

Development of multiplex-PCR systems for genes related to flour colour in Chinese autumn-sown wheat cultivars

Y. Zhang^{1#}, X. Wang^{1#}, X. Wang¹, L. Jiang¹, F. Liu¹, X. He², S. Liu³ and X. Zhang^{1*}

¹College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China P.R.; ²International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 6-641, 06600 Mexico, DF, Mexico; ³College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China P.R.; [#]Both authors contributed equally to this work; zhangxiaoke66@126.com

Received: 14 February 2015 / Accepted: 16 July 2015 © 2015 Wageningen Academic Publishers

RESEARCH ARTICLE

Abstract

In wheat kernel, multiple gene loci, *Psy-A1*, *Psy-B1*, *TaZds-A1*, *TaZds-D1*, *TaLox-B1*, *Ppo-A1* and *Ppo-D1* are implicated in the expression of flour colour traits. In this study, eight functional markers, covering seven gene loci, were used to develop three multiplexed polymerase chain reaction (PCR) systems for marker-assisted selection (MAS) of desirable flour colour, i.e. PCR-I (*YP7B-1/YP7B-2/YP2A-1*), PCR-II (*YP2D-1/PPO18*) and PCR-III (*YP7A/LOX18/STS01*). Genotyping of 20 control wheat cultivars by these multiplex-PCR systems completely matched the results from the eight single PCR amplifications. Multiplex-PCR typing was successfully established for a total of 155 Chinese autumn-sown wheat cultivars. In multiplexed PCR-I, the occurring frequencies for three alleles (*Psy-B1a, Psy-B1b* and *Psy-B1c*) at the *Psy-B1* locus were 33.5, 58.7, and 7.7%; while two alleles (*TaZds-A1a* and *TaZds-A1b*) at *TaZds-A1* were 40.0 and 60.0%, respectively. In multiplexed PCR-II, the occurring frequencies, *TaZds-D1a* and *TaZds-D1b* (98.7 and 1.3%) at the *TaZds-D1* locus, *Ppo-A1a* and *Ppo-A1b* (39.4 and 60.6%) at the *Ppo-A1* locus were obtained, respectively. In multiplexed PCR-III, the occurring frequencies for two predominant alleles at each locus was obtained, *Psy-A1a* and *Psy-A1b* (55.5 and 44.5%) at *Psy-A1* locus, *TaLox-B1a* and *TaLox-B1b* (29.7 and 70.3%) at *TaLox-B1* locus, *Ppo-D1a* and *Ppo-D1b* (45.8 and 54.2%) at *Ppo-D1* locus, respectively. The multiplexed PCRs developed in this study are useful for MAS for wheat flour colour improvement. The genotyping results obtained in this study provide valuable information for DNA-based identification of wheat cultivars.

Keywords: common wheat, functional markers, multiplexed PCR system, lipoxygenase gene, phytoene synthase gene, polyphenol oxidase gene, ζ-carotene desaturase gene

1. Introduction

Flour colour of wheat is one of the most essential quality traits for different end uses (Fu, 2008; Geng *et al.*, 2010; Kumar, *et al.*, 2011). For example, for white salted noodles and steamed bread that are widely consumed in China, Japan and Korea, a bright white or creamy white colour is desired (Crosbie *et al.*, 1998; Fu, 2008; Geng *et al.*, 2010). For yellow alkaline noodles, which are widely adopted in the local cuisine of Malaysia, Singapore, Indonesia, Thailand and southern China, a bright yellow colour is preferred (Crosbie *et al.*, 1998; Fu, 2008). Additionally, time-dependent discolouration (browning) is also an

important trait for end-products' quality, particularly for Asian noodles (He *et al.*, 2007). Therefore, it is important to breed cultivars with different colour traits to meet the aforementioned different requirements.

The colour of wheat flour and its end product depends on internal factors, such as the yellow pigment content (YPC) and the activity of polyphenol oxidase (PPO) and lipoxygenase (LOX), etc. (He, 2008; Sun, 2005; Wang, 2009), as well as external factors, including the environment conditions during grain formation, flour extraction rate in milling, etc. (Mares and Panozza, 1999). Though it is hard to improve flour colour property via various external factors,

the desirable YPC and activity of PPO and LOX can be selected via marker-assisted selection (MAS) in wheat high quality breeding programs (Mares and Campbell, 2001).

Despite environmental factors, YPC is mainly controlled by genetic factors. Parker et al. (1998) found the heritability of it up to 0.67 in common wheat. Carotenoids are the primary components of flour yellow pigment (Adom et al., 2003; Della Penna and Pogson, 2006; Miskelly, 1984; Wang et al., 2009a). More than ten enzymic steps are involved in the carotenoids synthetic pathway (Hirschberg, 2001). Phytoene synthase (PSY), catalysing the synthesis of phytoene, is generally accepted as the rate-limiting step in the pathway (He et al., 2009; Lindgren et al., 2003). Meanwhile, carotene desaturase (ZDS) is another critical enzyme participating in the two-step desaturation from phytoene to lycopene (Cong et al., 2009). The existed genetic studies presented that genes involved in the carotenoid biosynthetic pathway are good candidates for a large proportion of variations in wheat endosperm colour (Cong et al., 2010). Major quantitative trait loci (QTL) for PSY genes have been mapped on the long arms of group 7 chromosomes (7A and 7B) (He et al., 2008, 2009; Wang et al., 2009a). Past studies showed that, Psy-A1 and Psy-B1 are two major loci for PSY coding genes, accounting for about 27-60% and 48-61% of phenotypic variance, respectively (He et al., 2009; Kuchel et al., 2006; Mares and Campbell, 2001; Parker et al., 1998). The ZDS genes are located on the group 2 chromosomes (2A and 2D) (Zhang et al., 2011; Dong et al., 2012). Functional markers YP7A at Psy-A1 locus, YP7B-1, YP7B-2 at Psy-B1 locus, YP2A-1 at TaZds-A1 locus, and YP2D-1 at TaZds-D1 locus were developed to effectively distinguish the allelic variations of cultivars with different YPC (Dong et al., 2012; He, 2008; Liu et al., 2012; Zhang et al., 2011).

Despite the critical enzymes in the carotenoid synthetic pathway, two oxidases, i.e. LOX and PPO, are participating in the bleach and darkening reaction of wheat flour and its end-products, respectively. The YPC of wheat is determined by both the synthesis of yellow carotenoid pigments and the LOX-catalysed degradation. To date, the QTL for LOX genes were mainly detected on the homeologous group 4 and 5 chromosomes (Geng *et al.*, 2011; Hart and Langston, 1977; Hessler *et al.*, 2002; Li *et al.*, 1999). Functional markers *LOX16* and *LOX18* at the *TaLox-B1* locus on chromosome 4BS were developed (Geng *et al.*, 2012).

PPO plays a major role in the undesirable time-dependent darkening of Asian noodles, steamed bread, pan bread and pasta (He *et al.*, 2007; Mayer and Harel, 1979; Nilthong *et al.*, 2012). It is also an essential quality parameter of wheat malt (Wang *et al.*, 2014). Previous studies in wheat have shown that two major genes, *Ppo-A1* and *Ppo-D1*, determining PPO activity, are located on the long arms of wheat homeologous chromosomes 2A and 2D, respectively (Anderson and Morris, 2001; Demeke *et al.*, 2001; Jimenez

and Dubcovsky, 1999; Mares and Campbell, 2001; Udall, 1996). Functional markers, *PPO18* and *STS01*, were developed to distinguish the allelic variations of cultivars with different PPO activities at the *Ppo-A1* and *Ppo-D1* loci, respectively (Beecher *et al.*, 2012; He *et al.*, 2007; Nilthong *et al.*, 2012; Si *et al.*, 2012; Sun *et al.*, 2005; Wang *et al.*, 2008a,b).

Since multiple genes are associated with the colour of wheat flour and its end-products, molecular detection has been successfully applied for targeting the favourable colour. Compared with the direct estimation through milling, molecular detection can identify the genes without the spatiotemporal interferences (Goutam et al., 2013; Wang et al., 2012). However, multiple loci detection by traditional PCR is time-consuming and costly. In contrast, multiplexed PCR, as an efficient and economical technology that can simultaneously identify several alleles in one PCR amplification, is suitable for identifying multiple loci related to flour colour. To date, several multiplexed PCR systems for the detection of genes related to flour colour have been reported (Wang et al., 2012; Zhang et al., 2008). But the multiplexed PCR assay developed by Zhang et al. (2008) only comprises *Ppo-A1* and *Ppo-D1* loci; the multiplexed PCR system established by Wang et al. (2012) only includes Psy-A1 and Ppo-D1 loci. Considering the involvement of multiple genes in flour colour, allelic variation in one or two loci can hardly explain this complex trait. Therefore, multiplexed PCR systems covering more relevant loci, i.e. Psy-A1, Psy-B1, TaZds-A1, TaZds-D1, TaLox-B1, Ppo-A1 and *Ppo-D1*, are crucial for improving MAS in wheat quality breeding.

Chinese autumn-sown wheat cultivars contribute more than 90% to national wheat production and acreage (He et al., 2010a,b). White salted noodles and steamed bread, preferring bright or creamy white colour, account for about 80% of national wheat consumption (He et al., 2003) in China. However, the improvement of wheat colour quality had not been launched in China until early 21st century (He, 2008), thus flour colour of leading cultivars rarely met the requirements of the markets and consumers (Liu et al., 2002). Under this scenario, benzoyl peroxide (BPO) had been widely used as a flour bleaching agent in China for decades until the release of a new standard of state 'wheat flour' (GB1355-2005) where it was prohibited considering its detrimental effects to human health (Tian, 2007). Although a set of cultivars with high level of whiteness had been bred and cultivated successively in China with the prohibition of BPO addition, the general whiteness levels of flour from Chinese leading cultivars still could not meet the markets and consumers' demand for white salted noodles and steamed bread (Fan et al., 2012; Xin et al., 2009). Therefore, breeding and releasing more cultivars with improved natural flour colour is one of the important objectives for Chinese wheat quality improvement programs. The characterisation of the seven loci related to flour colour in Chinese autumn-sown wheat cultivars would provide valuable information for wheat breeding and production. Thus, the objectives of this study were to: (1) develop multiplexed PCR systems as effective and economical methods for the identification and selection of favourable alleles related to flour colour; and (2) provide information on allelic compositions in 155 Chinese autumnsown cultivars, to facilitate breeders, both in China and abroad, in designing crosses aimed at improving wheat colour quality.

2. Materials and methods

Plant materials and DNA extraction

A total of 155 Chinese autumn-sown wheat cultivars used in this study are major cultivars in China. Some of them are also used as core parents in Chinese wheat breeding programs. Among the 155 cultivars, 104 were released before the year 2005, referred as 'old cultivars', and 51 were released afterwards, referred as 'new cultivars'. Twenty cultivars were selected as controls for establishing and validating the multiplexed PCR systems (Table 1), and their allelic combinations at the target loci were confirmed by eight single PCRs. The other 135 cultivars were investigated only by the developed multiplex-PCR typing. Genomic

DNA was extracted from about five-day-old wheat seedling leaves using a cetyltrimethyl ammonium bromide method (Stewart and Via, 1993) in triplicates.

Single PCR amplifications

Allelic combinations at the seven loci of the 20 controls were detected by eight single PCR amplifications. All the primers were synthesised by Sangon Biotech Co., Ltd. (Shanghai, China P.R.), based on the primer sequences published in literature (Table 2).

Single PCR amplification was performed with a reaction volume of 20 µl containing 50 ng of template DNA. For YP7A, YP7B-1, YP7B-2, YP2A-1, LOX18 and PPO18, 20 mM of Tris-HCl (pH=8.4), 20 mM of KCl, 100 µM of each dNTP, 1.5 mM of MgCl $_2$ and 1 unit of Taq DNA polymerase (TRANSGEN Biotech Co., Ltd., Beijing, China P.R.) were included, with primer concentrations of 5, 6, 6, 5, 10 and 10 pmol, respectively. For YP2D-1 and STS01, 10 µl MasterMix (BIOSCI Biotech Co., Ltd., Hangzhou, China P.R.) and 10 pmol of each primer were included. The reaction conditions were 95 °C for 5 min, followed by 35 cycles of 95 °C for 45 s, 59-65 °C (Table 2) for 45 s, and 72 °C for 30-70 s, with a final extension of 8 min at 72 °C.

Table 1. The selected 20 control cultivars and their genotyping results at the seven loci related to wheat flour colour by eight single PCRs.

Cultivar	Psy-A1	Psy-B1	TaZds-A1	TaZds-D1	TaLox-B1	Ppo-A1	Ppo-D1
Ningdong 6	а	a	b	b	b	а	а
Zhoumai 16	а	b	b	а	b	а	а
Zhoumai 17	а	а	а	а	b	а	а
Xinong 979	b	b	а	а	а	b	b
Xinong 88	b	b	b	а	b	b	b
Shaan 354	а	С	а	а	b	а	b
Xiaoyan 54	b	b	а	а	b	b	b
Xuzhou 25	b	С	b	а	b	а	b
Xinong 6028	b	а	а	а	b	b	а
Xinong 8727	b	b	b	а	b	b	b
Xifeng 27	а	а	b	b	а	b	а
Fengchan 3	b	b	b	а	а	b	а
Zhoumai 23	а	b	b	а	b	а	b
Mianyang 31	а	b	b	а	b	b	а
Shaannong 512	b	С	а	а	b	b	b
Mianyang 19	b	b	b	а	b	а	а
Changwu 521	b	b	а	а	а	а	b
Xiaoyan 216	b	а	b	а	b	b	b
Xinong 2208	b	b	а	а	b	b	b
Xiaoyan 166	b	b	а	а	b	а	b

'a', 'b' or 'c' indicates different alleles at each gene locus.

Table 2. Primer sequences and the relevant information for the seven flour colour related loci.

Locus	Marker	Primer sequence (5'-3')	Fragments (bp)	Annealing temperature (°C)	Allele	Reference
Psy-A1	YP7A	F: GGACCTTGCTGATGACCGAG	194	63	Psy-A1a	He, 2008
		R: TGACGGTCTGAAGTGAGAATGA	231		Psy-A1b	
Psy-B1	YP7B-1	F: GCCACAACTTGAATGTGAAAC	151	59	Psy-B1a	
		R: ACTTCTTCCATTTGAACCCC	156		Psy-B1b	
	YP7B-2	F: GCCACCCACTGATTACCACTA	428	62	Psy-B1c	
		R: CCAAGGTGAGGGTCTTCAAC				
TaZds-A1	YP2A-1	F: CCCTAAGGAAGCCGAGCAAAT	183	60	TaZds-A1a	Dong et al., 2012
		R: GTGAGAGTACTAATGTTATGACCG	179		TaZds-A1b	
TaZds-D1	YP2D-1	F: GTGGGATCCTGTTGCTTATGC	_	64	TaZds-D1a	Zhang et al., 2011
		R: GTAGATTATCCAAGCCAACTGCC	981		TaZds-D1b	
TaLox-B1	LOX18	F: ACGATGTGAGTTGTGACTTGTGA	_	65	TaLox-B1a	Geng et al., 2012
		R: GCGCGGATAGGGGTGC	791		TaLox-B1b	
Ppo-A1	PPO18	F: AACTGCTGGCTCTTCTTCCCA	685	63	Ppo-A1a	Sun et al., 2005
		R: AAGAAGTTGCCCATGTCCGC	876		Ppo-A1b	
Ppo-D1	STS01	F: CGCCGACCATTTCAACAA	560	64	Ppo-D1a	Wang et al., 2008a
		R: AGAAGGACCACAAGCCGTAG	_		Ppo-D1b	-
·		R: AAGAAGTTGCCCATGTCCGC F: CGCCGACCATTTCAACAA	876	•	Ppo-A1b Ppo-D1a	•

PCR products were separated by electrophoresis in a 1.5% agarose gel and then stained with ethidium bromide and visualised using UV light, whereas the PCR products of *YP7B-1* and *YP2A-1*, were separated by a 6% denaturing polyacrylamide gel and resolved by silver staining.

Development of multiplexed PCR systems and genotyping of flour colour genes

In order to produce clear and bright PCR bands with expected fragment sizes in multiplexed PCR systems, several attempts were made to optimise the systems. First, markers with similar PCR amplification and electrophoretic conditions were included in the same multiplexed PCR system. For example, YP7B-1 and YP2A-1 were included in the same multiplex-PCR typing based on their similar annealing temperatures and electrophoretic conditions. Second, more markers were added into an established system to test their performance, facilitating more loci been genotyped in one system. For example, marker YP7B-2 was successfully added into the YP7B-1/YP2A-1 system, so that one PCR-based assay could investigate both the Psy-B1 and TaZds-A1 loci. Finally, a series of adjustments on PCR parameters were made to optimise the reaction systems, e.g. screening the optimal annealing temperature, determining optimal concentrations of each primer pairs, etc.

If the results of multiplexed PCR systems in the 20 control cultivars completely match those assayed by single PCRs, they are proven to be effective and reliable. The rest cultivars (135 Chinese autumn-sown wheat cultivars) were then genotyped with the newly developed multiplexed systems.

The allelic combinations at target loci in 155 cultivars were confirmed by at least two replicates with consistent tested results. Analyses of relevant data were performed by the inserted functions in MS Excel 2007 (Microsoft, Redmond, WA, USA).

3. Results

Single PCR amplifications

In order to confirm the allelic combinations at the seven target loci, functional markers *YP7A*, *YP7B-1*, *YP7B-2*, *YP2A-1*, *YP2D-1*, *LOX18*, *PPO18* and *STS01* were used to perform eight single PCR amplifications in the 20 cultivars, respectively. The results are illustrated in Table 1, and the electrophoresis of PCR products in 11 out of the 20 controls are shown in Figure 1.

At the *Psy-A1* locus, *YP7A* gave a 194-bp fragment, indicating the presence of *Psy-A1a* allele in 7 cultivars, and a 231-bp fragment, indicative of *Psy-A1b* allele in 13 cultivars (Table 1). At the *Psy-B1* locus, *YP7B-1* amplified a 151-bp fragment for *Psy-B1a* allele in 5 cultivars, a 156-bp fragment for the other allele (*Psy-B1b*) in 12 cultivars, and non-PCR product in 3 cultivars (Table 1). Then, *YP7B-2* was applied, which result in a single band of 428-bp for *Psy-B1c* allele in 3 cultivars in which *YP7B-1* failed to amplify any PCR product (Table 1). Similarly, *YP2A-1*, *YP2D-1*, *LOX18*, *PPO18* and *STS01* were used individually to discriminate the remaining loci (Figure 1D-1H and Table 1). The results showed that all the target alleles at the seven loci could be identified in the selected cultivars, suggesting that these

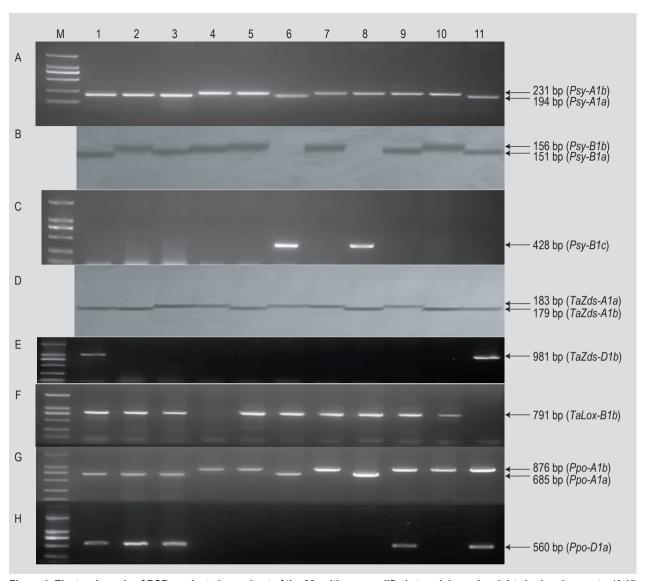


Figure 1. Electrophoresis of PCR products in a subset of the 20 cultivars amplified at each locus by eight single primer sets. (A-H) Cultivars amplified by markers YP7A, YP7B-1, YP7B-2, YP2A-1, YP2D-1, LOX18, PPO18, STS01, respectively. M = marker DL 2000; 1 = Ningdong 6; 2 = Zhoumai 16; 3 = Zhoumai 17; 4 = Xinong 979; 5 = Xinong 88; 6 = Shaan 354; 7 = Xiaoyan 54; 8 = Xuzhou 25; 9 = Xinong 6028; 10 = Xinong 8727; 11 = Xifeng 27.

wheat cultivars could be used as controls for establishing the multiplexed PCR systems.

Development and validation of multiplexed PCRs

Three multiplexed PCR systems including seven target loci were developed for genotyping 15 alleles related to flour colour. Multiplexed PCR-I was developed by functional markers *YP7B-1*, *YP7B-2* and *YP2A-1*, identifying three alleles (*Psy-B1a*, *Psy-B1b*, *Psy-B1c*) at the *Psy-B1* locus and two alleles (*TaZds-A1a* and *TaZds-A1b*) at the *TaZds-A1* locus, respectively. Multiplexed PCR-II was developed by two specific markers (*YP2D-1* and *PPO18*), two alleles at each locus could be discriminated: *TaZds-D1a* or *TaZds-D1b* at the *TaZds-D1* locus, *Ppo-A1a* or *Ppo-A1b* at the

Ppo-A1 locus. Multiplexed PCR-III system was established by YP7A, LOX18 and STS01, genotyping six alleles: Psy-A1a or Psy-A1b at the Psy-A1 locus, TaLox-B1a or TaLox-B1b at the TaLox-B1 locus, and Ppo-D1a or Ppo-D1b at the Ppo-D1 locus, simultaneously. The PCR components, amplification and electrophoretic conditions of the newly developed multiplexed PCRs were shown in Table 3. Figure 2 showed the band patterns of 11 out of the 20 controls using the multiplexed PCRs. The results of the three multiplexed PCR assays in 20 cultivars completely matched those results obtained from eight single PCRs, indicating that the multiplexed PCR assays developed in this study were effective and reliable.

Table 3. The specific PCR components and electrophoretic conditions of each multiplex PCR system.

Multiplex PCR system	PCR-I	PCR-II	PCR-III
Objective loci	Psy-B1/TaZds-A1	TaZds-D1/Ppo-A1	Psy-A1/TaLox-B1/Ppo-D1
Allelic variations	Psy-B1a/Psy-B1b/Psy-B1c	TaZds-D1a/TaZds-D1b	Psy-A1a/Psy-A1b
	TaZds-A1a/TaZds-A1b	Ppo-A1a/Ppo-A1b	TaLox-B1a/TaLox-B1b
			Ppo-D1a/Ppo-D1b
Markers	YP7B-1/YP7B-2/YP2A-1	YP2D-1/PPO18	YP7A/LOX18/STS01
PCR components			
MasterMix (BIOSCI) μΙ	-	10	-
10×buffer (μl)	2	-	2
Concentration of dNTPs (µmol/l)	200	-	225
Concentration of primers for each gene (pmol)	6/6/5 ^a	14/6 ^b	5/10/10 ^c
Taq DNA polymerase (U)	1.5	-	1.5
Template DNA (ng)	150-200	150-200	150-200
PCR amplification conditions			
Pre-denaturation	95 °C, 5 min	95 °C, 5 min	95 °C, 5 min
Denaturation	95 °C, 45 s	95 °C, 45 s	94 °C, 1 min
Annealing	59 °C, 45 s	63 °C, 45 s	64 °C, 1 min
Extension	72 °C, 30 s	72 °C, 1 min	72 °C, 90 s
Cycles	35	34	36
Final extension	72 °C, 10 min	72 °C, 5 min	72 °C, 8 min
Electrophoretic conditions			
Agarose (%)	-	2	2
Denaturing polyacrylamide gel (%)	6	-	-
Voltage (V)	2,000	100	100
Time (h)	1	1.5	1.5

^a Concentration of primers, YP7B-1, YP7B-2 and YP2A-1, respectively.

Characterisation of 155 Chinese autumn-sown wheat cultivars by the newly developed multiplexed PCR systems

Using multiplexed PCR-I, alleles *Psy-B1a*, *Psy-B1b* and *Psy-B1c* were found in 52, 91 and 12 cultivars, respectively; *TaZds-A1a* and *TaZds-A1b* were found in 62 and 93 cultivars, separately (Table 4 and Supplementary Table S1). Using multiplexed PCR-II, *TaZds-D1b* was detected only in Ningdong 6 and Xifeng 27, while *TaZds-D1a* was identified in other 153 cultivars; *Ppo-A1a* and *Ppo-A1b* were detected in 61 and 94 cultivars, respectively (Table 4 and Supplementary Table S1). Using multiplexed PCR-III, *Psy-A1a* and *Psy-A1b* were identified in 86 and 69 cultivars, separately; *TaLox-B1a* and *TaLox-B1b* were investigated in 46 and 109 cultivars, respectively; *Ppo-D1a* and *Ppo-D1b* were found in 71 and 84 cultivars, respectively (Table 4 and Supplementary Table S1).

Generally, the alleles Psy-B1b, TaZds-A1b, TaZds-D1a, Ppo-A1b, Psy-A1a, TaLox-B1b, and Ppo-D1b, identified at the seven gene loci, showed higher occurring frequencies in the 155 genotyped cultivars (Table 4). The occurring frequencies of alleles Psy-A1b, Psy-B1b, TaZds-A1a, TaZds-D1b, TaLox-B1a, Ppo-A1b and Ppo-D1a were different between the old (104) cultivars and new (51) cultivars. Specifically, alleles Psy-A1b, Psy-B1b, TaLox-B1a occurred with higher frequencies in new cultivars, whereas alleles TaZds-A1a, Ppo-A1b and Ppo-D1a more frequently occurred in old cultivars (Table 5). Besides, the occurring frequencies of most major allelic combinations listed in Table 6 were higher in new cultivars than the old ones, except for the allelic combination Psy-B1b/TaZds-A1a. No additional differences in allelic frequencies were observed between the cultivars released from the two periods. Moreover, non-significant allelic variations were found associated with cultivars distributed in different provinces of China (detailed information not presented).

^b Concentration of primers, YP2D-1 and PPO18, respectively.

^c Concentration of primers, YP7A, LOX18 and STS01, respectively.

Establishing the system without the reagent.

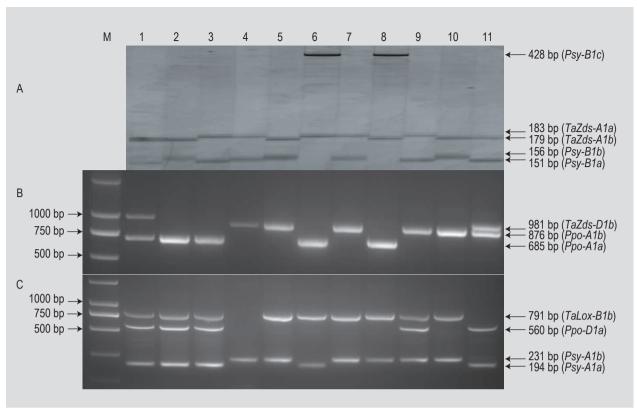


Figure 2. Electrophoresis of PCR products of selected control cultivars amplified by the developed multiplexed PCR systems. (A) Multiplexed PCR-I for *Psy-B1* and *TaZds-A1* loci with five alleles. (B) Multiplexed PCR-II for *TaZds-D1* and *Ppo-A1* loci with four alleles. (C) Multiplexed PCR-III for *Psy-A1*, *TaLox-B1* and *Ppo-D1* loci with six alleles. M = marker DL 2000; 1 = Ningdong 6; 2 = Zhoumai 16; 3 = Zhoumai 17; 4 = Xinong 979; 5 = Xinong 88; 6 = Shaan 354; 7 = Xiaoyan 54; 8 = Xuzhou 25; 9 = Xinong 6028; 10 = Xinong 8727; 11 = Xifeng 27.

Table 4. Results of 155 Chinese autumn-sown wheat cultivars detected by the new multiplexed PCR systems.

Multiplex PCR system	Allele	Frequency (%)	Phenotype based on the previous studies ¹
	Psy-B1a	33.5	medium YP content (He, 2008)
	Psy-B1b	58.7	lower YP content (He, 2008)
	Psy-B1c	7.7	higher YP content (He, 2008)
	TaZds-A1a	40.0	lower YP content (Dong et al., 2012)
	TaZds-A1b	60.0	higher YP content (Dong et al., 2012)
	TaZds-D1a	98.7	higher YP content (Zhang et al., 2011)
	TaZds-D1b	1.3	lower YP content (Zhang et al., 2011)
	Ppo-A1a	39.4	higher PPO activity (Sun et al., 2005)
	Ppo-A1b	60.6	lower PPO activity (Sun et al., 2005)
I	Psy-A1a	55.5	higher YP content (He 2008)
	Psy-A1b	44.5	lower YP content (He, 2008)
	TaLox-B1a	29.7	higher LOX activity (Geng et al., 2012)
	TaLox-B1b	70.3	lower LOX activity (Geng et al., 2012)
	Ppo-D1a	45.8	lower PPO activity (Wang et al., 2008a)
	Ppo-D1b	54.2	higher PPO activity (Wang et al., 2008a)

Table 5. Occurring frequencies of alleles tested in 155 cultivars released before and after 2005.

Allele	Frequencies of alleles (%)			
	Before 2005	After 2005		
Psy-A1b Psy-B1b TaZds-A1a TaZds-D1b TaLox-B1a Ppo-A1b Ppo-D1a	42.3 57.7 44.2 1.0 25.0 63.5 51.0	49.0 60.8 31.4 2.0 39.2 54.9 35.3		

Table 6. Occurring frequencies of mostly allelic combinations in 155 cultivars released before and after 2005.

Allelic combination	Frequencies of allelic combinations (%)		
	Before 2005	After 2005	
Psy-A1b/Psy-B1b	30.8	31.4	
Psy-A1b/TaZds-A1a	18.3	19.6	
Psy-A1b/TaLox-B1a	9.6	13.7	
Psy-B1b/TaZds-A1a	28.8	19.6	
Psy-B1b/TaLox-B1a	13.5	25.5	
TaZds-A1a/TaLox-B1a	11.5	15.7	
Psy-A1b/Psy-B1b/TaZds-A1a	13.5	13.7	
Psy-A1b/Psy-B1b/TaLox-B1a	6.7	11.8	
Psy-A1b/TaZds-A1a/TaLox-B1a	3.8	7.8	
Psy-B1b/TaZds-A1a/TaLox-B1a	7.7	11.8	
Psy-A1b/Psy-B1b/TaZds-A1a/TaLox-B1a	2.9	7.8	

4. Discussion and conclusions

Efficiency of the developed multiplexed-PCR typing

It has been acknowledged that flour colour is an essential property for both breeding and processing of wheat. Generally, YPC, LOX and PPO activity in wheat kernels are physiological-biochemical traits, which are controlled by multiple genes and difficult to be directly selected (Geng, 2010; He, 2008; Sun, 2005). Traditional test methods are time consuming, special instruments-dependent, expensive, and requiring high quantity of samples (Geng, 2010; Sun, 2005; Wang *et al.*, 2012). PCR-based assays, in contrast, can directly identify the genes controlling phenotypic traits by molecular markers, without any interference from the environment (Wan *et al.*, 2008), and hence can be performed during any of the wheat growth stages (Ma *et al.*, 2003). As a more effective and rapid way for

genotyping cultivars, multiplexed PCR with several pairs of primers would facilitate the use of single PCR reaction for discriminating various gene loci (Ma *et al.*, 2003). Using the three multiplexed assays developed in this study, 15 alleles at 7 flour colour related gene loci could be simply genotyped by 3 PCR-based reactions rather than 8 single PCR amplifications, which will reduce test time and sample requirements by one third to a half for early wheat breeding. The results of the 20 controls tested by the three multiplexed PCR systems were consistent with those detected via single PCR, demonstrating that the multiplex-PCR typing is accurate and reliable.

Evaluation of the multiplexed PCR assays

Wheat flour colour was controlled by multiple gene loci (Maphosa, 2013). In order to improve the selecting efficiency and accuracy in breeding, multiple gene loci related to flour colour should be considered simultaneously.

The three multiplexed PCR systems developed covering nearly all the known gene loci related to flour colour, providing an effective tool for identifying and selecting cultivars and lines with optimised alleles in MAS breeding for different flour colour requirements. For example, regarding Chinese white salt noodle and steamed bread, a white or creamy white colour is needed, therefore cultivars with lower YPC, higher LOX activity and lower PPO activity are preferred (Geng, 2010; He, 2008; Sun, 2005), and the corresponding allelic combinations are Psy-B1b/ TaZds-A1a (multiplexed PCR-I), Ppo-A1b/TaZds-D1b (multiplexed PCR-II) and Psy-A1b/TaLox-B1a/Ppo-D1a (multiplexed PCR-III). In contrast, when yellow alkaline noodle is considered, a bright yellow colour is desired, thus cultivars with higher YPC, lower LOX activity and PPO activity are needed (Geng, 2010; He, 2008; Sun, 2005), and the corresponding allelic combination should be Psy-A1a/ Psy-B1c/TaZds-A1b/TaZds-D1a/TaLox-B1b/Ppo-A1b/ Ppo-D1a.

Obviously, it is difficult for a cultivar or line to contain all the favourable alleles, so the target material should obtain as many favourable alleles as possible. Meanwhile, attention should also be paid to different genotypes contributing to the same phenotype at different levels. For example, *Ppo-A1b* is preferred than *Ppo-D1a* due to its higher phenotypic effect (Si *et al.*, 2012).

Although several other functional markers related to flour colour were reported, they were not included in this study for the following reasons: (1) the PCR products of *Psy-A1e, Psy-A1p, Psy-A1q, Psy-A1r* and *Psy-A1s* could only be distinguished by digestion with *MvaI* using *csPSY* marker (Howitt *et al.*, 2009), which may interfere the multiplexing results of the PCR-based assay; (2) the involving of marker *LOX16* would cause primer-primer interactions in this study

(relevant result was not provided); (3) STS-H was not used in this study due to the fact that markers STS01 and STS-H are co-dominant markers (Wang et al., 2008b), and STS01 has already been successfully applied in several studies (Si et al., 2012; Wang et al., 2009b); and (4) only a few wheat cultivars and lines contained homoeologous alleles Psy-A1c, Psy-B1d, Psy-B1e and Psy1-D1g which were distinguished by markers YP7A-2, YP7B-3, YP7B-4 and YP7D-1, YP7D-2 or YP7D-3, separately (He, 2008; Wang, 2009). For example, no tested materials in 217 wheat accessions and only three materials in 342 CIMMYT spring wheat accessions were identified containing allele Psy-A1c; only 2 with Psy-B1d in 217 wheat accessions and 2 with Psy-B1e in 324 CIMMYT spring wheat accessions were found (He, 2008); only 2 tested materials were investigated carrying Psy1-D1g in 209 wheat accessions and 341 CIMMYT spring wheat accessions (Wang, 2009); and no relevant alleles mentioned above were found in our initial genetic analysis studies of Chinese wheat germplasms (relevant result was not provided).

Therefore, the three multiplexed PCRs developed can now be effectively used to supplement conventional breeding for accumulating the superior alleles in relation to good flour colour, and for eliminating or greatly reducing the undesirable alleles through MAS in early stages of breeding program.

Distribution of alleles at the tested loci in Chinese autumn-sown wheat cultivars

The genotyping results showed that the proportion of cultivars with *Psy-B1b* allele is much higher than cultivars with *Psy-B1c*, which is consistent with the breeding aim for improving flour whiteness in China (Zhang et al., 2010). However, the lower proportions of *Psy-A1b* and *TaZds-A1a* are undesirable for white salt noodles and steamed bread. TaZds-D1b was detected only in Ningdong 2 and Xifeng 27, exhibiting a low genetic diversity at the *TaZds-D1* locus, which is consistent with the study of Zhang et al. (2011), reporting that no TaZds-D1b allele was detected in all the tested CIMMYT wheat lines and only 4 TaZds-D1b allele was detected in 217 wheat accessions. The allele TaLox-B1b is related to better storage stability, which is in accordance with the larger proportion of cultivars containing this allele among the tested materials (Liavonchanka and Feussner, 2006), and this can explain the lower whiteness observed in Chinese wheat to some extent. Cultivars with Ppo-A1b accounted for more than a half, while cultivars with Ppo-*D1a* were slightly less common than those with *Ppo-D1b*.

China, as a main supporter to the BPO prohibition, brings out the new standard (GB1355-2005), which requires breeders to breed cultivars with high whiteness (Tian, 2007). Based on previous reports, a series of cultivars with high whiteness have been bred and cultivated successively in

recent years (Fan *et al.*, 2012; Xin *et al.*, 2009). It can be seen that the occurring frequencies of most of the alleles related to whiteness (*Psy-A1b*, *Psy-B1b*, *TaZds-D1b*, *TaLox-B1a*) were higher in the new cultivars than the old cultivars (Table 5). However, the alleles *TaZds-A1a*, *Ppo-A1b* and *Ppo-D1a* in the new cultivars were lower than the old cultivars (Table 5). For the eleven allelic combinations related to whiteness (*TaZds-D1b* only occupied a small proportion and could be overlooked), occurring frequencies of ten of those in new cultivars were higher than old cultivars (Table 6). These genotyping results illustrated the improvement of flour colour traits of Chinese wheat cultivars in the current breeding progress.

Therefore, wheat cultivars with whiteness-related alleles at *Psy-A1*, *TaZds-A1*, *TaZds-D1* and *Ppo-D1* loci should be reinforced in future breeding of wheat cultivars for white salted noodles and steamed bread. Two approaches could be employed in this regard, *viz.*, to screen current cultivars and lines for favourable alleles using the multiplexed PCR systems developed in this study, or to use the cultivars with ideal alleles identified in this study as parents in cross schemes with high-yielding wheat cultivars to develop new cultivars with improved flour colour traits.

In this study, three multiplexed PCR systems were developed as effective and reliable methods for screening desired genotypes. Genotyping results of the 155 cultivars are useful for both farmers and breeders to select ideal cultivars for cultivation and breeding. It is also advised that more efforts are needed for the improvement of wheat flour colour in China in the future.

Acknowledgements

The authors are very grateful to Prof. Xianchun Xia from Institute of Crop Science, Chinese Academy of Agricultural Sciences, for kindly reviewing this manuscript. The study was funded by the 973 projects (2014CB138102), Program for Innovative Research Team in Shaanxi (2014KCT-25), National Natural Science Foundation of China (30971770) and a grant of Northwest A&F University for ZY Tang.

Supplementary material

Supplementary material can be found online at http://dx.doi.org/10.3920/QAS2015.0609.

Table S1. Allelic variations at *Psy-A1*, *Psy-B1*, *TaZds-A1*, *TaZds-D1*, *TaLox-B1*, *Ppo-A1* and *Ppo-D1* loci in 155 Chinese autumn-sown wheat cultivars identified by multiplexed PCR assays.

References

- Adom, K.K., Sorrells, M.E. and Liu, R.H., 2003. Phytochemical profiles and antioxidant activity of wheat varieties. Journal of Agricultural Food Chemistry 51: 7825-7834.
- Anderson, J.V. and Morris, C.F., 2001. An improved whole-seed assay for screening wheat germplasm for polyphenol oxidase activity. Crop Science 41: 1697-1705.
- Beecher, B.S., Carter, A.H. and See, D.R., 2012. Genetic mapping of new seed-expressed polyphenol oxidase genes in wheat (*Triticum aestivum* L.). Theoretical and Applied Genetics 124: 1463-1473.
- Cong, L., Wang, C., Chen, L., Liu, H.J., Yang, G.X. and He, G.Y., 2009. Expression of *phytoene synthase1* and carotene desaturase *crt1* genes result in an increase in the total carotenoids content in transgenic elite wheat (*Triticum aestivum* L.). Journal of Agricultural Food Chemistry 57: 8652-8660.
- Cong, L., Wang, C., Li, Z.Q., Chen, L., Yang, G.X., Wang, Y.S. and He, G.Y., 2010. cDNA cloning and expression analysis of wheat (*Triticum aestivum* L.) phytoene and ζ-carotene desaturase genes. Molecular Biology Reports 37: 3351-3361.
- Crosbie, G.B., Huang, S. and Barclay, I.R., 1998. Wheat quality requirements of Asian foods. Euphytica 100: 155-156.
- Della Penna, D. and Pogson, B.J., 2006. Vitamin synthesis in plants: tocopherols and carotenoids. Annual Review of Plant Biology 57: 711-738.
- Demeke, T., Morris, C.F., Campbell, K.G., King, G.E., Anderson, J.A. and Chang, H.G., 2001. Wheat polyphenol oxidase. Crop Science 41: 1750-1757.
- Dong, C.H., Ma, Z.Y., Xia, X.C., Zhang, L.P. and He, Z.H., 2012. Allelic variation at the *TaZds-A1* locus on wheat chromosome 2A and development of a functional marker in common wheat. Journal of Integrative Agriculture 11:1067-1074.
- Fan, Q.Q., Gao, J., Huang, C.Y., Li, G.Y., Li, Y.L., Liu, A.F., Sui, X.X., Chu, X.S. and Cheng, D.G., 2012. Analysis of flour whiteness in wheat germplasm conserved in Shandong province. Journal of Plant Genetic Resources 13: 363-369.
- Fu, B.X., 2008. Asian noodles: history, classification, raw materials, and processing. Food Research International 41: 888-902.
- Geng, H.W., 2010. Mapping QTLs for lipoxygenase activity and development of functional markers for LOX gene in common wheat. PhD thesis, Xinjiang Agricultural University, Xinjiang, China P.R.
- Geng, H.W., Xia, X.C., Zhang, L.P., Qu, Y.Y. and He, Z.H., 2012. Development of functional markers for a lipoxygenase gene on chromosome 4BS in common wheat. Crop Science 52: 568-576.
- Geng, H.W., Zhang, Y., He, Z.H., Zhang, L.P., Appels, R., Qu, Y.Y. and Xia, X.C., 2011. Molecular markers for tracking variation in lipoxygenase activity in wheat breeding. Molecular Breeding 28: 117-126.
- Goutam, U., Kukreja, S., Tiwari, R., Chaudhury, A., Gupta, R.K., Dholakia, B.B. and Yadav, R., 2013. Biotechnological approaches for grain quality improvement in wheat: present status and future possibilities. Australian Journal of Crop Science 7: 469-483.
- Hart, G.E. and Langston, P.J., 1977. Chromosomal location and evolution of isozyme structural genes in hexaploid wheat. Heredity 39: 263-277.

- He, X.Y., 2008. Cloning of genes associated with grain polyphenol oxidase activity and yellow pigment content in common wheat and its relatives and development of functional markers. PhD thesis, Chinese Academy of Agricultural Sciences, Beijing, China P.R.
- He, X.Y., He, Z.H., Ma, W.J., Appels, R. and Xia, X.C., 2009. Allelic variants of *phytoene synthase 1* (*Psy1*) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour. Molecular Breeding 23: 553-563.
- He, X.Y., He, Z.H., Zhang, L.P., Sun, D.J., Morris, C.F., Fuerst, E.P. and Xia, X.C., 2007. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theoretical and Applied Genetics 115: 47-58.
- He, X.Y., Zhang, Y.L., He, Z.H., Wu, Y.P., Xiao, Y.G., Ma, C.X. and Xia, X.C., 2008. Characterization of *phytoene synthase 1* gene (*Psy1*) located on common wheat chromosome 7A and development of a functional marker. Theoretical and Applied Genetics 116: 213-221.
- He, Z.H., Liu, A.H., Peña, R.J. and Rajaram, S., 2003. Suitability of Chinese wheat cultivars for production of northern style Chinese steamed bread. Euphytica 131:155-163.
- He, Z.H., Xia, X.C. and Bonjean, A.P., 2010a. Wheat improvement in China. In: He, Z. and Bonjean, P.A. (eds.) Cereals in China. CIMMYT, Mexico, Mexico, pp. 51-68.
- He, Z.H., Xia, X.C. and Zhang, Y., 2010b. Breeding noodle wheat in China. In: Hou, G.G. (ed.) Asian noodles: science, technology, and processing. Wiley, Hoboken, NJ, USA, pp. 1-23.
- Hessler, T.G., Thomson, M.J., Benscher, D., Nachit, M.M. and Sorrells, M.E., 2002. Association of a lipoxygenase locus, *Lpx-B1*, with variation in lipoxygenase activity in durum seeds. Crop Science 42: 1695-1700.
- Hirschberg, J., 2001. Carotenoid biosynthesis in flowering plants. Current Opinion in Plant Biology 4: 210-218.
- Howitt, C.A., Cavanagh, C.R., Bowerman, A.F., Cazzonelli, C., Rampling, L., Mimica, J.L. and Pogson, B.J., 2009. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Functional & Integrative Genomics 9: 363-376.
- Jimenez, M. and Dubcovsky, J., 1999. Chromosome location of genes affecting polyphenol oxidase activity in seeds of common and durum wheat. Plant Breeding 118: 395-398.
- Kuchel, H., Langridge, P., Mosionek, L., Williams, K. and Jefferies, S.P., 2006. The genetic control of milling yield, dough rheology and baking quality of wheat. Theoretical and Applied Genetics 112: 1487-1495.
- Kumar, P., Yadava, R.K., Gollen, B., Kumar, S., Verma, R.K. and Yadav, S., 2011. Nutritional contents and medicinal properties of wheat: a review. Life Sciences and Medicine Research 22: 1-10.
- Li, W.L., Faris, J.D., Chittoor, J.M., Leach, J.E., Hulbert, S.H., Liu, D.J., Chen, P.D. and Gill, B.S., 1999. Genomic mapping of defense response genes in wheat. Theoretical and Applied Genetics 98: 226-233.
- Liavonchanka, A. and Feussner, I., 2006. Lipoxygenases: occurrence, functions and catalysis. Journal of plant physiology 163: 348-357.

- Lindgren. L.O., Stalberg, K.G. and Hoglund, A.S., 2003. Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiology 132: 779-785.
- Liu, J.J., He, Z.H., Jiang, S.T., Zhu, L.X., Wu, X.Y. and Zhao, Z.D., 2002. Study on flour whiteness and its correlated factors of wheat commercial varieties. Shandong Agricultural Sciences 34: 10-12.
- Liu, Y.N., He, Z.H., Appels, R. and Xia, X.C., 2012. Functional markers in wheat: current status and future prospects. Theoretical and Applied Genetics 125: 1-10.
- Ma, W.J., Zhang, W. and Gale, K.R., 2003. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica 134: 51-60.
- Maphosa, L., 2013. Genetic control of grain quality in bread wheat (*Triticum aestivum* L.) grown under a range of environmental conditions. PhD thesis, University of Adelaide, Adelaide, Australia.
- Mares, D.J. and Campbell, A.W., 2001. Mapping components of flour and noodle colour in Australian wheat. Australian Journal of Agricultural Research 52: 1297-1309.
- Mares, D.J. and Panozzo, J.F., 1999. Impact of selection for low grain polyphenol oxidase activity on darkening in Asian noodles. In: Williamson, P., Banks, P., Haak, I., Thompson, J. and Campbell, A. (eds.) Proceedings of the 9th Assembly Wheat Breeding Society of Australia, September 27 – October 1, 1999, Toowoomba, Australia, pp. 32-33.
- Mayer, A.M. and Harel, E., 1979. Polyphenol oxidases in plants. Phytochemistry 18: 193-215.
- Miskelly, D.M., 1984. Flour components affecting paste and noodle colour. Journal of Agricultural Food Chemistry 35: 463-471.
- Nilthong, S., Graybosch, R.A. and Baenziger, P.S., 2012. Inheritance of grain polyphenol oxidase (PPO) activity in multiple wheat (*Triticum aestivum* L.) genetic backgrounds. Theoretical and Applied Genetics 125: 1705-1715.
- Parker, G.D., Chalmers, K.J., Rathgen, A.J. and Langridge, P., 1998.
 Mapping loci associated with flour colour in wheat (*Triticum aestivum* L.). Theoretical and Applied Genetics 97: 238-245.
- Si, H.Q., Ma, C.X., Wang, X.B. and He, X.F., 2012. Variability of polyphenol oxidase (PPO) alleles located on chromosomes 2A and 2D can change the wheat kernel PPO activity. Australian Journal of Crop Science 6: 444-449.
- Stewart, J.N. and Via, L.E., 1993. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14: 748-750.
- Sun, D.J., 2005. Development of molecular marker for grain PPO activity and detection of flour yellow pigment candidate genes in bread wheat. PhD thesis, Northwest A&F University, Yangling, China P.R.
- Sun, D.J., He, Z.H., Xia, X.C., Zhang, L.P., Morris, C.F., Appels, R., Ma, W.J. and Wang, H., 2005. A novel STS marker for polyphenol oxidase activity in bread wheat. Molecular Breeding 16: 209-218.

- Tian, J.C., 2007. Strategy of keeping quality of wheat flour and food color when the flour bleacher inhibited. Journal of Triticeae Crops 27: 364-367.
- Udall, J., 1996. Important alleles for noodle quality in winter wheat as identified by molecular markers. MSc thesis, University of Idaho, Moscow, ID, USA.
- Wan, Y.X., Zhang, X.K., Xia, X.C., Zhang, P.Z. and He, Z.H., 2008. Development of multiplex PCR and identification of major quality genes in cultivars from Yellow and Huai River Valley wheat region. Scientia Agricultura Sinica 41: 643-653.
- Wang, C., Jin, Y., Du, J. and Zhang, K., 2014. Effect of quality parameters on lipoxygenase activity of wheat malt. Quality Assurance and Safety of Crops & Foods 6: 183-189.
- Wang, J.W., 2009. Cloning of phytoene synthase 1 (*Psy1*) genes in common wheat and related species and phylogenetic analysis of development of molecular markers. PhD thesis, Northwest A&F University, Yangling, China P.R.
- Wang, J.W., He, X.Y., He, Z.H., Wang, H. and Xia, X.C., 2009a. Cloning and phylogenetic analysis of phytoene synthase 1 (*Psy1*) genes in common wheat and related species. Hereditas 146: 208-256.
- Wang, X.B., Ma, C.X., He, K.Q., Si, H.Q. and Zhang, Y.L., 2008a. Development and application of a STS marker for grain PPO gene located on chromosome 2D in common wheat. Scientia Agricultura Sinica 39: 1583-1590.
- Wang, X.B., Ma, C.X., Si, H.Q. and He, X.F., 2008b. Classification of wheat PPO genes and effect of non-synonymous cSNP on kernel PPO activity. Chinese Journal of Agricultural Biotechnology 5: 81-86.
- Wang, X.B., Ma, C.X., Si, H.Q., Qiao, Y.Q., Chang, C., He, X.F. and Xia, Y.X., 2009b. Gene markers for grain polyphenol oxidase activity in common wheat. Molecular Breeding 23: 163-170.
- Wang, X.L., Sang, W., Xie, M.J., Xiang, J.S., Zhang, X.K., Mu, P.Y., Gao, Z. and Wang, H.L., 2012. Establishment and application of multiplex PCR systems for cultivar evaluation of high quality Xinjiang hand stretched noodle. Journal of Agricultural Biotechnology 20: 301-307.
- Xin, Q.G., Wang, J.C., Yin, Y., Jiang, H.M., Yu, J.C., Yan, M.L. and Zhao, M., 2009. Research development of High-whiteness wheat breeding. Shandong Agricultural Sciences 41: 15-18.
- Zhang, C.Y., Dong, C.H., He, X.Y., Zhang, L.P., Xia, X.C. and He, Z.H., 2011. Allelic variants at the *TaZds-D1* locus on wheat chromosome 2DL and their association with yellow pigment content. Crop Science 51: 1580-1590.
- Zhang, X.K., Liu, L., He, Z.H., Sun, D.J., He, X.Y., Xu, Z.H., Zhang, P.P., Chen, F. and Xia, X.C., 2008. Development of two multiplex PCR assays targeting improvement of bread-making and noodle qualities in common wheat. Plant Breeding 127: 109-115.
- Zhang, Y.Q., Fu, X.J., Zhang, X.K., Zhang, X.H., Zhang, T.X., Ren, W.J. and Wei, Q., 2010. Detection and distribution of allelic variations of genes for grain yellow pigment content in Shaanxi wheat cultivars (lines). Journal of Triticeae Crops 30: 421-426.