesity in high-fat diet fed mice via regulation of

- the gut microbiota. Food & Function 12(17): 7923–7937. https://doi.org/10.1039/D1FO00078K
- Watkins, A.J., Dias, I., Tsuro, H., Allen, D., Emes, R.D., Moreton, J., Wilson, R., Ingram, R.J.M., and Sinclair, K.D., 2018. Paternal diet programs offspring health through sperm- and seminal plasmaspecific pathways in mice. Proceedings of the National Academy of Sciences 115(40): 10064–10069. https://doi.org/10.1073/ pnas.1806333115
- Wei, N., Wang, L., Tang, B., Huang, Y. and Xuan, L., 2024. A global analysis of the burden of ischemic heart disease attributable to diet low in fiber between 1990 and 2019. BMC Cardiovascular Disorders 24(1): 491. https://doi.org/10.1186/s12872-024-04156-8
- Wexler, A.G., Bao, Y., Whitney, J.C., Bobay, L.-M., Xavier, J.B., Schofield, W.B., Barry, N.A., Russell, A.B., Tran, B.Q., Goo, Y.A., Goodlett, D.R., Ochman, H., Mougous, J.D., and Goodman, A.L., 2016. Human symbionts inject and neutralize antibacterial toxins to persist in the gut. Proceedings of the National Academy of Sciences 113(13): 3639–3644. https://doi.org/10.1073/pnas. 1525637113
- Whisner, C.M., Martin, B.R., Nakatsu, C.H., Story, J.A., MacDonald-Clarke, C.J., McCabe, L.D., McCabe, G.P. and Weaver, C.M., 2016. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: a randomized dose-response trial in free-living pubertal females. Journal of Nutrition 146(7): 1298–1306. https://doi.org/10.3945/jn.115.227256
- Wiertsema, S.P., van Bergenhenegouwen, J., Garssen, J. and Knippels, L.M., 2021. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients 13(3): 886. https://doi.org/10.3390/ nu13030886
- Wu, S., Jia, W., He, H., Yin, J., Xu, H., He, C., Zhang, Q., Peng, Y. and Cheng, R., 2023. A new dietary fiber can enhance satiety and reduce postprandial blood glucose in healthy adults: a randomized cross-over trial. Nutrients 15(21): 4569. https://doi.org/10.3390/nu15214569
- Xie, Y., Gou, L., Peng, M., Zheng, J. and Chen, L., 2021. Effects of soluble fiber supplementation on glycemic control in adults with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Clinical Nutrition 40(4): 1800– 1810. https://doi.org/10.1016/j.clnu.2020.10.032
- Yasukawa, Z., Inoue, R., Ozeki, M., Okubo, T., Takagi, T., Honda, A. and Naito, Y., 2019. Effect of repeated consumption of partially hydrolyzed guar gum on fecal characteristics and gut microbiota: a randomized, double-blind, placebo-controlled, and parallel-group clinical trial. Nutrients 11(9): 2170. https://doi.org/10.3390/nu11092170
- Ye, S., Shah, B.R., Li, J., Liang, H., Zhan, F., Geng, F. and Li, B., 2022.
 A critical review on interplay between dietary fibers and gut microbiota. Trends in Food Science & Technology 124: 237–249. https://doi.org/10.1016/j.tifs.2022.04.010
- Zanotelli, M.R., Miller, J.P., Wang, W., Ortiz, I., Tahon, E., Bordeleau, F. and Reinhart-King, C.A., 2024. Tension directs cancer cell migration over fiber alignment through energy minimization. Biomaterials 311: 122682. https://doi.org/10.1016/j. biomaterials.2024.122682

- Zeng, Y., Pu, X., Yang, J., Du, J., Yang, X., Li, X., Li, L., Zhou, Y. and Yang, T., 2018. Preventive and therapeutic role of functional ingredients of barley grass for chronic diseases in human beings. Oxidative Medicine and Cellular Longevity 2018(1): 3232080. https://doi.org/10.1155/2018/3232080
- Zeng H, Lazarova DL, Bordonaro M. Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention. World Journal of Gastrointestinal Oncology, 2014 16(2): 41. https://doi.org/10.4251/wjgo.v6.i2.41
- Zhang, P., 2022. Influence of foods and nutrition on the gut microbiome and implications for intestinal health. International Journal of Molecular Sciences 23(17): 9588. https://doi.org/10.3390/iims23179588
- Zhang, F., Fan, D., Huang, J.L. and Zuo, T., 2022. The gut microbiome: linking dietary fiber to inflammatory diseases. Medicine in Microecology 14: 100070. https://doi.org/10.1016/j.medmic. 2022.100070

- Zhang, X. and Gérard, P., 2022. Diet-gut microbiota interactions on cardiovascular disease. Computational and Structural Biotechnology Journal 20: 1528–1540. https://doi.org/10.1016/j.csbj.2022.03.028
- Zhang, Y., Li, Y., Barber, A.F., Noya, S.B., Williams, J.A., Li, F., Daniel, S.G., Bittinger, K., Fang, J., and Sehgal, A., 2023. The microbiome stabilizes circadian rhythms in the gut. Proceedings of the National Academy of Sciences 120(5): e2217532120. https://doi.org/10.1073/pnas.2217532120
- Zou, J., Reddivari, L., Shi, Z., Li, S., Wang, Y., Bretin, A., Ngo, V.L., Flythe, M., Pellizzon, M., Chassaing, B. and Gewirtz, A.T., 2021. Inulin fermentable fiber ameliorates type I diabetes via IL22 and short-chain fatty acids in experimental models. Cellular and Molecular Gastroenterology and Hepatology 12(3): 983–1000. https://doi.org/10.1016/j.jcmgh.2021.04.014