

Profile and total content of phenolics and antioxidant activity of commercial table olives from Turkey

G. Yıldız and V. Uylaşer*

Department of Food Engineering, Faculty of Agriculture, Uludag University, Bursa 16059, Turkey; uylaserv@uludag.edu.tr

Received: 7 April 2014 / Accepted: 14 September 2014 © 2014 Wageningen Academic Publishers

RESEARCH ARTICLE

Abstract

Phenolic compounds, total phenolic content and antioxidant activity of five commercial table olives (Domat, Edremit green, Kalamata, Edremit black and Gemlik) from Turkey were investigated. Quantitative analysis of phenolic compounds was done by high-performance liquid chromatography and 11 compounds were identified in table olives. The major phenolic compounds detected in olive samples were hydroxytyrosol and tyrosol, respectively. In general, Domat type table olive had higher levels of phenolic compounds, while dry salted Gemlik olives were poor in phenolic compounds compared to other table olives. Total phenolic content of the olive samples (wet basis) range between 229.12 and 415.34 mg caffeic acid/100 g. Antioxidant activity of olives (wet basis) was not related to their phenolics content, the latter showing more variation depending on the olive type. Domat olives (10.01 μ mol Trolox equivalents/g) had significantly (P<0.05) higher antioxidant activity than the other table olives.

Keywords: antioxidant activity, hydroxytyrosol, phenolic compounds, table olive, Gemlik

1. Introduction

Phenolic compounds, also referred as polyphenols, are wide and complex group of secondary metabolites derived from shikimic acid pathway and phenylpropanoid metabolism (Ryan et al., 1999a). Chemically, they are possessing at least one aromatic ring which is attached one or more hydroxyl groups and can vary from simple phenolic molecules to highly polymerised compounds (Balasundaram et al., 2006; Shahidi and Naczk, 1995). Nowadays, there is a growing interest in phenolic compounds because of their multiple biological effects such as antioxidant activity, antiinflammatory, anti-allergic, antimicrobial and anticancer activities (Huang et al., 2010; Ignat et al., 2011; Owen et al., 2000; Shahidi and Naczk, 1995; Wong et al., 2010). Antioxidant activity of phenolic compounds is related to their ability to scavenging free radicals, chelating transitionmetals involved in free radical production and inhibiting the enzymes participating in free radical generation (Aruoma, 2003; Hensley et al., 2004). Phenolic compounds are widely found in plant-derived foods and constitute an essential part of the human diet (Kris-Etherton et al., 2002; Motilva et al., 2013).

The olive and olive products are good sources of biologically active phenolic compounds (Boskou et al., 2006; Cicerale et al., 2010; Montano and Casado, 2005). The olive fruit, a basic ingredient of the Mediterranean diet, is the most widespread and economically important agricultural product in Mediterranean countries, especially in Spain, Italy, Greece and Turkey. The positive effects on human health of olive products, beside the unsaturated fatty acid content rich in oleic acid, are related to phenolic compounds (Charoenprasert and Mitchell, 2012; Sakouhi et al., 2011). Ben Othman et al. (2008) reported that the consumption of 50 g of table olives provides about 152 mg of phenolic compounds. Recent findings support that olive phenolic compounds have in vitro and in vivo antioxidant activity (Owen et al., 2000). In addition to contributing to high antioxidant levels, phenolic compounds give olives important characteristics and properties, such as colour, taste and texture (Marsilio et al., 2001). Phenolics include thousands of compounds with different chemical structures and can basically be classified into different groups (Motilva et al., 2013). There are at least thirty different simple and complex phenolic compounds have been identified in table olives (Ben Othman et al., 2008; Boskou et al., 2006; Malheiro et al., 2012; Marsilio et al., 2001). The most important classes of phenolic compounds present in olives are phenolic acids, phenolic alcohols, flavonoids and secoiridoids (Esti et al., 1998; Vinha et al., 2005). Phenolic acids consist of two classes: (1) hydroxybenzoic acids such as gallic, p-hydroxybenzoic, protocatechuic, vanillic and syringic acids; and (2) hydroxycinnamic acids such as caffeic, ferulic, p-coumaric and sinapic acids (Bravo, 1998). Hydroxytyrosol and tyrosol are the major phenolic alcohols present in olive fruits (Ben Othman et al., 2008; Blekas et al., 2002). Flavonoids found in olive are luteolin-7-glucoside, cyanidin-3-glucoside, cyanidin-3-rutinoside, rutin, apigenin-7-glucoside, quercetin-3 rhamnoside, and luteolin (Vinha et al., 2005). Phenolic compounds of secoiridoids class in olive include oleuropein, demethyloleuropein, and ligstroside (Servili et al., 1999; Sivakumar et al., 2005). Oleuropein, a bitter component, is generally the most prominent phenolic compound in olive fruit and its concentration decreases with fruit maturation and give rise to hydroxytyrosol and other simple phenolic compounds (Amiot et al., 1986; Esti et al., 1998; Ryan et al., 1999b).

The main purpose of table olive processing is to make olives palatable and acceptable to the consumers by completely or partially removing the bitter taste of the olive fruit. There are many table olive processing methods, depending on olive cultivar, degree of ripeness, fruit size, processing technology, cultural and traditional factors (Therios, 2009). The most commonly used methods to process olives are: (1) Spanish-style green olives in brine; (2) Greek-style naturally black olives in brine; (3) Californian black ripe olives; and (4) Gemlik-style naturally fermented black olives in dry salt (Uylaser and Yıldız, 2014). Processing methods affect both the content and profile of the phenolic compounds in table olives (Brenes *et al.*, 1995; Marsilio *et al.*, 2001).

Several studies have presented phenolic composition, total phenolic content and antioxidant activity of olives from different countries, including Turkey (Aktas *et al.*, 2014; Blekas *et al.*, 2002; Dağdelen *et al.*, 2013; Keceli, 2013; Lanza *et al.*, 2013; Pistarino *et al.*, 2013; Sahan *et al.*, 2013; Sezai, 2009; Soufi *et al.*, 2014). In addition, while the phenolic

content of olive oil has been under investigation for many years (Arslan and Özcan, 2011; Franco *et al.*, 2014; Gençer *et al.*, 2009; Gouvinhas *et al.*, 2014; Owen *et al.*, 2000; Visioli *et al.*, 1998), the phenolic compounds of table olives have not been studied to the same extent. As far as we know, there is no study available regarding to phenolic composition of commercial table olives commonly consumed in Turkey. From this point, the purpose of this work was to determine phenolic compounds of different table olives obtained from Turkish markets. Antioxidant activity and total phenolic content of table olives were also investigated.

2. Materials and methods

Materials

In this study, five widely consumed commercial types of Turkish table olives (Domat, Kalamata, Edremit green, Edremit black and Gemlik) which were separated according to preparation method were chosen. Three samples for each type of commercial ready-to-eat table olive samples that belong to the 2010 olive harvest season were purchased directly from the local markets in Bursa, Turkey in 2011, where they were packed in plastic bags and stored at room temperature. Basic characteristics of the studied table olives are listed in Table 1 along with their processing techniques. Domat olives with green-yellow surface colour were harvested by beginning of October. Olives treated with a dilute sodium hydroxide solution (2-5%, w/v) and then washed in tap water for removing of sodium hydroxide completely. Domat olives were brined (10%, w/v) where they undergo a typical lactic acid fermentation and packed in brine as whole. To prepare to Kalamata olive, fruits were harvested when its colour turned from pink to purple (beginning of November) and to remove the bitter taste, olives were placed in brine consisting 2-3% salt. The brine was changed every day or every two days until the bitter taste was removed. Afterwards, olives were placed in vinegar together with brine (8-10%, w/v) and required sour and taste was provided. At the end of this period, olives were packed with 8% brine as whole. Edremit olives were used for Edremit black and Edremit green table olives. Fully ripened Edremit black olives were harvested at the end of

Table 1. Basic characteristics of commercial table olives.

Туре	Cultivar	Processing technique	Characteristics	Olive harvest location	Moisture content (%)
Domat	Domat	Spanish type	Large, green olives stored in brine	Manisa-Akhisar	64.82
Kalamata	Kalamata	Kalamata type	Large, elongated olives with a red-brown colour stored in brine	İzmir-Ödemiş	64.64
Edremit green	Edremit	scratched	Small, scratched olives with a green colour stored in brine	Balıkesir-Ayvalık	62.72
Edremit black	Edremit	naturally fermented	Small black olives in brine and packing with oil	Balıkesir-Ayvalık	46.76
Gemlik	Gemlik	dry salted	Intermediate olives with a black colour	Bursa-Gemlik	54.33

November and placed directly into the brine (8-10%, w/v) for fermentation and packed with oil as whole. Edremit green olives, which were harvested between October and November, scratched on 2 or 3 sides and placed in water and the water was changed every other day to remove bitter taste. Olives, in which bitter taste was removed, were transferred to the fermentation tanks and brines salt ratio was increased progressively and reaches to 5-6%. After the fermentation, olives were packed with brine (8-10%, w/v) as whole. Gemlik variety olives were harvested in the middle of December and placed in basket as of one layer olive and one layer big salts in the rate of 15 kg salt for 100 kg olive. Gemlik olives were became edible after 3-4 weeks and packed as whole.

Chemicals

High-performance liquid chromatography (HPLC) grade methanol, acetic acid, and hexane were purchased from Merck (Darmstadt, Germany). The phenolic compound standards (hydroxytyrosol, tyrosol, protocatechuic acid, p-coumaric acid, cinnamic acid, syringic acid, caffeic acid (CA), ferulic acid, 4-hydroxybenzoic acid, 4-hydroxyphenlyacetic acid and vanillic acid) were supplied from Sigma-Aldrich (St. Louis, MO, USA) and Fluka Chemie GmbH (Buchs, Switzerland). The chemicals Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) and Folin-Ciocalteu's phenol reagent were obtained from Merck; and 2,2-diphenyl-1-picrylhydrazyl (DPPH) was from Sigma-Aldrich.

Preparation of sample extracts

Table olive extracts for phenolic compounds analysis were prepared based on the method described by Arslan and Özcan (2011) with some modifications. The extracts obtained by homogenizing 15 g of olive flesh in 20 ml of 80% aqueous methanol until uniform consistency, using Ultra-Turrax homogeniser (T25 Digital; Ika Works Inc., Wilmington, NC, USA). The homogenates were centrifuged at 15,000×g at 4 °C for 10 min (Sigma 3K30; SciQuip Ltd., Newtown, UK). The pellet was re-extracted as above and obtained extracts were combined. The collected supernatants washed with hexane (2×10 ml), in order to remove the lipid fraction. After separation of hexane phase, the phenolic compounds extracts were passed through 0.45 µm prior to HPLC analysis. The extracts obtained were used also for total phenolic content and antioxidant activity determination of table olive samples.

Determination of total phenolic content

Total phenolic contents were analyses with Folin-Ciocalteu's phenol reagent method, based on Singh *et al.* (2002). First, 0.3 ml of methanolic extracts diluted at a 1:10 ratio was added to 1.5 ml Folin-Ciocalteu reagent (diluted at a 1/10

ratio). The mixture was allowed to react for 5 min then 1.2 ml 1 M sodium carbonate solution was added. The mixture was vortexed for 5 sec and incubated in the darkness at room temperature for 90 min. Absorbance values of samples were measured at 765 nm (Optizen 3220 UV; Mecasys, Daejeon, Republic of Korea). The calibration curve was prepared with CA and the results were expressed as CA equivalents (mg CA/100 g) on wet basis.

Determination of antioxidant activity

The DPPH radical scavenging assay was done according to the method of Boskou *et al.* (2006) with minor modifications. The DPPH radical was dissolved in methanol to a concentration of 6×10^{-5} M. 3 ml of methanolic solution of DPPH radical was added to 1 ml of 3 mg/ml concentration of methanolic extracts from the table olive samples. The tubes were vortexed for 15 to 30 sec and allowed to stand in the dark at room temperature for 60 min. Then the decrease in absorbance at 515 nm was recorded in Optizen 3220 UV spectrophotometer (Mecasys). The standard curve was prepared using different concentrations of Trolox and the antioxidant activity of each sample was expressed in terms of μ mol Trolox equivalents (TE)/g on wet basis.

HPLC analysis of phenolic compounds

Analyses of the phenolic composition of table olives were conducted using a Flexar HPLC system (PerkinElmer, Waltham, MA, USA) equipped with a diode array detector and a 4.6 mm × 250 mm i.d., 5 µm particle size, reversedphase C18 column (PerkinElmer ODS-2). The solvent system consisted of water:acetic acid (98:2, v/v) as solvent A and methanol as solvent B, starting with 5% methanol and installing a gradient to obtain 15% B at 5 min, 20% B at 15 min, 25% B at 27 min, 30% B at 37 min, 35% B at 43 min, 40% B at 53 min, 50% B at 58 min, 60% B at 60 min and 100% B at 74 min. The column was maintained at 30 °C, the flow rate was set at 1 ml/min with injection volume of 40 µl and the detection was performed at 280 and 320 nm. Phenolic compounds were identified and quantified by comparison of their retention times those of standards and were expressed as mg/100 g on wet basis.

Statistical analysis

The data were analysed using the JMP (Version 7.0; SAS Institute Inc., Cary, NC, USA) software program. Values are given as the mean ± standard deviation of three measurements. Mean differences were tested with a least significant difference test at a 5% level of significance.

3. Results and discussion

Total phenolic content and antioxidant activity of table olives

The total phenolic content and antioxidant activity of studied table olives are presented in Figure 1 and 2. The total phenolic content of the table olives ranged 229.12 mg CA/100 g in Edremit green olives to 415.34 mg CA/100 g in Domat olives. There was no significant difference between Domat and Edremit black (405.98 mg CA/100 g); Kalamata (229.01 mg CA/100 g) and Gemlik (277.86 mg CA/100 g); and Edremit green (229.01 mg CA/100 g) and Gemlik olives (P>0.05). Total phenolic values obtained by the HPLC method were lower than those estimated by the Folin-Ciocalteu method. The lower total phenolic content of samples could be explained by that some phenolic compounds may escape determination by chromatography (Santos-Buelga and Scalbert, 2000). In addition, this difference may have resulted from interference of other reducing substance in the colorimetric Folin-Ciocalteu method (Ben Othman et al., 2009; Schieber et al., 2001). Ben Othman et al. (2008) estimated the total phenolic content in black table olives as 219-459 mg gallic acid/100 g, in green olives as 329-461 mg gallic acid/100 g and in dry salted black olives as 144 mg gallic acid/100 g.

Among all table olives studied, Domat olives (10.01 µmol TE/g) had the highest antioxidant activity, and Gemlik olives (6.49 µmol TE/g) had the lowest antioxidant activity. There were no significant differences between antioxidant activity among the Edremit green (7.38 µmol TE/g) and Kalamata (7.38 μ mol TE/g) olives (P>0.05). Antioxidant activity of table olives follows the order: Domat > Kalamata > Edremit black > Edremit green > Gemlik olives. Hydroxytyrosol is known as nutritionally important phenolic compound belonging to o-diphenol group with the special antioxidant activity. The antioxidant activity of hydroxytyrosol is related to its ability to improve radical stability. Domat olives showed the highest hydroxytyrosol content and Gemlik olives had the lowest hydroxytyrosol content (Table 2). Several authors have reported that antioxidant activity of olives related to their hydroxytyrosol levels (Gonzales-Hidalgo et al. 2012; Issaoui et al. 2011). The antioxidant activity of the olive samples were proportional to their total

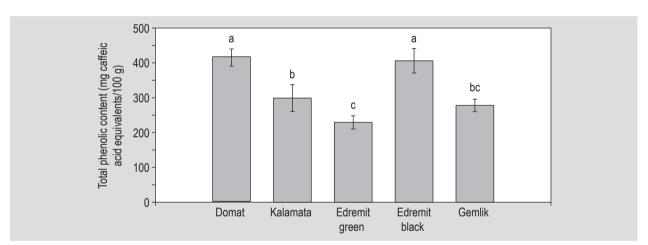


Figure 1. Total phenolic content of table olives (wet basis). Bars with different letters are significantly different (P<0.05).

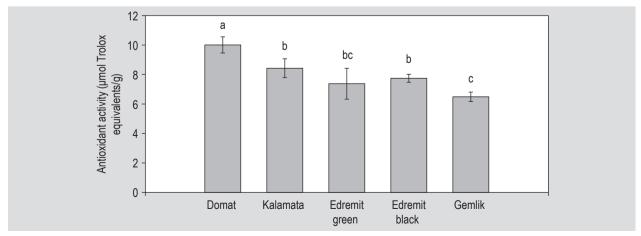


Figure 2. Antioxidant activity of table olives (wet basis). Bars with different letters are significantly different (P<0.05).

Table 2. Phenolic profile of table olives expressed in mg/100 g on wet basis. 1

Phenolic compound	Retention time (min)	Domat	Kalamata	Edremit green	Edremit black	Gemlik
Hydroxytyrosol	9.76	61.10±0.60 ^a	47.02±0.53 ^b	15.64±0.34 ^d	43.03±0.53c	9.71±0.24 ^e
Tyrosol	11.17	29.36±0.96a	16.86±0.82c	16.54±0.50 ^c	21.45±1.44 ^b	8.46±0.09 ^d
4-hydroxybenzoic acid	14.06	4.23±0.11a	3.59±0.20b	0.29±0.04c	0.13±0.04 ^{cd}	Nd
4-hydroxyphenlyacetic acid	18.79	Nd ²	Nd	Nd	3.09±0.11a	Nd
Vanillic acid	22.12	5.25±0.10 ^b	6.06±0.28a	0.05±0.02 ^e	2.61±0.15 ^c	0.59±0.10 ^d
Syringic acid	23.74	0.07±0.02c	0.64±0.06a	Nd	0.14±0.03 ^b	Nd
Protocatechuic acid	25.62	17.18±0.37 ^a	0.86±0.10e	2.76±0.10 ^d	8.99±0.31 ^b	3.85±0.11c
p-coumaric acid	28.43	5.28±0.27 ^a	5.39±0.10 ^a	0.09±0.03c	5.53±0.47 ^a	0.35±0.08b
Caffeic acid	31.86	13.99±0.07 ^a	Nd	Nd	2.44±0.14b	0.47±0.04 ^c
Ferulic acid	35.69	Nd	5.65±0.16 ^a	4.07±0.11b	3.14±0.17 ^c	Nd
Cinnamic acid	60.33	0.35±0.07 ^a	0.07±0.02 ^{cd}	0.24±0.04 ^b	0.15±0.07 ^c	Nd
Total		136.81	86.14	39.68	90.7	23.43

¹ Means with different superscript letters in the same row differ significantly (*P*<0.05).

phenolic contents, except Edremit green and Gemlik olives. Gemlik olives had higher phenolic content according to Folin-Ciocalteu method than Edremit green olive samples while Gemlik olives showed a lower antioxidant activity than Edremit green olives (*P*>0.05). This result might be caused by lower percentage of humidity as well as the lower content of hydroxytyrosol. DeJong and Lanari (2009) noted that the there was a positive relationship between phenolic content and antioxidant activity. In contrast, Boskou *et al.* (2006) reported that table olive sample that showed highest polyphenol content did not exhibited highest antioxidant activity. Thus, phenolic content and antioxidant activity of table olives depend on processing technique and cultivar.

Phenolic compounds profile of table olives

The quantities of phenolic compounds in five different commercial table olives are reported in Table 2. There were significant differences in phenolic compounds among table olives. Among the identified phenolic compounds hydroxytyrosol, tyrosol, vanillic acid, protocatechuic acid and p-coumaric acid were detected in all table olive samples. Hydroxytyrosol and tyrosol were major phenolic compounds identified in methanolic extracts, which was also stated in previous studies (Ben Othman et al., 2008; Boskou et al., 2006; Brenes et al., 1995). The amount of hydroxytyrosol ranged from 9.71 to 61.10 mg/100 g, corresponding to Gemlik and Domat, respectively. Green Domat table olives contain significantly much higher concentrations of hydroxytyrosol than either black table olives or Kalamata table olive (P<0.05). This compound results from the hydrolysis of oleuropein, which is the main phenolic compound in unprocessed olive fruits. The debittering process in table olive production is aim to remove the natural bitterness of fruit, caused by the oleuropein (an ester of hydroxytyrosol with elenoic acid glucoside) (Charoenprasert and Mitchell, 2012). Debittering process causes diffusion of phenolic compounds and other soluble constituents from the fruit to the water, brine or lye and vice versa. When lye is used sodium hydroxide and constituents with carboxylic and hydroxyl groups react and the hydrophilic derivatives are washed away. Oleuropein and verbascoside are hydrolyzed to a great extent during the lye treatment. Acid hydrolysis of hydroxytyrosol, tyrosol and luteolin glycosides takes place during the fermentation in brine when naturally black olives are prepared. Thus, the prevailing phenols in table olives are hydroxytyrosol, tyrosol, luteolin and phenolic acids (Blekas et al., 2002; Boskou et al., 2006). The phenolic alcohol hydroxytyrosol, becomes the major phenolic compound in the final product (Brenes et al., 1995). Black dry salted Gemlik type olive had the lowest hydroxytyrosol and in general was poor in phenolic compounds, when compared to other table olives. This could be explained by during dry salting process important water loss occurred that lead to high water solubility hydroxytyrosol decrease in olive. Boskou et al. (2006) reported the following hydroxytyrosol levels: 22-66 mg/100 g in black table olives (Kalamon, Amfissa, and Tsakistes), 114 mg/100 g in green table olives (Crete) and 2 mg/100 g in varicoloured table olives (Throubes Crete). According to another study, hydroxytyrosol levels (on dry basis) were ranged between 219.8-283.2 mg/100 g in green table olives, 35.55-83.34 mg/100 g in black table olives and 85.78 mg/100 g in varicoloured table olive. In addition, hydroxytyrosol is not detected in dry salted table olive (Ben Othman et al., 2008). Other phenolic alcohol tyrosol is a hydrolysis product of ligstroside and it is less abundant than hydroxytyrosol. The highest tyrosol content

² Nd = not detected.

was observed in the Domat, which had 29.36 mg/100 g. The tyrosol and hydroxytyrosol contents reported by Rodriguez *et al.* (2009) with ranged from 90-195 mg/kg and 278-543 mg/kg, respectively, for Kalamata olives; and 41 mg/kg and 25-116 mg/kg, respectively, for black dry salted olives (Thassos).

Domat type olives contained the highest cinnamic acid (0.35 mg/100 g) compared to the other table olive types (P<0.05). Cinnamic acid was not detected in Gemlik type olive. Vanillic acid is a one of the primary phenolic acid present in olives. The vanillic acid levels of the table olives ranged from 0.05 mg/100 g in Edremit green olives to 6.06 mg/100 g in Kalamata olives. All studied table olives also contained phenolic acids: protocatechuic acid (0.86-17.18 mg/100 g) and p-coumaric acid (0.09-5.53 mg/100 g). The samples with significantly higher syringic acid content were obtained from Kalamata (0.64 mg/100 g) olives (P<0.05). 4-hydroxybenzoic acid level was significantly higher (P<0.05) in the Domat type olives (4.23 mg/100 g). This phenolic acid was not detected in Gemlik olives. Other phenolic acids detected in some of five table olives were CA (0.47-13.99 mg/100 g) and ferulic acid (3.14-5.65 mg/100 g). However, 4-hydroxyphenlyacetic acid was detected only in Edremit black olive with 3.09 mg/100 g.

Compared to previous studies, differences were observed on both quantitative and qualitative fractions of phenolic compounds in the studied commercial table olives. There are many factors that can affect the phenolic composition of table olives including the cultivar (Malheiro et al. 2012; Romero et al., 2004; Vinha et al., 2005), maturation degree (Ben Othman et al., 2009), irrigation regimes (Romero et al., 2002) and importantly, the methods used for curing and processing table olives. Ben Othman et al. (2009) investigating the changes in simple phenolic compounds during olive processing of Chetoui cultivar and reported that both spontaneous and controlled fermentations led to an important loss of total phenolic compounds, with a reduction rate of 32-58%. According to the results of this study, the hydroxytyrosol (in black olives increased from 165 mg/100 g to 312 and 380 mg/100 g on dry basis after spontaneous and controlled fermentations, respectively) and CA concentrations increased, whereas the protocatechuic acid, ferulic acid, and oleuropein (in green olives decreased from 266 mg/100 g to 30.7 and 16.1 mg/100 g on dry basis after spontaneous and controlled fermentation, respectively) concentrations decreased after fermentation.

Processing methods influenced the phenolic composition of olives via hydrolysis of phenolics that can be catalysed either chemically (as with base or acid) or with enzymes (e.g. glycosidases), oxidation of phenolic compounds by phenoloxidases and polymerisation of free phenolics. In present study obtained results showed that there were

differences among the phenolic composition of the commercial table olives depending on type. Green Domat olives showed much higher concentration of phenolic compounds (except vanillic and syringic acid) than other table olives can be attributed to cultivated variety, maturation degree of olives and debittering process (in a sodium hydroxide solution) that was used for this olive type. Morello et al. (2004) reported that the phenolic content of olives decreases during maturation. However, Edremit green olives showed lower amounts of phenolic compounds from Edremit black olives, which are producing same cultivar. These significant differences between Edremit green and Edremit black olives can be strongly related to scratching process (applied in Edremit green olive production). In addition higher phenolic compound levels (except ferulic acid) in Green Domat table olives than Edremit green olives can be explained by different cultivar and the scratching process which is simplify the diffusion of phenolic compounds of the olive fruit to the brine. Obtained data on table olives may also vary according to brine (and vinegar concentration) due to soaking solution extracted a significant concentration of phenolic compounds.

4. Conclusions

There are differences among the both quantitative and qualitative phenolic profile according to olive cultivar, maturation degree and processing method. Domat olives appear to be the most important source of both phenolic compounds and antioxidants. The main phenolic compounds were hydroxytyrosol and tyrosol. Furthermore, difference in phenolic profile of table olive influenced the antioxidant activity and total phenolic content. In addition, there was no direct relationship between the phenolic acids content and the antioxidant activity in the five types of olives tested. Since the growing interest in natural phenolic compounds in recent years, obtained results provide evidence about table olives. However, in order to complement these findings, further studies would be needed on the bioavailability these olive phenolic compounds and on consumer preferences. In addition, further studies on the effects of location and processing methods on the phenolic composition of table olives that are producing same cultivar are under investigation.

Acknowledgements

This work was supported by Uludag University Scientific Research Projects (no. UAP(Z)-2012/5).

References

Aktas, A.B., Ozen, B., Tokatli, F. and Sen, I., 2014. Phenolics profile of a naturally debittering olive in comparison to regular olive varieties. Journal of the Science of Food and Agriculture 94: 691-698.

- Amiot, M.J., Fleuriet, A. and Macheix, J.J., 1986. Importance and evolution of phenolic compounds in olive during growth and maturation. Journal of Agricultural and Food Chemistry 34: 823-826.
- Arslan, D. and Özcan, M.M., 2011. Phenolic profile and antioxidant activity of olive fruits of Turkish variery 'Sarıulak' from different locations. Grasas Y Aceites 62: 453-461.
- Aruoma, O.I., 2003. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutation Research 523-524: 9-20.
- Balasundaram, N., Sundaram, K. and Samman, S., 2006. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence and potential uses. Food Chemistry 99: 191-203.
- Ben Othman, N., Roblain, D., Chammen, N., Thonart, P. and Hamdi, M., 2009. Antioxidant phenolic compounds loss during the fermentation of Chetoui olives. Food Chemistry 116: 662-669.
- Ben Othman, N., Roblain, D., Thonart, P. and Hamdi, M., 2008. Tunisian table olive phenolic compounds and their antioxidant capacity. Journal of Food Science 73: C235-C240.
- Blekas, G., Vassilakis, C., Harizanis, C., Tsimidou, M. and Boskou, D.G., 2002. Biophenols in table olives. Journal of Agricultural and Food Chemistry 50: 3688-3692.
- Boskou, G., Salta, F.N., Chrysostomou, S., Mylona, A., Chiou, A. and Andrikopoulos, N.K., 2006. Antioxidant capacity and phenolic profile of table olives from Greek market. Food Chemistry 94: 558-564.
- Bravo, L., 1998. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews 56: 317-333.
- Brenes, M., Romero, C., Garcia, P. and Garrido, A., 1995. Effect of pH on the colour formed by Fe-phenolic complex in ripe olives. Journal of the Science of Food and Agriculture 67: 35-41.
- Charoenprasert, S. and Mitchell, A., 2012. Factors influencing phenolic compounds in table olives (*Olea europaea*). Journal of Agricultural and Food Chemistry 60: 7081-7095.
- Cicerale, S., Lucas, L. and Keast, R., 2010. Biological activities of phenolic compounds present in virgin olive oil. International Journal of Molecular Sciences 11: 458-479.
- Dağdelen, A., Tümen, G., Özcan, M.M. and Dündar, E., 2013. Phenolics profiles of olive fruits (*Olea europaea* L.) and oils from Ayvalık, Domat and Gemlik varieties at different ripening stages. Food Chemistry 136: 41-45.
- DeJong, S. and Lanari, M., 2009. Extracts of olive polyphenols improve lipid stability in cooked beef and pork: contribution of individual phenolics to the antioxidant activity of the extract. Food Chemistry 116: 892-897.
- Esti, M., Cinquanta, L. and La Notte, E., 1998. Phenolic compounds in different olive varieties. Journal of Agricultural and Food Chemistry 46: 32-35.
- Franco, M.N., Galeano-Diaz, T., Lopez, O., Fernandez-Bolanos, J.G., Sanchez, J., De Miguel, C., Gil, M.V. and Martín-Vertedor, D., 2014. Phenolic compounds and antioxidant capacity of virgin olive oil. Food Chemistry 163: 289-298.
- Gençer, N., Sinan, S. and Arslan, O., 2009. Antioxidant properties of various olive cultivars. Journal of Applied Biological Sciences 3: 23-27.

- Gonzales-Hidalgo, I., Banon, S. and Ros, J.M., 2012. Evaluation of table olive by-product as a source of natural antioxidants. International Journal of Food Science and Technology 47: 674-681.
- Gouvinhas, I., Machado, J., Gomes, S., Lopes, J., Martins-Lopes, P. and Barros, A., 2014. Phenolic composition and antioxidant activity of monovarietal and commercial portuguese olive oils. Journal of the American Oil Chemists' Society 91: 1197-1203.
- Hensley, K., Mou, S., Pye, Q.N., Dixon, R.A., Summner, L.W. and Floyd, R.A., 2004. Chemical versus pharmacological actions of nutraceutical phytochemicals: Antioxidant and anti-inflammatory modalities. Current Topics in Nutraceutical Research 2: 13-26.
- Huang, W.U., Cai, Z.Y. and Zhang, J., 2010. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutrition and Cancer 62: 1-20.
- Ignat, I., Volf, I. and Popa, V.I., 2011. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry 126: 1821-1835.
- Issaoui, M., Dabbou, S., Mechri, B., Nakbi, A., Chehab, H. and Hammami, M., 2011. Fatty acid profile, sugar composition, and antioxidant compounds of table olives as affected by different treatments. European Food Research and Technology 232: 867-876.
- Keceli, T.M., 2013. Influence of time of harvest on 'Adana Topagi', 'Gemlik' olives, olive oil properties and oxidative stability. Journal of Food and Nutrition Research 1: 52-58.
- Kris-Etherton, P.M., Hecker, K.D., Bonanome, A., Coval, S.M., Binkoski, A.E., Hilpert, K.F., Griel, A.E. and Etherton, T.D., 2002. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. The American Journal of Medicine 113: 71-88.
- Lanza, B., Di Serio, M.G. and Iannucci, E., 2013. Effects of maturation and processing technologies on nutritional and sensory qualities of Itrana table. Grasas Y Aceites 64: 272-284.
- Malheiro, R., Casal, S., Sousa, A., Guedes de Pinho, P., Peres, A.M., Dias, L.G., Bento, A. and Pereria, J.A., 2012. Effect of cultivar on sensory characteristics, chemical composition, and nutritional value of stoned green table olives. Food and Bioprocess Technology 5: 1733-1742.
- Marsilio, V., Campestre, C. and Lanza, B., 2001. Phenolic compounds change during California-style ripe olive processing. Food Chemistry 74: 55-60.
- Montano, A. and Casado, F.J., 2005. Influence of processing, storage time, and pasteurization upon the tocopherol and amino acid contents of treated green table olives. European Food Research and Technology 220: 255-260.
- Morello, J.R., Romero, M.P. and Motilva, M.J., 2004. Effect of the maturation process of the olive fruit on the phenolic fraction of drupes and oils from Arbequina, Farga, and Morrut cultivars. Journal of Agricultural and Food Chemistry 52: 6002-6009.
- Motilva, M.J., Serra, A. and Macia, A., 2013. Analysis of food polyphenols by ultra-high-performance liquid chromatography coupled to mass spectrometry: an overview. Journal of Chromatography A 1292: 66-82.
- Owen, R.W., Giacosa, A., Hull, W.E., Haubner, R., Spiegelhalder, B. and Bartsch, H., 2000. The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. European Journal of Cancer 36: 1235-1247.

- Pistarino, E., Aliakbarian, B., Casazza, A.A., Paini, M., Cosulich, E.M. and Perego P., 2013. Combined effect of starter culture and temperature on phenolic compounds during fermentation of Taggiasca black olives. Food Chemistry 138: 2043-2049.
- Rodriguez, G., Lama, A., Jaramillo, S., Fuentes-Alventosa, J.S., Guillen, R., Jimenez-Araujo, A. Rodriguez-Arcos, R. and Fernandez-Bolanos, J., 2009. Dihydroxyphenylglycol (DHPG): an important phenolic compound present in natural table olives. Journal of Agricultural and Food Chemistry 57: 6298-6304.
- Romero, C., Brenes, M., Yousfi, K., Garcia, P., Garcia, A. and Garrido, A., 2004. Effect of cultivar and processing method on the contents of polyphenols in table olives. Journal of Agricultural and Food Chemistry 52: 479-484.
- Romero, M.P., Tovar, M.J., Girona, J. and Motilva, M.J., 2002. Changes in the HPLC phenolic profile of virgin olive oil from young trees (*Olea europaea* L Cv Arbequina) grown under different deficit irrigation strategies. Journal of Agricultural and Food Chemistry 50: 5349-5354.
- Ryan, D., Robards, K., Enzier, P. and Antolovich, M., 1999a. Applications of mass spectrometry to plant phenols. Trends in Analytical Chemistry 18: 362-372.
- Ryan, D., Robards, K. and Lavee, S., 1999b. Changes in phenolic content of olive during maturation. International Journal of Science and Food Technologhy 34: 265-274.
- Sahan, Y., Cansev, A. and Gülen, H., 2013. Effect of processing techniques on antioxidative enzyme activities, antioxidant capacity, phenolic compounds, and fatty acids of table olives. Food Science and Biotechnology 22(3): 613-620.
- Sakouhi, F., Herchi, W., Sebei, K., Absalon, C., Kallel, H. and Boukhchina, S., 2011. Accumulation of total lipids, fatty acids and triacylglycerols in developing fruits of *Olea europaea* L. Science Horticultural-Amsterdam 132: 7-11.
- Santos-Buelga, *C.* and Scalbert, A., 2000. Proanthocyanidins and tannin-like compounds: nature, occurrence, dietary intake and effects on nutrition and health. Journal of the Science of Food and Agriculture 80: 1094-1117.
- Schieber, A., Keller, P. and Carle, R., 2001. Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography. Journal of Chromatography A 910: 265-273.

- Servili, M., Baldioli, M., Selvaggini, R., Miniati, E. and Macchioni, A., 1999. High-performance liquid chromatography evaluation of phenols in olive fruit, virgin olive oil, vegetation waters and pomace and 1D- and 2D-nuclear magnetic resonance characterization. Journal of the American Oil Chemists' Society 76: 873-882.
- Sezai, E., 2009. Black table olives from northeastern region of Turkey: The composition and nutritive value. Pharmacognosy Magazine 5: 183-188.
- Shahidi, F. and Naczk, M., 1995. Food phenolics: sources, chemistry, effects, applications. Technomic Publishing Company, Lancaster, PA, USA.
- Singh, R.P., Chidambara, K.N. and Jayapraksina, G.K., 2002. Studies on the antioxidant activity of pomegrenate peel and seed extracts using *in vitro* models. Journal of Agricultural and Food Chemistry 50: 81-87.
- Sivakumar, G., Bati, C.B. and Uccell, N., 2005. HPLC-MS screening of the antioxidant profile of Italian olive cultivars. Chemistry of Natural Compounds 41: 588-591.
- Soufi, O., Romero, C. and Hayette, L., 2014. Ortho-diphenol profile and antioxidant activity of Algerian black olive cultivars: effect of dry salting process. Food Chemistry 157: 504-510.
- Therios, I., 2009. Crop production science in horticulture. CABI, Wallingford, UK.
- Uylaser, V. and Yıldız, G., 2014. The historical development and nutritional importance of olive and olive oil constituted an important part of the Mediterranean diet. Critical Reviews in Food Science and Nutrition 54: 1092-1110.
- Vinha, A.F., Ferreres, F., Silva, B.M., Valentao, P., Goncalves, A., Pereira, J.A., Oliveira, M.B., Seabra, R.M. and Andrade, P.B., 2005. Phenolic profiles of Portuguese olive fruits (*Olea europaea L.*): influences of cultivar and geographical origin. Food Chemistry 89: 561-568.
- Visioli, F., Bellomo, G. and Galli, C., 1998. Free radical-scavenging proporties of olive oil polyphenols. Biochemical and Biophysical Research Communications 247: 60-64.
- Wong, R.W.K., Hagg, U., Samaranayake, L., Yuen, M.K.C., Seneviratne, C.J. and Kao, R., 2010. Antimicrobial activity of Chinese medicine herbs against common bacteria in oral biofilm – A pilot study. International Journal of Oral and Maxillofacial Surgery 39: 599-605.