

Antimicrobial resistance and residues in the EU: current situation and possible countermeasures, emphasis on *Campylobacter* and *Salmonella*

H.-L. Alakomi^{1*}, A. Höhl², D. Horvatek Tomic³, M. Thomas⁴, G. Bruggeman⁵, P. Tassis⁶, E. Prukner-Radovcic³, E. Tzika⁶, L. Axelsson⁷, W. Kneifel² and M. Saarela¹

¹VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044 VTT, Finland; ²Department of Food Science and Technology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; ³Department of Poultry Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; ⁴Fera Science Ltd., Sand Hutton, YO41 1LZ York, United Kingdom; ⁵Nutrition Sciences N.V., Booiebos 5, 9031 Drongen, Belgium; ⁶Farm Animals Clinic, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, St. Voutyra 11, 54627 Thessaloniki, Greece; ⁷Nofima, P.O. Box 210, 1431 Ås, Norway; hanna-leena.alakomi@vtt.fi

Received: 19 December 2014 / Accepted: 18 August 2015 © 2016 Wageningen Academic Publishers

REVIEW ARTICLE

Abstract

This review gives an overview on the prevalence of antimicrobial resistance in the food chain in the European Union. The main emphasis is on two important food pathogens, *Campylobacter* spp. and *Salmonella* spp. Furthermore, antibiotic residues reported in food commodities in the EU during 2008-2012, as well as the current legal framework regarding antibiotic use in the EU are discussed. In addition, the review also presents alternatives for the antibiotic treatment of food of animal origin.

Keywords: antibiotics, food pathogen, food safety

1. Introduction

Antimicrobials have been used to treat infectious diseases for over 50 years. Besides human clinical use their application involves farm animals, aquaculture, companion animals, and horticulture. Although antimicrobials are mainly used as medication, they are also applied as growth promoters at sub-therapeutic doses (Hao et al., 2014; Marshall and Levy, 2011). Industrialisation of production and intensive farming has resulted in the (re)emergence of infectious diseases, and consequently to the increased use of veterinary antimicrobials. It has been estimated that the global use of antimicrobials in food animals will increase by 67%, from 63,000 tonnes to 106,000 tonnes between 2010 and 2030 (Van Boeckel et al., 2015). Although antimicrobials have proven to be very effective against livestock pathogens, their use is associated with at least two adverse effects. Firstly, they are not specific towards pathogens but also kill commensal microbiota in livestock. Secondly, their extensive use has resulted in evolutionary adaptations in microbes, resulting in wide-spread resistance (Capita and Alonso-Calleja, 2013; Laxminarayan *et al.*, 2013).

During the recent decades an increase of antimicrobial resistant (AMR) bacteria has been observed both in humans and animals (Anderson, 1968; Marshall and Levy, 2011; Schwarz and Chaslus-Dancla, 2001; Teuber, 2001; Wiedemann and Knothe, 1971). In response to antibiotic pressure, bacteria optimise their resistance mechanism towards multiple drugs to survive (resulting in multiresistance) (Mole, 2013). Microbial communities have also a potential to develop biocide-antibiotic cross resistances (Ortega-Morente et al., 2013; Sheridan et al., 2012). Consequently, contamination of the environment with pathogens resistant to antimicrobial agents is a serious threat, not only as a source of disease but also as a source of resistance genes that can easily spread to other bacteria in the environment (Marshall and Levy, 2011). Overuse and misuse of antibiotics in humans and animals is one of the major causes of AMR (Marshall and Levy, 2011). Already in 1969 in the UK, the Swann report recognised that antibiotic growth promoters were contributing to the rise in multidrug-resistant *Salmonella*. However, there is still an ongoing debate about the role of antibiotic use in animals especially in the development of drug-resistant bacterial populations in humans (Cox and Ricci, 2008; Marshall and Levy, 2011).

The European Centre for Disease Prevention and Control (ECDC) estimates that each year AMR causes 25 000 human deaths and related costs of over € 1.5 billion in healthcare expenses and productivity losses (ECDC and EMEA, 2009). Until today, major foodborne bacterial pathogens, Salmonella spp. and Campylobacter spp., have persisted and remained as significant emerging foodborne pathogens (Koluman and Dikici, 2013; Newell et al., 2010). According to the European Food Safety Authority (EFSA and CDC, 2014a), food-borne zoonoses cause more than 320,000 human infections in the European Union each year. Thus, the emergence of resistant bacteria, especially zoonotic ones, has a major impact on both human and animal health. This is a multidimensional problem that raises concerns among various stakeholder groups, including consumers and policy-makers, highlighting the need for an integrated approach to protect consumers from AMR related risks in the food chain by establishing appropriate preventive and control measures.

In recent years the EU has encountered several food crises. Therefore, the European Commission (EC) initiated EU strategic planning to deal with the development and spread of AMR. The EU has applied, across its member states (MS), a common policy and legislation covering antimicrobial use and monitoring and reporting programmes of zoonotic diseases and AMR status. EFSA, together with ECDC are responsible for collecting and analysing the relative scientific data deriving from MS. This review aims to give an overview on the prevalence of antimicrobial resistance in the food chain in the EU with main emphasis on two important food pathogens, Campylobacter spp. and Salmonella spp. Furthermore, antibiotic residues reported in food commodities in the EU during 2008-2012, as well as the current legal framework regarding antibiotic use in the EU are discussed. In addition, this review also presents alternatives for the antibiotic treatment of food animals.

2. Legal framework

The authorisation of any veterinary medicinal products in the EU is based on scientific assessments of the quality, safety and efficacy of the product as laid down in Regulation (EC) No. 726/2004 (EC, 2004). The scientific assessment is performed by the European Medicines Agency. Consumer safety issues related to consumption of potential residues of veterinary medicinal products via foodstuffs of animal

origin is included in the assessment, and, when necessary, maximum residue limits are established for the relevant residues in animal products. Imported animal products have to comply with the European legislation.

EFSA may be requested by the European Commission to carry out risk assessments related to residues of veterinary medicinal products, which are currently not authorised for use in the EU (EC, 2009). A notable exception in the legislation regarding antimicrobials is coccidiostats and histomonostats, which are substances intended to kill or inhibit protozoa *Eimeria* spp. and *Histomonas meleagridis*, respectively. Regulation EC1831/2003 states that 'certain substances with coccidiostatic and histomonostatic effects should be considered as feed additives for the purposes of this Regulation, although these are veterinary medicinal products (EC, 2003). This regulation also specifies that 'antibiotics, other than coccidiostats or histomonostats. shall not be authorised as feed additives'. Due to this regulation, coccidiostats and histomonostats actually form a category of feed additives, and can therefore be given to production animals much more freely than antibiotics. EFSA has assessed the use of these substances mainly in poultry and rabbits (EFSA, 2015)

During the recent years the EU has strengthened the surveillance systems on AMR. Harmonised data is needed for the better understanding of the epidemiology of AMR, for risk assessment and for the evaluation of the effectiveness of risk decisions and measures taken. The recently adopted Commission Implementing Decision of 12 November 2013 on the monitoring and reporting antimicrobial resistance in zoonotic and commensal bacteria (Decision 2013/652/ EU; EC, 2013b) has been applied since 1st January of 2014. This legislation is based on e.g. the EFSA scientific report (EFSA, 2012) on 'Technical specification on the harmonised monitoring and reporting of antimicrobial resistance in Salmonella, Campylobacter and indicator Escherichia coli and Enterococcus spp. bacteria transmitted in food chain' as well as other reports dealing with AMR. The current decision requires harmonised monitoring and reporting of the following bacteria: Salmonella spp., Campylobacter jejuni and Campylobacter coli, and indicator commensal E. coli, indicator commensals Enterococcus faecalis and Enterococcus faecium. Additionally, the legislation includes specific requirements for the harmonised monitoring and reporting of extended spectrum beta-lactamase (ESBL), ampC β-lactamases (ampC) and carpapenemase-producing bacteria in some foods of animal origin and other foods.

3. Critically important antimicrobials

The World Health Organization (WHO) has categorised antimicrobials used in human medicine based on criteria 1 and 2 in Table 1 (WHO, 2011a). Antimicrobials which meet criteria 1 and 2 are considered critically important antimicrobials (CIA; e.g. aminoglycosides, ansamycins,

carbapenems, and 3rd and 4th generation cephalosporins, macrolides and quinolones). Furthermore, WHO has prioritised the group of CIAs based on two criteria: applications 1.1, 1.2 and 2.1 (Table 1) (WHO, 2009). Drugs meeting both criteria and all three of applications 1.1, 1.2 and 2.1 are considered of the highest priority (Table 2).

Table 1. Categorisation and prioritisation of antimicrobials according to WHO (2009, 2011a,b).

	Criterion 1	Antimicrobial agent is used as sole therapy or one of limited available therapy, to treat human disease				
		Application 1.1: high absolute number of people affected by	Application 1.2: high frequency of use of the antimicrobial for any			
		diseases for which the antimicrobial is the sole or one of few	indication in human medicine, since usage may favour selection of			
		alternatives to treat serious human disease	resistance			
Criterion 2 Antimicrobial agent is used to treat diseases caused by either organisms that may be transmitted via non-human						
		human diseases caused by organisms that may acquire resistance genes from non-human sources				
		Application 2.1: greater degree of confidence that there are non-human sources that result in transmission of bacteria (Campylobacter				
spp.) or their resistance genes to humans (high for Salmonella spp., Escherichia coli and Enterococcus spp.)						

Table 2. Critically important antimicrobials of highest priority according to WHO (2011a).

Fluoroquinolones				
Description	Quinolones are widely used in food animal production and are known to select for fluoroquinolone-resistant <i>Salmonella</i> spp. and <i>Escherichia coli</i> in animals. At the same time, fluoroquinolones are one of few available therapies for serious <i>Salmonella</i> infections, particularly in adults.			
Drug name	Cinoxacin, ciprofloxacin, enoxacin, fleroxacin, flumequine, garenoxacin, gatifloxacin, gemifloxacin, grepafloxacin, levofloxacin, lomefloxacin, moxifloxacin, nalidixic acid, norfloxacin, ofloxacin, oxolinic acid, pazufloxacin, pefloxacin, pipemidic acid, piromidic acid, prulifloxacin, rosoxacin, rufloaxacin, sitafloxacin, sparfloxacin, temafloxacin, trovafloxacin			
Veterinary use only	Danofloxacin, difloxacin, enrofloxacin, ibafloxacin, marbofloxacin, orbifloxacin			
3 rd and 4 th generation cephalosporins				
Description	3 rd and 4 th generation cephalosporins are widely used in food animal production and are known to select for cephalosporin-resistant <i>Salmonella</i> spp. and <i>E. coli</i> in animals. Additionally, 3 rd and 4 th generation cephalosporins are one of few available therapies for serious <i>Salmonella</i> infections, particularly in children. Given the high incidence of human disease due to <i>Salmonella</i> spp. and <i>E. coli</i> the absolute number of serious cases is substantial.			
Drug name	Cefcapene, cefdinir, cefditoren, cefepime, cefetamet, cefixime, cefmenoxime, cefodizime, cefoperazone, cefoselis, cefotaxime, cefozopran, cefpiramide, cefpirome, cefpodoxime, cefsulodin, ceftaroline, ceftazidime, ceftizoxime, ceftobiprole, ceftibuten, ceftriaxone, latamoxef			
Veterinary use only	Cefovecin, cefquinome, ceftiofur			
Macrolides and ketolide	s			
Description	Macrolides are widely used in food animal production and are known to select for macrolide-resistant <i>Campylobacter</i> spp. in animals. At the same time, macrolides are one of few available therapies for serious <i>Campylobacter</i> infections, particularly in children, in whom quinolones are not recommended for treatment. Given the high incidence of human disease due to <i>Campylobacter</i> spp., the absolute number of serious cases is substantial.			
Drug name	Azithromycin, clarithromycin, erythromycin, dirithromycin, flurithromycin, josamycin, midecamycin, miocamycin, oleandomycin, roxithromycin, spiramycin, telithromycin, troleandomycin			
Veterinary use only	Gamithromycin, kitasamycin, tildipirosin, tilmixosin, tulathromucin, tylosin, tylvasin			
Glycopeptides				
Description	Glycopeptides are known to select for glycopeptide-resistant <i>Enterococcus</i> spp. in food animals (e.g. when avoparcin was used as growth promoter, vancomycin resistant enterococcus developed in food animals and were transmitted to humans). At the same time, glycopeptides are one of the few available therapies for serious enterococcal infections.			
Drug name	Dalbavancin, oritavancin, teicoplanin, telavancin, vancomycin			
Veterinary use only	Avoparcin			

4. Veterinary drug residues in foods and food animals on the European market from 01/01/2008-31/12/2012

Over the surveyed 5 year period from 01/01/2008-31/12/2012, the European Rapid Alert System for Food and Feed (RASFF) recorded altogether 15,786 notifications in foods (http://tinyurl.com/nvh6v3a). Of these, 448 notifications concerned residues of veterinary medicinal products, making it the twelfth most common hazard category according to the RASFF database. Food imported into the EU accounted for the bulk of notifications while veterinary drug residues in foods from the EU member states triggered 72 RASFF notifications. Most RASFF notifications involved crustaceans and products thereof originating mainly from India and Bangladesh (Table 3). The main residues belonged to the nitrofurans group, chloramphenicol and leucomalachite green (Table 3). India, Bangladesh, China, Sri Lanka, Thailand and Vietnam accounted for 35% of all crustacean imports to the EU over the years from 2008 to 2010 and therefore continue to present a potentially serious problem (http://tinyurl. com/p4qubfa).

Problems in meat and products thereof formed the second most common category of RASFF notifications (Table 3). Brazil was responsible for 50% of all notifications over the five year period, largely because of ivermectin (antiparasitic drug) residues (Table 3). From 2008 to 2010, Brazil accounted for almost 14% of all imports of beef, while only one residue problems was encountered in beef from Argentina, which accounted for 40% of all imports (http:// tinyurl.com/p4qubfa). Honey from China, Argentina, Mexico and Hungary formed the third most common category of RASFF notifications (Table 3), which together accounted for just over two-thirds of all imports to the EU between 2008 and 2010 (http://tinyurl.com/p4qubfa). Argentinian honey usually contained oxytetracycline residues, while Chinese honey was found to contain a wide range of antibiotic residues, frequently involving erythromycin or lincomycin (Table 3). Notifications concerning Mexican honey were restricted to streptomycin.

Problems in fish and fish products were responsible for the fourth most common category of RASFF notifications, with Vietnam accounting for the bulk of notifications (Table 3). In Chinese fish, nitrofurans and leucomalachite green residues were mainly found; the latter is an antimicrobial substance used to kill the fungus-like eukaryotic microorganism, *Saprolegnia* (which infects fish eggs). Over the three years from 2008-2010, no RASFF notification was issued concerning veterinary drug residues in imports of swine, sheep or goat meat from any of the top ten most important exporting countries. For each commodity, the major ten exporters accounted for over 99% of all imports to the EU in that category (http://tinyurl.com/p4qubfa).

Table 3. Veterinary drug residues. Number of European Rapid Alert System for Food and Feed (RASFF) notifications, countries of origin and principal residues for the most affected commodities (>10 alerts) from 01/01/2008 to 31/12/2012 (http://tinyurl.com/p4qubfa).

Commodity Total no. of RASFF notifications	Main countries of origin (no.)	Principal residues (no.)				
Crustaceans and products thereof						
190	India (87)	nitrofurans group (75) chloramphenicol (8) oxytetracycline (2) unknown (2)				
	Bangladesh (69)	nitrofurans group (68) oxytetracycline (1)				
	China (10)	nitrofurans group (8) unknown (2)				
	Sri Lanka (6)	nitrofurans group (6)				
	Thailand (5)	nitrofurans group (4)				
	• •	leucomalachite green (1)				
	Vietnam (4)	chloramphenicol (2) nitrofurans group (1) cefalexin (1)				
	Other countries (9)	chloramphenicol (5)				
	Other Countries (9)	nitrofurans group (4)				
Meat and meat produc	ets (other than noultry)	Tilliolularis group (4)				
113	Brazil (57)	ivermectin (50)				
110	Diazii (37)	nitrofurans group (3)				
		doramectin (2)				
		albendazole (1)				
		dihydrostreptomycin (1)				
	China (10)	chloramphenicol (6)				
	Offina (10)	nitrofurans group (4)				
	UK (10)	phenylbutazone (10)				
	Italy (6)	chlortetracycline (2)				
	italy (0)	sulfonamides (1)				
		unspecified (3)				
	Denmark (5)	chloramphenicol (5)				
	Other countries (25)	chloramphenicol (6)				
	Other countries (20)	prednisolone (4)				
		sulfonamides (4)				
		nitrofurans group (3)				
		oxytertacyline (2)				
		clenbuterol (1)				
		dexamethazone (1)				
		dihydrosteptomycin (1)				
		metronidazole (1)				
		ractopamine (1)				
		unspecified (1)				
		. ,				

Table 3. Continued.

Commodity Total no. of RASFF notifications	Main countries of origin (no.)	Principal residues (no.)
Honey and royal jelly 57	China (20)	erythromycin (7) lincomycin (4) chloramphenicol (2) streptomycin (2) siprofloxacin (2) metronidazole (1) nitrofurans group (1) sulfonamides (1)
	Argentina (6)	oxytetracycline (5) enrofloxacin (1)
	Mexico (5)	streptomycin (4) sulfonamides (1)
	Hungary (4)	nitrofurans group (3) sulfonamides (1)
	Other countries (22)	sulfonamides (10) tetracycline (4) oxytertracycline (3) metronidazole (2) nitrofurans group (2) chloramphenicol (1)
Fish and fish products		, , , , , , , , , , , , , , , , , , , ,
41	Vietnam (20)	nitrofurans group (6) leucomalachite green (4) chloramphenicol (4) malachite green (2) neomycin (2) ivermectin (1) victoria pure blue (1)
	China (4)	leucomalachite green (2) nitrofurans group (2)
	Germany (3)	malachite green (2) leucomalachite green (1)
	Other countries (14)	leucomalachite green (7) leucocrystal violet (3) trimethoprim (2) chloramphenicol (1) enrofloxacin (1)
Animal feed (compour	nd feeds, materials and	
22	Belgium (5)	salinomycin (5)
	Ukraine (3) Czech Republic (2)	chloramphenicol (3) bacitracin (1) salinomycin (1)
	China (2) Other countries (9)	chloramphenicol (2) chlortetracycline (2) oxytetracycline (2) salinomycin (2) chloramphenicol (1) tetracycline (1) zilpaterol (1)

Veterinary drug residues in animal feed are a potential source of prophylactic levels on antibiotics and are subject to control under Regulation (EC) No. 1831/2003 (EC, 2003). Residues were found in a variety of feeds, feed supplements and feed materials, especially complementary and compound feeds for poultry, rabbits and fish. In addition to residues listed in Table 3, a number of unauthorised substances were found while the prohibited substance chloramphenicol was found in shrimp feed from Singapore, vitamin A pre-mix/supplement from China and milk-based products from the Ukraine. The prohibited substance zilpaterol was also found in broiler feed from Poland.

5. Overview on antimicrobial resistance data from Europe

In the recent years, joint reports of EFSA and ECDC have been published about the occurrence of zoonotic infections and agents in humans and animals. The two most commonly reported zoonotic infections are campylobacteriosis and salmonellosis (EFSA and ECDC, 2011, 2012, 2013, 2014a). In Europe, in 2012, Enteritidis and Typhimurium were the two most commonly reported *Salmonella enterica* serotypes, representing 41.3 and 22.1%, respectively, of all confirmed human cases (EFSA and EDCD, 2014a).

According to the recent EFSA and EDCD (2014b) survey, the antimicrobial resistance was commonly detected in isolates of Salmonella and Campylobacter from human cases as well as from foods of animal origin and other foods. This was also reported for indicator (commensal) E. coli isolated from animals and foods. The occurrence of resistance in Salmonella isolated from human cases was high for ampicillin, streptomycin, tetracyclines and sulfonamides and moderate for nalidixic acid, with high levels of multi-drug resistance observed in isolates obtained from certain countries. Furthermore, data show that antimicrobial resistance in Salmonella spp. (Figure 1) and Campylobacter spp. (Figure 2) isolated from humans, foods of animal origin and other foods is a frequent concern, although levels of resistance are subject to strong variations across member states (EFSA and ECDC, 2013, 2014b). Multi-resistance to antimicrobials has become a serious public health problem (Doyle et al., 2013; WHO, 2011b).

EFSA and ECDC surveys (2013, 2014b) as well as recent reviews (De Jong *et al.*, 2011; Silley *et al.*, 2011) have recommended reporting both clinical antimicrobial resistance and decreased susceptibility. For instance, for fluoroquinolones, not only clinical breakpoints are relevant, but for monitoring purposes it is also necessary to address the population of isolates with decreased susceptibility, yet remaining clinically responsive to the antibiotic. Clinical breakpoints and epidemiological breakpoints are needed for monitoring purposes (Silley *et al.*, 2011). According to EFSA and ECDC (2013) there was a lack of standardisation of

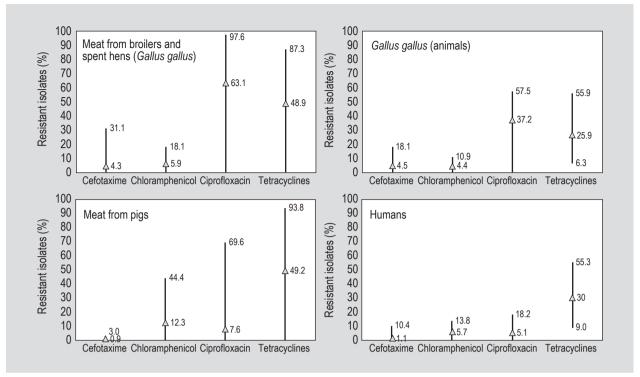


Figure 1. Antimicrobial resistance in Salmonella spp. isolates from different sources in EU in 2012 (data according to EFSA and EDCD, 2014b, using harmonised epidemiological cut-off values). Data for meat from broilers and spent hens (Gallus gallus) includes data reported by 12 member states (MS). Data for animals includes breeding and laying hens and broiler flocks of Gallus gallus reported by 16 MS. Resistance levels in Salmonella spp. isolates from human cases were reported by 18 MS. Data for humans by using clinical breakpoints from all non-typhoidal serovars. Columns present highest, lowest and average percentage of resistant isolates reported in the MS.

antimicrobial susceptibility testing methods and interpretive criteria both between and within countries. Most countries use clinical breakpoints for the interpretation of test results as provided by the Clinical and Laboratory Standards Institute (CLSI) or a combination of clinical breakpoints from CLSI and the European Committee on Antimicrobial Susceptibility Testing, depending on the antimicrobial. A few countries used other criteria such as epidemiological cut-off values (EFSA, 2013; Silley *et al.*, 2011). The recent EU legislation (2013/652/EU; EC, 2013b) and its technical annex provide more harmonised rules for all member states for the monitoring of AMR in animals and in foods.

6. Resistance of Salmonella spp. and Campylobacter spp. to CIAs

Salmonella and Campylobacter are the most common causes of bacterial foodborne diseases in industrialised countries and an increasing prevalence of antimicrobial drug resistance has been recognised in them (Capita and Alonso-Calleja, 2013; Doyle et al., 2013, EFSA and CDC, 2014b). Studies have shown that infections with resistant Salmonella spp. and Campylobacter spp. can result in higher mortality compared to infections caused by susceptible strains (EFSA, 2013). Therefore, special

attention has to be given to the reduction of the prevalence of these pathogens in food products and to the presence of antimicrobial resistance genes in these strains. Based on the WHO prioritisation of CIAs particular emphasis is given to quinolone and cephalosporin resistance (third-and fourth-generation) in *Salmonella* spp., and quinolone and macrolide resistance in *Campylobacter* spp. (ECDC and EMEA, 2009; Hopkins *et al.*, 2010; WHO, 2011a,b).

Quinolones

According to a report by the WHO (1997), the use of fluoroquinolones (antibacterials that prevent bacterial DNA from unwinding and duplicating) in poultry has caused a dramatic increase in the incidence of resistant strains of *Campylobacter* spp. in poultry and subsequently in humans (McDermott *et al.*, 2002; Nachamkin *et al.*, 2000). The first resistant strains of *C. jejuni* in Europe were discovered during the 1980s (Nachamkin, 2002). The removal of fluoroquinolones from the battery of veterinary medicines has not entirely eliminated the presence of resistant *C. jejuni* and *C. coli* in animals and foods of animal origin (Smith and Fratamico, 2010), on the contrary it seems that such resistance is even increasing (Ge *et al.* 2013; Wimalarathna *et al.*, 2013).

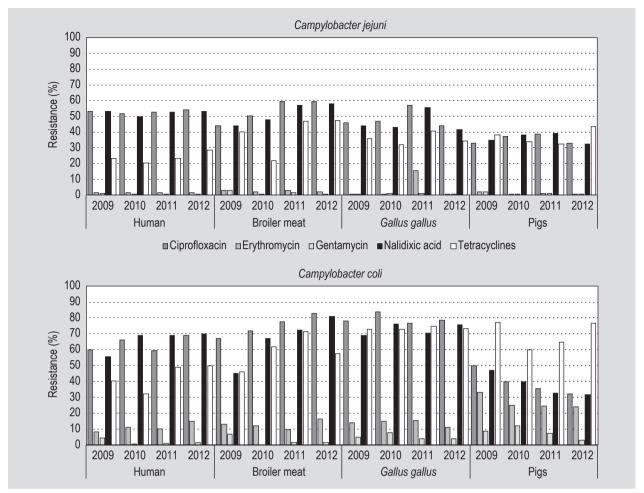


Figure 2. Antimicrobial resistance in Campylobacter jejuni and Campylobacter coli in EU for humans using clinical breakpoints and for other sources using harmonised epidemiological cut-off values. Data according to EFSA and ECDC (2011, 2012, 2013, 2014b).

Fluoroquinolones inhibit the growth of bacteria by binding to bacterial DNA gyrase and DNA topoisomerase IV. These enzymes are associated with bacterial transcription, replication, and chromosome condensation and segregation (Smith and Fratamico, 2010). Resistance to fluoroquinolones has developed primarily as a result of mutations in the *gyrA* gene (McDermott *et al.*, 2002; Zhang *et al.*, 2003). Among such mutations, Thr86Ile is the most prevalent (Perez-Boto *et al.*, 2014). Together with the mutation of DNA gyrase, the presence of activated efflux pumps (ejection mechanism that allows toxic substances such as antibiotics to be transferred from the bacterial cytoplasm into the environment) has been detected in strains resistant to fluoroquinolones (Kovač *et al.*, 2014; Webber and Piddock, 2003).

High level of resistance to fluoroquinolones in *Salmonella* has mainly been explained by the combination of two major resistance mechanisms, multiple target gene mutations and active efflux mediated by AcrAB-TolC (Hur *et al.*, 2012). Yamasaki *et al.* (2013) also concluded that for AcrB multidrug efflux-pump and bulkiness of

lipopolysaccharide core oligosaccharides are essential for intrinsic antibiotic resistance in *S. enterica*. Studies conducted in various countries have proved the connection between the development of resistance in strains isolated from humans and animals and the beginning of use of fluoroquinolones in veterinary medicine. Broilers are now considered as the most important source of fluoroquinolone resistant *Campylobacter* (Eurosurveillance editorial team, 2014; Pérez-Boto *et al.*, 2014). According to EFSA and CDC (2014b), extremely resistance to ciprofloxacin was commonly observed in *C. coli* isolates from broiler meat and broilers (*Gallus gallus*), with 82.7 and 78.4%, respectively, with somewhat lower levels were seen in *C. jejuni*, with 59.5 and 44.1%, respectively.

Resistance to quinolones in *Salmonella* isolated from animals and foods of animal origin has increased in many countries around the world during the last years (Doyle *et al.*, 2013; Gyles, 2008; Hur *et al.*, 2012). However, in the EU, there are differences between countries regarding the serovars isolated, their host animals and subsequent food products (EFSA, 2014b; Maka *et al.*, 2014). In their

European Antimicrobial Susceptibility Surveillance programme study, de Jong et al., (2011) reported, 2005-2006, only 6.1 and 4.0% of bovine and porcine isolates, respectively, were resistant to ciprofloxacin, which was much less than chicken isolates (47.8%). Likewise, Maka et al. (2014) reported that Salmonella spp. strains isolated from poultry products were resistant to a wider spectrum of antibiotics than strains of other origins. According to the recent EFSA and ECDC report (EFSA and CDC, 2014b), in food and animal isolates, the highest occurrence of resistance to ciprofloxacin was noted in Salmonella spp. isolates from fattening turkey, broiler meat and fowl, from 37.3 to 86.2%. Chen et al. (2004) characterised multipleantibiotic resistant Salmonella serotypes from retail meats originating from the USA and China. They observed that 11% of the Chinese isolates were resistant to nalidix acid and had decreased susceptibility to ciprofloxacin. Salmonella Kentucky strain ST198 resistant to ciprofloxacin has emerged during the last years (Doyle et al., 2013; EFSA, 2014b). It was first described by Le Hello et al. (2011) in humans and since that it has been isolated from broilers in Ireland and turkey meat in Poland (Wasyl and Hoszowski, 2012). In Poland, 89% of the turkey isolates (n=72) were resistant to both nalidixic acid and ciprofloxacin (EFSA and ECDC, 2013).

Macrolides

Erythromycin, a bacteriostatic antibiotic from the macrolide group, is usually the drug of choice for treatment of campylobacteriosis in humans. Sensitivity of poultry Campylobacter strains to macrolides has been investigated on several occasions, with variable results (Hariharan et al., 2009; Wirz et al., 2010). The majority of the Campylobacter strains were either highly susceptible (Hariharan et al., 2009) or fairly resistant to erythromycin (Smole-Mozina et al., 2009). The effect of macrolides and azalides on bacterial cells is based on the interruption of protein synthesis, as they bind to the P-site 50S of ribosomal subunit and block the activity of peptidil-transferase (Payot et al., 2006). Campylobacter strains exhibit two different phenotypes with regards to erythromycin resistance: high-level resistance and low-level resistance (Caldwell et al., 2008). Resistance to macrolides is usually associated with the mutation A2075G in the 23S ribosomal RNA gene (Kurincic et al., 2007; Lehtopolku et al., 2011). Other mutations found in the 50S ribosomal subunit encoding proteins L4 and L22 do not appear to be linked to the high-level erythromycin resistant phenotype (Corcoran et al., 2006). As with fluoroquinolones, the presence of activated efflux pumps may reduce the sensitivity of some Campylobacter strains to macrolides, as well as decreased membrane permeability due to mitochondrial outer membrane permeabilisation (Corcoran et al., 2006; Iovine, 2013). Salmonella isolates have been reported to be intrinsically resistant to erythromycin via active efflux, but

naturally susceptible to azithromycin (Gunell *et al.*, 2010). Azithromycin has been suggested as a drug for treating non-typhoidal *Salmonella enterica* infections (Gunell *et al.*, 2010).

Cephalosporins

Cephalosporins are β-lactam antibiotics that inhibit cell wall biosynthesis. In particular, extended-spectrum cephalosporins are used to combat a wide range of bacterial pathogens (Lupo et al., 2013). Since the late eighties, Salmonella spp. has shown increased resistance against cephalosporins (Arlet et al., 2006). Liebana et al. (2013) recently reviewed the role of enterobacterial isolates, including Salmonella, in the production of ESBLs in food and animals. A variety of Salmonella serotypes has been associated with the spread of ESBLs in poultry, cattle and pigs. ESBLs confer resistance to a variety of β-lactamases, including penicillins, first-, second-, third, and fourthgeneration cephalosporins, and monobactams, but not carbapenems (Boyle et al., 2010; Liebana et al., 2013; Lupo et al., 2013). Nowadays, the most widespread ESBLs belong to the CTX-M family (Lupo et al., 2013). Special attention is also paid to metallo-\beta-lactamases which could render bacteria resistant to most β-lactam antibiotics, including also carbapenems (Arlet et al., 2006). Although progress has been made in identifying some metallo-β-lactamases inhibitors, no approved drug which targets metallo-βlactamases, is currently available on the market (Fast and Sutton, 2013). Most ESBL-AmpC-producing strains have been reported to carry additional resistance genes to other commonly-used veterinary drugs. Therefore, generic antimicrobial use is a risk factor for co-resistance (EFSA, 2011; EFSA and CDC, 2011).

7. Alternatives for antibiotics in animal nutrition

Livestock performance and feed efficiency are closely related to the microbial load of the animal gut, the morphological structure of the intestinal wall and the activity of the immune system. In this context, antimicrobial growth promoters (AMGPs) were introduced in intensive animal husbandry (Lallès et al., 2009). Based on increasing concerns on the development of AMR bacteria due to intensive antibiotic use, European Commission decided to ban all commonly used feed antibiotics in 2006 and to limit the therapeutic use of antibiotics, with a notable exception of coccidiostats and histomonostats. This approach was taken as part of the Community Strategy adopted in June 2001 to combat threats to human and animal health posed by antimicrobial resistance in pathogenic microbes. Two main strategies are explored in order to reduce the use of antibiotics in animals. First, the use of substitutes (functional feed ingredients) with similar effects to AMGPs is envisaged and, second, the overall improvement of animal health via improved management practices (Lalles et al., 2009).

Strategy 1: management practices as infection control measures

Improved management practices (MP) face limitations in terms of controlling the infection and indigenous microbiota composition as components of animal health. Many of these limitations are related to diverse management practices, ranging from intensive indoor rearing to extensive, largely outdoor, rearing systems. Europe envisages a strong trend towards improved welfare of farm animals. As a consequence, outdoor 'green' and more sustainable production systems have been increasingly integrated with intensive indoor housing in the pig industry. These measurements may have a dual effect on animal health. On the one hand, outdoor reared animals may harbour a more complex commensal microbiota and therefore they may be naturally more resistant to infections. On the other hand, pigs reared under such conditions face increased contact with potentially pathogenic microbes in the environment, which can then be re-introduced in intensive indoor housing systems. Gebreyes et al. (2008) showed that the seroprevalence of Salmonella and Toxoplasma in pigs reared in outdoor antimicrobial-free pig production system was higher than in pigs from intensive indoor production systems. The right balance between outdoor and indoor rearing systems in terms of impact on complexity of the pig's commensal gut microbiota, gut physiology and immune system development is one of the critical issues.

Another MP consists of the 'all-in-all-out' method of livestock production. Such system replaces the earlier technique of having a constant stream of animals moving through the farm. Instead of having animals with a range of ages, all animals with similar characteristics are designated into a single cohort and are housed together in one shed. They are not allowed to mix with animals from other cohorts so cross-infection between groups is prevented (Cameron, 2000). A study conducted by Namata *et al.* (2009) showed that the 'all-in-all-out' principle was effective in reducing the risk for *Salmonella* infection in broiler chicken flocks.

The 'specific pathogen-free' (SPF) system is another approach to control the health of production animals by preventing the contamination with pathogens in the very beginning of their life, without antibiotic intervention. SPF animals are bred under controlled conditions, such as facilities and are subject to extensive monitoring systems in order to keep the animal stock free of specific pathogens. For instance, a common technique in pig breeding is the development and maintenance of pathogen free pig populations by hysterectomy, hysterotomy or snatch farrowing (Cameron, 2000). This will only be cost-effective for valuable breeding stock, like specialty pigs for niche markets or chicken flocks for the production of vaccines.

Vaccination is another intervention possibility to reduce pathogens in livestock and poultry (Allen *et al.*, 2013; Zoete *et al.*, 2007). Regulation (EC) No. 2160/2003 sets community targets and programmes (e.g. vaccination) for the reduction of prevalence of all *Salmonella* serotypes with public health significance in breeding flocks of *Gallus gallus* (chicken), laying hens, broilers, turkeys, herds of slaughter pigs and breeding herds of pigs (EC, 2003). One of the major drawbacks in all these MPs is the high cost involved. Large Australian and USA farms along with the majority of intensive European farms have implemented the previous mentioned infection control interventions and especially the 'all-in-all-out' system.

Strategy 2: functional feed ingredient use

Certain functional feed ingredients (FFI) are known to have a modulating effect on microbiota composition and pathogen susceptibility in livestock, improving livestock performance, feed efficiency and animal health. These FFI include (in-feed) enzymes, probiotics, prebiotics, organic acids, medium chain fatty acids and plant extracts and etheric oils (De Lange et al., 2010; Lalles et al., 2009). Compounds used within the EU need to be registered and EU Register of feed additives is updated regularly by the Commission (EC, 2003; 2013). Before registration, the EFSA Panel on Additives and Products or Substances in Animal Feed (FEEDAP) assesses the additives and products or substances used in animal feed. The FEEDAP panel provides independent scientific advice on the safety and/or efficacy of additives/ingredients used in animal feed. The panel evaluates their safety and/or efficacy for the target species, the user, the consumer of products of animal origin and the environment.

In-feed enzymes

Nowadays, in-feed enzymes are routinely added to livestock feeds to break down certain components of the feed, including: β -glucans, xylans, proteins, and phytases that may cause digestion problems or act as antinutritional factors (Adeola and Cowieson, 2011). Most commonly used infeed enzymes, applicable as FFI, are β -glucanase, xylanase, phytase and β -mannanase (Adeola and Cowieson, 2011).

Competitive exclusion and probiotics

Competitive exclusion products have been widely used in Finland and Sweden. The so-called 'Nurmi concept' and competitive exclusion (CE) involves oral administration of intestinal microbiota from healthy *Salmonella*-free adult birds into newly hatched chicks and has been proved effective in numerous laboratory trials (Schneitz, 2005; Schneitz and Hakkinen, 1998). In addition to pathogen control, it has been demonstrated that in field trials CE

treatment enhances the growth and decreases the mortality of birds and improves the feed conversion (Schneitz, 2005).

Probiotics are similar to CE products. They have been reported to improve the overall health of an animal by improving the commensal microbiota balance in its gut (Dankowiakowska et al., 2013; Gaggia et al., 2010). The mechanisms that mediate this effect have not been firmly established. It has been hypothesised that they act via one or more of the followings: (1) reiteration of the competitive exclusion principle: by colonising the gut in large numbers, probiotic microbes exclude pathogens and thus prevent them from causing infection; (2) stimulus for the immune system (immunomodulation): as the immune system is engaged following exposure to probiotic bacteria, pathogens are also detected, following increased surveillance by leukocytes, and thus potential pathogens are eliminated; and (3) strong, positive influence on intestinal metabolic activities, such as increased production of vitamin B12, antimicrobial peptides (e.g. bacteriocins), and short chain fatty acid, such as propionic acid. Other mechanisms have been proposed but remain to be confirmed. Probiotics have been shown to be effective in new-born animals or those that have been treated with antibiotics (Gaggia et al., 2010). Combination of probiotics with other dietary supplements, e.g. prebiotics, has been reported to improve feed conversion ratio in broilers (Bozkurt et al., 2009). The most commonly used probiotic strains applicable as FFI are Bacillus subtilis, Enterococcus faecium, Pediococcus acidilactici, Lactobacillus spp. and Saccharomyces cerevisiae (EC, 2014).

Prebiotics (and symbiotic)

Prebiotics are defined as non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon (Gaggia et al., 2010). As is the case of probiotics essential information concerning the impact of prebiotic on animal health is still incomplete. Thus, the most important future target for prebiotic research will be to demonstrate health-benefit supported by knowledge on the mechanism of action. Combinations of suitable probiotics and prebiotics (also called symbiotic) may prove to be the next tool to reduce the risk of intestinal diseases and disorders in livestock. Most research on prebiotics in production animals has been performed in poultry (Bozkurt, 2009; Gaggia et al., 2010; Vandeplas et al., 2010). Fructo-oligosaccharides and manna-oligosaccharides are known to promote the colonisation of beneficial bacteria in poultry, which in turn improves feed efficiency and reduces disease severity and mortality (Yang et al., 2008). However, few studies have addressed the mechanisms underlying such improvements.

Organic acids

In commercial compound feeds, organic acids have been used for decades for feed preservation. For this reason, most organic acids and their salts are classified as 'feed preservatives' within the EU. Acidifiers can also be used safely and effectively together with other additives. The main mode of action of organic acids is through their antimicrobial effects, the magnitude of which is dependent on the chemical properties of the individual organic acid or its salt. The market for organic acids is expected to continue to grow, especially in regions that ban antimicrobial growth promoters (AMGP), reflecting the industry's move away from antibiotic growth promoters. Northern Europe started to adopt these products before the EU ban of AMGP. Most commonly used acidifiers, applicable as FFI, are benzoic acid, formic acid, propionic acid, lactic acid, citric acid, malic acid, fumaric acid, sorbic acid and all their salts (EC, 2014; Kluge et al., 2006).

Medium chain fatty acids

Medium chain fatty acids (MCFAs) have been considered as effective substitutes for AMGP. In particular, MCFAs with 6 to 12 carbon atoms have been shown to exhibit antibacterial effects. Administration of MCFAs in feed improves livestock performance and feed efficiency (de Lange *et al.*, 2010; Rossi *et al.*, 2010; Zentek *et al.*, 2011). Examples of medium chain fatty acids are caproic acid (C6), caprylic acid (C8), capric acid (C10) and lauric acid (C12). However, none of these MCFAs is authorised as feed additives in EU (but are allowed as feedstuffs (EC, 2013a).

Natural plant extracts and essential oils

Medicinal plants are a rich source of bioactive components (alkaloids, flavonoids, phenols, terpenoids, steroids, essential oils) and over 1000 plants, herbs and essential oils have been shown to exhibit antimicrobial effects (Schelz et al., 2010). Phytogenics are a group of natural growth promoters used as feed additives, derived from herbs, spices or other plants. There are several phytogenics on the market. Recently, encapsulation techniques have been applied to enhance the stability of phytogenics in feed applications. Currently, phytogenic substances are classified as sensory additives according to the EC (2003) and are intended to increase feed aroma and palatability (Maenner et al., 2011. Windisch et al. (2008) concluded that a systematic approach towards the efficacy and safety evaluation of phytogenic compounds used as feed additives for pigs and poultry are still missing. However, in the recent years the number of publications on this topic has increased (Maenner et al., 2011). Several studies have evaluated the in vitro antimicrobial activities of various essential oils (including clove, rosemary, thyme, tea tree, oregano) against pathogens such as Listeria monocytogenes,

Salmonella spp., Campylobacter spp., E. coli O157:H7, Shigella dysenteria, Bacillus cereus, Staphylococcus aureus and Vibrio spp. (Aslim and Yucel, 2008; Cheng et al., 2014; Dorman and Deans, 2000; Randrianarivelo et al., 2009). The inhibitory activity results from a complex interaction between their different constituents, which may produce additive, synergistic or antagonistic effects, even for substances present at low concentrations (Burt, 2004). Some components of essential oils (carvacol, thymol, cynnamaldehyde) have been shown to reduce the antibiotic resistance of zoonotic pathogen strains like S. enterica serotype Typhimurium, E. coli, S. aureus, and Streptococcus pyogenes (Palaniappan and Holley, 2010). Essential oils could be a relevant alternative to antibiotics in shrimp hatchery, since they have been shown to reduce Vibrio spp. levels in *Penaeus monodon* (shrimp) larval cultures, similar to erythromycin E antibiotic, (Randrianarivelo et al., 2010). In addition, plant extracts can also act as immuno-stimulants by enhancing both specific and nonspecific defence mechanisms of animals, thus increasing their disease resistance. Several herbal immuno-stimulants have been reported to increase the innate and adaptive immune response in fish against bacterial, viral and parasitic diseases (Harikrishnan, 2011). Recently, Niewold (2014) stated that promotion of growth and health in production animals largely depends on the attenuation of postprandial inflammation. Plants and plant extracts are a potential source for anti-inflammatory compounds and could be utilised as alternatives for antibiotic growth promoters. However, the efficacy of the compounds needs to be further verified both in in vivo assays and in animal feeding trials.

8. Other perspectives

In Canada, withdrawal of ceftiofur, a cephalosporin, for prophylaxis in chicken hatcheries resulted in the reduction of cefriofur-resistant Salmonella Heidelberg and E. coli in human cases and in retail poultry. This is a good example showing why restrictions in the use of clinically important antibiotics should be enforced (Dutil et al., 2010). However, there is an ongoing debate about the role of antibiotic use in animals and the development of drug-resistant bacterial populations in humans (Cox and Ricci, 2008; Marshall and Levy, 2011). In some cases, it has been reported that changes in the prevalence of resistance of Salmonella strains did not correlate with changes in the veterinary use of the drug (Threlfall et al., 2006). Instead, for Salmonella serotype Enteritidis, foreign travel and consumption of imported foods contaminated with drug-resistant strains were important contributors to the increased prevalence of resistance (Miriagou et al., 2004). In their study on Salmonella isolates collected during a ten year period from Danish pigs, Emborg et al. (2008) concluded that the use of antimicrobial agents may select multiple resistant clones and this may cause changes in the antimicrobial resistance within a serotype rather than emergence of

resistance within clones. Their results also supported the view that susceptible serotypes only slowly become resistant to antimicrobials. Future developments in non-phenotypic tests, including next-generation sequencing enable early and more sensitive detection of resistance mechanisms and characterisation of persistent strains (Diaz-Sanchez *et al.*, 2013; Lupo *et al.*, 2013).

Sub-clinical Salmonella infections or healthy carriage in animals can be common. Bacteria may spread rapidly and easily between animals in the herd or flock without causing any clinical symptoms in the animals. In some cases, animals can become intermittent or persistent carriers (EFSA and CDC, 2014). The high prevalence of ESBL/ampC-producing bacteria in the poultry production system and their association with public health problems is currently one of the most problematic matters in antimicrobial resistance (EFSA, 2011). In the recent years, there has been increased concern for increased number of methicillin resistant S. aureus in pork (EFSA and CDC, 2014). Extensive trade and movement of animals can increase the selection and dissemination of antibiotic resistant bacteria and genes (EFSA, 2011). Antibiotic resistance may also be caused by illegal or off-label use of approved products (WHO, 2011b).

9. Conclusions and recommendations

Antibiotic resistance is a global concern. Hence international co-operation, communication and control methods are needed. Prevention of both emergency and spread of antibiotic resistant bacteria is necessary for the control of antibiotic resistant bacteria and genes in the food chain. Implementation of high level farm biosecurity and control on animal trade along with good hygiene in the food chain are important issues in the prevention of spread of food pathogens and zoonotic bacteria, including Salmonella and Campylobacter. There is a need to reduce the overall antimicrobial burden, especially the use of 3rd and 4th generation cephalosporins should be better controlled as well as other antimicrobials not strictly needed for veterinary purposes. The animal-to-human transmission of antibiotic resistance needs to be further investigated. For instance, we need to understand the role of environmental bacteria as reservoir for antibiotic resistance genes.

Moreover, monitoring and surveillance systems need to be harmonised in order to obtain data sets suitable for risk analysis of AMR spread (Aidara-Kane *et al.*, 2013). The resistance to currently existing antibiotics is increasing dramatically and consumption of antibiotics is expected to increase. Alternative antimicrobials suitable as feed additives are needed. A multitude of phytogenics are known to have antimicrobial activities, but their current use as feed additives is more focused on the sensory qualities and palatability of the feed. Also, the potential of probiotics and prebiotics to prevent the growth and spread of important

animal pathogens is largely unknown. However, efficacy of the compounds needs to be further verified both in *in vivo* assays and in animal feeding trials. More research is needed to develop synergistic animal feeding and husbandry strategies that would enable to further reduce the need to use antibiotics in the treatment of herds of production animals.

Acknowledgements

This research was supported by the framework of the EU-project funded by the 7th Framework Programme of the European Union 'Safe food for Europe – coordination of research activities and dissemination of research results of EC funded research on food safety' (project acronym: FOODSEG), grant agreement no. 266061. This publication reflects the views only of the authors, and the European Commission cannot be held responsible for any use which may be made of the information contained therein.

References

- Adeola, O. and Cowieso, A.J., 2011. Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. Journal of Animal Science 89: 3189-3218.
- Aidara-Kane, A., Andremont, A. and Collignon, P., 2013. Antimicrobial resistance in the food chain and the AGISAR initiative. Journal of Infection and Public Health 6: 162-165.
- Allen, H.K., Levine, U.Y., Looft, T., Bandrick, M. and Casey, T.A., 2013. Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends in Microbiology 21: 114-119.
- Anderson, E.S., 1968. The ecology of transferable drug resistance in the Enterobacteria. Annual Review of Microbiology 22: 131-180.
- Arlet, G., Barrett, T.J., Butaye, P., Cloeckaert, A., Mulvey, M.R. and White, D.G., 2006. Salmonella resistant to extended-spectrum cephalosporins: prevalence and epidemiology. Microbes and Infection 8: 1945-1954.
- Aslim, B. and Yucel, N., 2008. *In vitro* antimicrobial activity of essential oil from endemic *Origanum minutiflorum* on ciprofloxacin-resistant *Campylobacter* spp. Food Chemistry 107: 602-606.
- Boyle, F., Morris, D., O'Connor, J., DeLappe, N. and Cormican, M., 2010. First report of extended-spectrum-beta-lactamase-producing *Salmonella enterica* serovar Kentucky isolate from poultry in Ireland. Antimicrobial Agents and Chemotherapy 54: 551-553.
- Bozkurt, M., Kucukyilmaz, K., Cath, A.U. and Cinar, M., 2009. The effect of single or combined dietary supplementation of prebiotics, organic acid and probiotics on performance and slaughter characteristics of broilers. South African Journal of Animal Science 39: 197-205.
- Burt, S., 2004. Essential oils: their antibacterial properties and potential applications in foods a review. International Journal of Food Microbiology 94: 223-253.
- Caldwell, D.B., Wang, Y. and Lin, J., 2008. Development, stability, and molecular mechanisms of macrolide resistance in *Campylobacter jejuni*. Antimicrobial Agents and Chemotherapy 52: 3947-3954.

- Cameron, R.D.A., 2000. A review of the industrialisation of pig production worldwide with particular reference to the Asian region. Animal health and area wide integration, 61 pp. FAO, Rome, Italy. Available at: http://tinyurl.com/nhmh6r9.
- Capita, R. and Alonso-Calleja, C., 2013. Antibiotic-resistant bacteria: a challenge for the food industry. Critical review in Food Science and Nutrition 53: 11-48.
- Chen, S., Zhao, S., White, D.G., Schroeder, C.M., Lu R., Yang, H., McDermott, P.F., Ayers, S. and Meng, J., 2004. Characterization of multiple-antibiotic-resistant *Salmonella* serovars isolated from retail meats. Applied and Environmental Microbiology 10: 1-7.
- Cheng, G., Hao, H., Xie, S., Wang, X., Dai, M., Huang, L. and Yan, Z., 2014. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Frontiers in Microbiology 5: 69-83.
- Corcoran, D., Quinn, T., Cotter, L., Whyte, P. and Fanning, S., 2006. Antimicrobial resistance profiling and fla-typing of Irish thermophilic *Campylobacter* spp. of human and poultry origin. Letters in Applied Microbiology 43: 560-565.
- Cox Jr, L.A. and Ricci, P.F., 2008. Causal regulations vs. political will: why human zoonotic infections increase despite precautionary bans on animal antibiotics. Environment International 34: 459-475.
- Dankowiakowska, A., Kozlowska, I. and Bednarczyk, M., 2013. Probiotics, prebiotics and symbiotics in poultry mode of action, limitation, and achievements. Journal of Central European Agriculture 14: 467-478.
- De Jong, A., Stephen, B. and Silley, P., 2011. Fluoroquinolone resistance in *Escherichia coli* and *Salmonella* from healthy livestock and poultry in the EU. Journal of Applied Microbiology 112: 239-245.
- De Lange, C.F.M., Pluske, J., Gong, J. and Nyachoti, C.M., 2010. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Science 134: 124-134.
- Diaz-Sanchez, S., Hanning, I., Pendleton, S. and Souza, D., 2013. Next generation sequencing: the future of molecular genetics in poultry production and food safety. Poultry Science 92: 562-572.
- Dorman, H.J.D. and Deans, S.G., 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology 88: 308-316.
- Doyle, M.P., Loneragan, G.H., Scott, H. and Singer, R.S., 2013.
 Antimicrobial resistance: challenges and perspectives.
 Comprehensive Reviews in Food Science and Food Safety 12: 234-248.
- Dutil, L., Irwin, R., Finley, R., King Ng, L., Avery, B., Boerlin, P., Bourgault, A.-M., Cole, L., Daignault, D., Desruisseau, A., Demczuk, W., Hoang, L., Horsman, G.B., Ismail, J., Jamieson, F., Maki, A., Pacagnella., A. and Pillai, D.R., 2010. Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerging Infectious Diseases 16: 48-54.
- Emborg, H.-D., Lau Baggesen, D. and Moller Aarestrup, F., 2008. Ten years of antimicrobial susceptibility testing of *Salmonella* from Danish pig farms. Journal of Antimicrobial Chemotherapy 62: 360-363.
- European Centre for Disease Prevention and Control (ECDC) and European Medicines Agency (EMEA), 2009. Joint technical report. The bacterial challenge: time to react. ECDC, Solna, Sweden; EMEA, London, UK. Available at: http://tinyurl.com/qdvkvt3.

- European Commission (EC), 2003. Regulation (EC) No. 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition (text with EEA relevance). Official Journal of the European Union L268: 29-43.
- European Commission (EC), 2004. Regulation (EC) No. 726/2004 of the European Parliament and of the council laying down community procedures for the authorisation and supervision of medicinal products for human and veterinary use and establishing a European medicines agency. Official Journal of the European Union L136: 1-33.
- European Commission (EC), 2009. Regulation (EC) No. 470/2009 of the European Parliament and of the council laying down community procedures for the establishment of residue limits of pharmacologically active substances in foodstuffs of animal origin, repealing Council Regulation (EEC) No. 2377/90 and amending Directive 2001/82/EC of the European Parliament and of the Council and Regulation (EC) No. 726/2004 of the European Parliament and of the Council. Official Journal of the European Union L152: 11-22.
- European Commission (EC), 2013a. Commission regulation (EU) No. 68/2013 of 16 January 2013 on the Catalogue of feed materials. Official Journal of the European Union L29: 1-64.
- European Commission (EC), 2013b. Commission implementing decision of 12 November 2013 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria (2013/652/EU). Official Journal of the European Union L303: 26-39.
- European Commission (EC), 2014. European Union register of feed additives pursuant to regulation (EC) No. 1831/2003. Appendixes 3e and 4(I). Annex I. List of additives. Available at: http://tinyurl. com/2pfg9z.
- European Food Safety Authority (EFSA), 2011. Scientific opinion on the public health risks of bacterial strains producing extended-spectrum β -lactamases and/or AmpC β -lactamases in food and food-producing animals. EFSA Journal 9: 2322.
- European Food Safety Authority (EFSA), 2012. Technical specifications on the harmonised monitoring and reporting of antimicrobial resistance in *Salmonella*, *Campylobacter* and indicator *Escherichia coli* and *Enterococcus* spp. bacteria transmitted through food. EFSA Journal 10: 2742.
- European Food Safety Authority (EFSA), 2015. Scientific opinion on the safety and efficacy of Coxiril® (diclazuril) for rabbits for fattening and breeding. EFSA Journal 13: 3968.
- European Food Safety Authority (EFSA) and European Centre for Disease Prevention and Control (ECDC), 2011. EU summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food 2009. EFSA Journal 9: 2154.
- European Food Safety Authority (EFSA) and European Centre for Disease Prevention and Control (ECDC), 2012. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in the European Union in 2010. EFSA Journal 10: 2598.
- European Food Safety Authority (EFSA) and European Centre for Disease Prevention and Control (ECDC), 2013. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2011. EFSA Journal 11: 3196.

- European Food Safety Authority (EFSA) and European Centre for Disease Prevention and Control (ECDC), 2014a. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012. EFSA Journal 12: 3547.
- European Food Safety Authority (EFSA) and European Centre for Disease Prevention and Control (ECDC), 2014b. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2012. EFSA Journal 12: 3590.
- Eurosurveillance editorial team, 2014. European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food 2012 published. Euro Surveillance 19: 20748.
- Fast, W. and Sutton, L.D., 2013. Metallo-β-lactamase: inhibitors and reporter substrates. Biochimica et Biophysica Acta 1834: 1648-1659.
- Ge, B., Wang, F., Sjolund-Karllsson, M. and McDermott, P.F., 2013. Antimicrobial resistance in *Campylobacter*: susceptibility testing methods and resistance trends. Journal of Microbiological Methods 90: 57-67.
- Gaggia, F., Mattarelli, P. and Biavati, B., 2010. Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology 141: S15-S28.
- Gebreyes, W.A., Bahnson, P.B., Funk, J.A., McKean, J. and Patchanee, P., 2008. Seroprevalence of Trichinella, Toxoplasma, and Salmonella in antimicrobial-free and conventional swine production systems. Foodborne Pathogens and Disease 5: 199-203.
- Gunell, M., Kotilainen, P., Jalava, J., Huovinen, P., Siitonen, A. and Hakanen, A.J., 2010. *In vitro* activity of azithromycin against nontyphoidal *Salmonella enterica*. Antimicrobial Agents and Chemotherapy 54: 3498-3501.
- Gyles, C.L., 2008. Antimicrobial resistance in selected bacteria from poultry. Animal Health Research Reviews 9: 149-158.
- Hao, H., Cheng, G., Iqbal, Z., Ai, X., Hussain, H.I., Huang, L., Dai, M., Wang, Y., Liu, Z. and Yuan, Z., 2014. Benefits and risks of antimicrobial use in food-producing animals. Frontiers in Microbiology 5: 87-97.
- Hariharan, H., Sharma, S., Chikweto, A., Matthew, V. and Deallie, C., 2009. Antimicrobial drug resistance as determined by the E-test in *Campylobacter jejuni, C. coli*, and *C. lari* isolates from the ceca of broiler and layer chickens in Grenada. Comparative Immunological Microbiology and Infectious Disease 32: 21-28.
- Harikrishnan, R., Balasundaram, C. and Moon-Soo, H., 2011. Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aquaculture 317: 1-15.
- Hopkins, K.L., Kirchner, M., Guerra, B., Granier, S.A., Lucarelli, C., Porrero, M.C., Jakubczak, A., Threlfall, E.J. and Mevius, D.J., 2010. Multiresistant *Salmonella enterica* serovar 4,[5],12:i: in Europe: a new pandemic strain? Eurosurveillance 15: 19580.
- Hur, J., Jawale, C. and Hwa Lee, J., 2012. Antimicrobial resistance of *Salmonella* isolates from food animals: a review. Food Research International 45: 819-830.
- Iovine, N.M., 2013. Resistance mechanisms in *Campylobacter jejuni*. Virulence 4: 230-240.

- Kluge, H., Broz, J. and Eder, K., 2006. Effect of benzoic acid on growth performance, nutrient digestibility, nitrogen balance, gastrointestinal microflora and parameters of microbial metabolism in piglets. Journal of Animal Physiology and Animal Nutrition 90: 316-324.
- Koluman, A. and Dikici, A., 2013. Antimicrobial resistance of emerging foodborne pathogens: status quo and global trends. Critical Reviews in Microbiology 39: 57-69.
- Kovač, J., Cadež, N., Lušicky, M., Nielsen, E.M., Ocepek, M., Raspor, P. and Možina, S.S., 2014. The evidence for clonal spreading of quinolone resistance with a particular clonal complex of *Campylobacter jejuni*. Epidemiology and Infection 142: 2595-2603.
- Kurincic, M., Botteldoorn, N., Herman, L. and Smole Mozina, S., 2007. Mechanisms of erythromycin resistance of *Campylobacter* spp. isolated from food, animals and humans. International Journal of Food Microbiology 120(1-2): 186-190.
- Lallès, J.P., Bosi, P., Janczyk, P., Koopmans, S.J. and Torrallardona, D., 2009. Impact of bioactive substances on the gastrointestinal tract and performance of weaned piglets: a review. Animal 3: 1625-1643.
- Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A.K.M., Wertheim,
 H.F.L., Sumpradit, N., Vlieghe, E., Hara, G.L., Gould, I.M., Goossens,
 H., Greko, C., So, A.D., Bigdeli, M., Tomson, G., Woodhouse, W.,
 Ombaka, E., Quizhpe Peralta, A., Naz Qamar, F., Mir, F., Kariuki,
 S., Bhutta, Z.A., Coates, A., Bergstrom, R., Wright, G.D., Brown,
 E.D. and Cars, O., 2013. Antibiotic resistance the need for global
 solutions. The Lancet Infectious Diseases 13: 1057-1098.
- Le Hello, S., Hendriksen, R.S., Doublet, B., Fisher, I., Nielsen, E.M., Whichards, J.M., Bouchrif, B., Fashae, K., Granier, S.A., Jourdan-Da Silva, N., Cloeckaert, A., Threfall, E.J., Angulo, F.J., Aarestrup, F.M., Wain, J. and Weill, F.X., 2011. International spread of an epidemic population of *Salmonella enterica* serotype Kentucky St198 resistant to ciprofloxacin. Journal of Infectious Diseases 204: 675-684.
- Lehtopolku, M., Kotilainen, P., Haanperä, M., Nakari, U.M., Hänninen, M.L., Huovinen, P., Siitonen, A., Eerola, E. Jalava, J. and Hakanen, A.J., 2011. Ribosomal mutations as the main cause of macrolide resistance in *Campylobacter jejuni* and *Campylobacter coli*. Antimicrobial Agents and Chemotherapy 55: 5939-5941.
- Liebana, E., Carattoli, A., Coque, T.M., Hasman, H., Magiorakos, A.-P., Mevius, D., Peixe, L., Poirel, L., Schuepbach-Regula, G., Torneke, K., Torren-Edo, J., Torres, C. and Threlfall, J., 2013. Public health risks of enterobacterial isolates producing extended-spectrum β -lactamases or AmpC β -lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options. Clinical Infectious Diseases 56: 1030-1037
- Lupo, A., Papp-Wallace, K.M., Sendi, P., Bonomo, R.A. and Endimiani, A., 2013. Non-phenotypic tests to detect and characterize antibiotic resistance mechanisms in Enterobacteriaceae. Diagnostic Microbiology and Infectious Disease 77: 179-194.
- Maenner, K., Vahjen, W. and Simon, O., 2011. Studies on the effects of essential-oil-based feed additives on performance, ileal nutrient digestibility, and selected bacterial groups in the gastrointestinal tract of piglets. Journal of Animal Science 89: 2106-2112.
- Maka, L., Mackiw, E., Sciezynska, H., Pawlowska, K. and Popowska, M., 2014. Antimicrobial susceptibility testing of *Salmonella* strains isolated from retail meat products in Poland between 2008 and 2012. Food Control 36: 199-204.

- Marshall, B.M. and Levy, S.B., 2011. Food animals and antimicrobials: impact on human health. Clinical Microbiology Reviews 24: 718-733.
- McDermott, P.F., Bodeis, S.M., English, L.L., White, D.G., Walker, R.D., Zhao, S., Simjee, S. and Wagner, D.V., 2002. Ciprofloxacin resistance in *Campylobacter jejuni* evolves rapidly in chickens treated with fluoroquinolones. Journal of Infectious Diseases 185: 837-840.
- Miriagou, V., Tassios, P.T., Legakis, N.J. and Tzouvelekis, L.S., 2004. Expanded-spectrum cephalosporin resistance in non-typhoid *Salmonella*. International Journal of Antimicrobial Agents 23: 547-555.
- Mole, B., 2013. Farming up trouble. Nature 499: 398-400.
- Nachamkin, I., Engberg, I.J. and Moller Aarestrup, F., 2000. Diagnosis and antimicrobial susceptibility of *Campylobacter* species. In: Nachamkin, I. and Blaser, M.J. (eds.) Campylobacter. ASM Press, Washington, DC, USA, pp. 45-66.
- Nachamkin, I., 2002. Chronic effects of Campylobacter infection. Microbes and Infection 4: 399-403.
- Namata, H., Welby, S., Aerts, M., Faes, C., Cortinas Abrahantes, J., Imberechts, H., Vermeesch, K., Hooyberghs, J., Merox, E. and Mintiens, K., 2009. Identification of risk factors for the prevalence and persistence of *Salmonella* in Belgian broiler chicken flocks. Preventive Veterinary Medicine 90: 211-222.
- Newell, D.G., Koopmans, M., Verhoef, L., Duizer, E., Aidara-Kane, A., Sprong, H., Opsteegh, M., Langelaar, M., Threfall, J., Scjeitz, F., Van der Giessen, J. and Kruse, H., 2010. Food-borne diseases – the challenges of 20 years ago still persist while new ones continue to merge. International Journal of Food Microbiology 139: S3-S15.
- Niewold, T.A., 2014. Why anti-inflammatory compounds are the solution for the problem with in feed antibiotics. Quality Assurance and Safety of Crops and Foods 6: 119-122.
- Ortega-Morente, E., Fernandez-Fuentes, M.A., Grande Burgos, M.J., Abriouel, H., Perez Pulido, R. and Galvez, A., 2013. Biocide tolerance in bacteria. International Journal of Food Microbiology 162: 13-25.
- Palaniappan, K. and Holley R.A., 2010. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. International Journal of Food Microbiology 140: 164-168.
- Payot, S., Bolla, J.M., Corcodan, D., Fanning, S., Megraud, F. and Zhang, Q.Z., 2006. Mechanisms of fluoroquinolone and macrolide resistance in *Campylobacter* spp. Microbes and Infection 8: 1967-1971.
- Pérez-Boto, D., Herrera-León, D.S., García-Peña, F.J., Abad-Moreno, J.C. and Echeita, M.A., 2014. Molecular mechanisms of quinolone, macrolide, and tetracycline resistance among *Campylobacter* isolates from initial stages of broiler production. Avian Pathology 43: 176-182.
- Randrianarivelo, R., Danthu, P., Benoit, C., Ruez, P., Raherimandimby, M. and Sarter, S., 2010. Novel alternative to antibiotics in shrimp hatchery: effects of the essential oil of *Cinnamosma fragrans* on survival and bacterial concentration of *Penaeus monodon* larvae. Journal of Applied Microbiology 109: 642-650.
- Randrianarivelo, R., Sarter, S., Odoux, E., Brat, P., Lebrun, M., Romestand, B., Menut, C., Andrianoelisoa, H.S., Raherimandimby, M. and Danthu, P., 2009. Composition and antimicrobial activity of essential oils of *Cinnamosma fragrans*. Food Chemistry 114: 680-684.

- Rossi, R., Pastorelli, G., Cannata, S. and Corino, C., 2010. Recent advances in the use of fatty acids as supplements in pig diets: a review. Animal Feed Science and Technology 162: 1-11.
- Schelz, Z., Hohmann, J. and Molnar, J., 2010. Recent advances in research of antimicrobial effects on essential oils and plant derived compounds on bacteria. In: Chattopadhyay, D. (ed.) Ethnomedicine: a source of complementary therapeutics. Research Signpost, Kerala, India, pp. 179-201.
- Schneitz, C., 2005. Competitive exclusion in poultry 30 years of research. Food Control 16: 657-667.
- Schneitz, C. and Hakkinen, M., 1998. Comparison of two different types of competitive exclusion products. Letters in Applied Microbiology 26: 338-341.
- Schwarz, S. and Chaslus-Dancla, E., 2001. Use of antimicrobials in veterinary medicine and mechanisms of resistance. Veterinary Research 32: 201-225.
- Sheridan, A., Lenahan, M., Duffy, G., Fanning, S. and Burgess, C., 2012. The potential for biocide tolerance in *Escherichia coli* and its impact on the response to food processing stresses. Food Control 26: 98-106.
- Silley, P., De Jong, A., Simjee, S. and Thomas, V., 2011. Harmonisation of resistance monitoring programmes in veterinary medicine: an urgent need in the EU? International Journal of Antimicrobial Agents 37: 504-512.
- Smith, J.L. and Fratamico, P.M., 2010. Fluoroquinolone resistance in Campylobacter. Journal of Food Protection 73: 1141-1152.
- Smole-Mozina, S., Kurincic, M., Ursic, A., Kramar, A., Ursic, S. and Katalinic, V., 2009. Prevalence and resistance against different antimicrobial compounds of *Campylobacter* spp. in/from retail poultry meat. Tehnologija mesa 50: 112-120.
- Teuber, M., 2001. Veterinary use and antibiotic resistance. Current Opinion in Microbiology 4: 493-499.
- Threlfall, E.J., Day, M., De Pinna, E., Charlett, A. and Goodyear, K.L., 2006. Assessment of factors contributing to changes in the incidence of antimicrobial drug resistance in *Salmonella enterica* serotypes Enteritidis and Typhimurium from human in England and Whales in 2000, 2002 and 2004. International Journal of Antimicrobial Agents 28: 389-395.
- Van Boeckel, T.P., Brower, C., Gilbert, M., Grenfell, B.T., Levin, S.A., Robinson, T.P., Teillant, A. and Laxminarayan, R., 2015. Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States 112: 5649-5654.
- Vandeplas, S., Dubois Dauphin, R., Beckers, Y., Thonart, P. and Thewis, A., 2010. *Salmonella* in chicken: current and developing strategies to reduce contamination at farm level. Journal of Food Protection 473: 774-785.
- Wasyl, D. and Hoszowski, A. 2012. First isolation of ESBL-producing *Salmonella* and emergence of multiresistant *Salmonella* Kentucky in turkey in Poland. Food Research International 45: 958-961.
- Webber, M.A. and Piddock, L.J.V., 2003. The importance of efflux pumps in bacterial antibiotic resistance. Journal of Antimicrobial Chemotherapy 51: 9-11.

- Wiedemann, B. and Knothe, H., 1971. Epidemiological investigations of R factor-bearing enterobacteria in man and in animal in Germany. Annals of the New York Academy of Sciences 182: 380-382.
- Wimalarathna, H.M.L, Richardson, J.F., Lawson, A.J., Elson, R., Meldrum, R., Little, C.L., Maiden, M.C.J., McCarthy, N.D. and Sheppard, S.K., 2013. Widespread acquisition of antimicrobial resistance among *Campylobacter* isolates from UK retail poultry and evidence for clonal expansion of resistant lineages. BMC Microbiology 13(160): 1-9.
- Windisch, W., Schedle, K., Plitxner, C. and Kroimayr, A., 2008. Use of phytogenic products as feed additives for swine and poultry. Journal of Animal Science 86: e140-e148.
- Wirz, S.E., Overesch, G., Kuhnert, P. and Korczak, B.M., 2010. Genotype and antibiotic resistance analyses of *Campylobacter* isolates from ceca and carcasses of slaughtered broiler flocks. Applied and Environmental Microbiology 76: 6377-6386.
- World Health Organization (WHO), 1997. The medical impact of the use of antimicrobials in food animals. Report of a WHO meeting. Berlin, Germany, October 13-17, 1997. Available at: http://tinyurl.com/z73punb.
- World Health Organization (WHO), 2009. Critically important antimicrobials for human medicine, 2nd revision. WHO, Genève, Switzerland. Available at: http://tinyurl.com/naljsg4.
- World Health Organization (WHO), 2011a. Critically important antimicrobials for human medicine, 3rd revision. WHO, Genève, Switzerland. Available at: http://tinyurl.com/p4ks6nf.
- World Health Organization (WHO), 2011b. Tackling antibiotic resistance from the European perspective. WHO, Genève, Switzerland. Available at: http://tinyurl.com/obo5s3q.
- Yamasaki, S., Nagasawa, S., Fukushima, A., Hayashi-Nishino, M. and Nishino, K., 2013. Cooperation of the multidrug efflux pump and lipopolysaccharides in the intrinsic antibiotic resistance of *Salmonella enterica* serovar Typhimurium. Journal of Antimicrobial Chemotherapy 68: 1066-1070.
- Yang, Y., Iji, P.A., Kocher, A., Mikkelsen, L.L. and Choct, M., 2008.
 Effects of mannanoligosaccharide and fructooligosaccharide on the response of broilers to pathogenic *Escherichia coli* challenge.
 British Poultry Science 49: 550-559.
- Zentek, J., Buchheit-Renko, S., Ferrara, F., Vahjen, W., Van Kessel, A.G. and Pieper, R., 2011. Nutritional and physiological role of medium-chain triglycerides and medium-chain fatty acids in piglets. Animal Health Research Reviews 12: 83-93.
- Zhang, Q., Lin, J. and Pereira, S., 2003. Fluoroquinolone-resistant *Campylobacter* in animal reservoirs: dynamics of development, resistance mechanisms and ecological fitness. Animal Health Research Reviews 4: 63-71.
- Zoete, M.R., Van Putten, J.P. and Wagenaar, J.A., 2007. Vaccination of chickens against *Campylobacter*. Vaccine 25: 5548-5575.