

Effect of coagulant type and concentration on the yield and quality of soy-lupin tofu

V. Jayasena^{1,2}, W.Y. Tah¹ and S.M. Nasar-Abbas^{1,2}

¹Curtin University, Curtin Health Innovation Research Institute, School of Public Health, Food Science and Technology, P.O. Box U1987, Perth WA 6845, Australia; ²Centre for Food and Genomic Medicine, 50 Murray Street, Perth WA 6000, Australia; s.abbas@curtin.edu.au

Received: 25 May 2012 / Accepted: 13 March 2013 © 2014 Wageningen Academic Publishers

RESEARCH ARTICLE

Abstract

Soy-lupin tofu samples were prepared by replacing 30% soybean with lupin flour. Four different coagulants, i.e. calcium sulphate, calcium lactate, magnesium sulphate and magnesium chloride, were used at three different concentrations (0.3, 0.4 and 0.5% w/v of the 'milk') to study their effect on yield and quality improvement. The results revealed that the tofu samples prepared using magnesium sulphate had higher moisture content and fresh yield than those prepared from other coagulants. The L*, a* and b* colour coordinates showed no significant differences among the samples. Fat content was affected by the type and concentration of the coagulants. Magnesium sulphate and magnesium chloride at 0.5% level produced tofu with lower fat contents. Protein contents, however, were not affected by type or concentration of coagulant. Texture profile analysis revealed that the hardness and chewiness of samples changed with the type and concentration of the coagulant whereas cohesiveness and springiness were not affected significantly. Sensory evaluation for appearance, colour, flavour, mouthfeel and overall acceptance of the selected samples showed no significant differences. Based on the higher fresh yield magnesium sulphate was found to be a better coagulant for soy-lupin tofu preparation.

Keywords: legumes, lupin, physicochemical, sensory, texture, tofu

1. Introduction

Tofu, a very popular food in the Orient particularly Far Eastern countries, is traditionally made by curding soybean milk using different coagulants. It is used as a meat substitute due to its high protein contents with good balance of amino acids and better digestibility (Liu, 1999; Read, 2002). Due to its recognised nutritional benefits, there is an increase of tofu consumption among the Western countries in recent years (Oboh, 2006).

Comparable in protein content (32% compared with 37% in soybean) and functional properties yet lower in price, Australian sweet lupin (*Lupinus angustifolius* L.) is proved to be a valuable alternative to soybean in many foods (Jayasena and Quail, 2004; Jayasena *et al.*, 2004). In addition, lupin is lower in fat (6% compared with 18% in soybean) and higher in dietary fibre contents (30% compared with 9% in soybean) that provides a healthier choice to be used as

ingredient in many foods (Hall and Johnson, 2004; Jayasena et al., 2009). Compared to soybean, pea and faba bean, lupin has lower antinutritional factors such as trypsin inhibitors that can interfere with digestion, phytic acid which binds to minerals such as calcium and zinc thus reducing the bioavailability, saponins and lectins that can act as gastric irritants (Hudson, 1994; Petterson and Fairbrother, 1996). Research evidence suggests that lupin could be incorporated up to 40% in the raw material of tofu making without any significant influence on physicochemical and sensory qualities but the major concern was lower yield (Jayasena et al., 2010). Protein is the main functional component that determines the quantity and quality of tofu and studies have shown that lupin protein and soy protein have similar functional properties (Jayasena et al., 2004). Coagulation of the protein is the most important step in the tofu-making process as yield and quality of tofu mostly depends on this step. Coagulation occurs due to cross linking of protein molecules in the bean extract with the divalent cations.

Calcium sulphate and 'nigari' (sea water extract) are the most common coagulants used in tofu manufacturing process (Shih et al., 1997). However, recent studies have shown that calcium lactate, magnesium sulphate and magnesium chloride are very effective coagulants for soy tofu preparation (Prabhakaran et al., 2006). The coagulation of soymilk depends on many factors including variety of soybean, soymilk heating temperature and time, pH and coagulant type and concentration (Hou and Chang, 2004). In addition, yield and quality of tofu have been reported to be influenced by coagulants (Cai et al., 1997; Oboh, 2006; Poysa and Woodrow, 2004). As with type of coagulant, the concentration of the coagulant also affects the nature of tofu. The amount of coagulant added in tofu manufacturing is one of the critical points as it determines the product texture, flavour and yield (Wilson, 1995).

In the present study, coagulants such as calcium sulphate, calcium lactate, magnesium sulphate and magnesium chloride have been utilised at different concentrations to find a combination of coagulant type and concentration that could provide a better yield and quality of soy-lupin tofu.

2. Materials and methods

Materials

Soybean was purchased from the local market (Perth). Australian sweet lupin flour was obtained from Irwin Valley Pty Ltd (Palmyra, Australia). Calcium sulphate (CaSO $_4\cdot 2H_2O$) and magnesium chloride (MgCl $_2\cdot 6H_2O$) were obtained from Ajax Finechem Pty Ltd (Sydney, Australia). Magnesium sulphate (MgSO $_4$ anhydrous) was obtained from Mallinckrodt Chemicals (Phillipsburg, NJ, USA) and calcium lactate (C $_6H_{10}\text{CaO}_6\cdot 5H_2O$) was obtained from VWR International (Leuven, Belgium).

Preparation of soy-lupin tofu samples

Soy-lupin tofu samples were prepared by replacing 30% soybean with lupin flour. The ratio of 70:30 soybean:lupin flour was chosen based on the studies by Jayasena *et al.* (2010) which revealed that tofu prepared by replacing up to 40% of soybean with lupin bean (equal to around 30% lupin flour) had a quality equivalent to traditional tofu prepared solely from soybean. Soy-lupin tofu samples were prepared according to the method developed by Jayasena *et al.* (2010).

A sample of 210 g soybean was washed and soaked in 630 ml water (bean:water, 1:3, w/v) overnight for 16 hours. Soaked soybean and 90 g lupin flour was then blended with 3 l water (1:10, dry bean+flour:water) using speed 2 of Breville 5 speed blender (model BLR 50; Breville, Sydney, Australia) for 2 minutes. The slurry was filtered through cheese cloth squeezed by hand pressure to obtain the extract hereafter called 'milk'. The milk was boiled for 5 minutes

with occasional stirring followed by cooling to 78 °C. The coagulant solution/suspension made by dissolving/mixing 9.0, 12.0 and 15.0 g (0.3, 0.4 and 0.5% w/v of the milk) calcium sulphate, calcium lactate, magnesium sulphate or magnesium chloride in 20 ml distilled water was added and stirred properly. The coagulants were soluble in 20 ml water at room temperature except calcium sulphate. To increase the solubility of calcium sulphate, the suspension was prepared in 20 ml hot water. The mixture was let stand for 30 minutes for coagulation. The coagulated curd was transferred to a mould (22 cm \times 15 cm \times 12.5 cm), drained off the whey fraction gravimetrically for about 5 minutes and pressed for 45 minutes using a weight of 6 kg. The soylupin tofu was removed from the cheese cloth and weighed immediately. Samples were taken for physicochemical analysis before storing in distilled water at 5±1 °C. Samples were prepared in triplicate for each treatment. As the main objective of the experiment was to study the effect of type and concentration of different coagulants on the yield of soy-lupin tofu, the sample prepared by using 0.3% (w/v of milk) calcium sulphate, the most commonly used coagulant type and concentration, was taken as a control.

Physicochemical analysis

Yield

The tofu yield was calculated on the basis of the weight of pressed tofu obtained from 70:30 (w/w) soybean:lupin flour and expressed as g/100 g raw material (bean+flour). Dry tofu yield was calculated by excluding the moisture content.

Moisture, protein and fat contents

AOAC (2000) methods were used to determine moisture (method 925.10), protein (method 950.36) and fat (method 963.15) contents of the tofu samples.

Instrumental colour measurement

Tofu colour was measured using Minolta spectrophotometer CM-508i (Minolta Co. Ltd. Japan) and expressed as L* (lightness), a* (+a* = redness; -a* = greenness) and b* (+b* = yellowness; -b* = blueness) colour coordinates according to the methods specified by the equipment manual. The instrument was equipped with a pulsed xenon arc lamp as light source, a silicon photodiode array detector and has the illumination/measurement area of \emptyset 11 mm. The instrument was calibrated using the white-coloured disc (L*=+98.82, a*=-0.07 and b*=-0.45) supplied with the instrument prior to the analysis. Three readings were recorded for each sample.

Texture profile analysis

Texture profile of the tofu samples was determined using TA-XT2i texture analyser (Stable Micro System, Godalming, UK). A sample was obtained from the central portion of raw tofu and cut into cubes (1.5 cm \times 1.5 cm \times 1.5 cm). A test speed of 1.0 mm/s and a 15 mm diameter cylindrical probe was used for the analysis. The probe compressed the sample twice to 25% of its original height by using a load cell of 5 kg. The texture profile analysis (TPA) settings used were:

• pre-test speed: 2.0 mm/s;

test speed: 1.0 mm/s;

• post-test speed: 1.0 mm/s;

distance: 25%;

• time between bite: 3 s.

Three replicate tests were carried out for each tofu sample. The TPA curves were recorded and used to calculate hardness, cohesiveness, springiness and chewiness (Bourne, 2002).

Sensory evaluation

A total of 53 semi trained panellists from the Curtin University's staff and students participated in the sensory evaluation. Four soy-lupin tofu samples that included control sample and three other high yielding samples (one out of each coagulant type) were selected for sensory evaluation studies. Samples were cut into rectangular pieces $(4 \text{ cm} \times 2 \text{ cm} \times 2 \text{ cm})$ and deep fried for 4 minutes in commercially available vegetable oil. Tofu samples were placed in plastic cups which were labelled with 3 digits random numbers. Panellists were also served with crackers and water for the purpose to cleanse the palate between

evaluations. A separate set of raw tofu samples (without deep-frying) having different code numbers was used for colour evaluation. The sensory attributes evaluated were appearance, colour, flavour, mouthfeel (oral texture) and overall acceptance. The nine-point Hedonic scale (1 = dislike extremely; 2 = dislike very much; 3 = dislike moderately; 4 = dislike slightly; 5 = neither like nor dislike; 6 = like slightly; 7 = like moderately; 8 = like very much; 9 = like extremely) was used for sensory evaluation.

Statistical analysis

The data collected for each of the physicochemical properties of different tofu samples were analysed by analysis of variance (ANOVA) using SPSS for Windows, version 17.0 (SPSS Inc., Armonk, NY, USA). The differences of means between groups were compared by using Tukey's honestly significant difference (HSD) test. Since the results obtained from sensory evaluation were non-parametric, the statistical analysis was conducted using Kruskal-Wallis test. Statistical significance was established at $P \le 0.05$.

3. Results and discussion

Moisture content and yield (wet and dry)

The moisture content remained same for different coagulant types and concentrations except for 0.5% magnesium sulphate that had a significantly higher value than the control (Table 1). Coagulant concentration had shown no effect on moisture contents within a coagulant. However, when the data were analysed on the basis of coagulant type (accumulating the effect of all three concentrations)

Table 1. Moisture content and yield of soy-lupin tofu samples prepared by using different coagulant types and concentrations.¹

Coagulant		Moisture (%)	Tofu yield (g/100 g raw material)	
Туре	Concentration (% w/v of milk)		Fresh ²	Dry
Calcium sulphate	0.3 (control)	75.4±1.5°	172±6 ^{c,A}	42.0±1.1 ^a
	0.4	75.6±0.4bc	173±6 ^{c,A}	42.1±0.8a
	0.5	76.6±0.6 ^{bc}	178±7 ^{bc,A}	41.4±1.5 ^a
Calcium lactate	0.3	77.1±1.1 ^{abc}	180±5 ^{abc,A}	41.0±0.8a
	0.4	76.4±0.5 ^{bc}	175±5 ^{bc,A}	41.3±0.5 ^a
	0.5	75.3±0.7 ^c	168±4 ^{c,A}	41.5±1.0 ^a
Magnesium sulphate	0.3	78.0±0.6 ^{ab}	186±8 ^{abc,A}	40.8±1.5 ^a
	0.4	77.7±0.2 ^{abc}	192±3 ^{ab,A}	42.8±0.4 ^a
	0.5	79.5±0.7 ^a	198±5 ^{a,A}	40.6±1.6a
Magnesium chloride	0.3	76.4±0.3bc	179±3 ^{bc,A}	42.0±0.2a
	0.4	77.4±0.4 ^{abc}	182±7 ^{abc,A}	41.0±0.8a
	0.5	76.8±0.8 ^{bc}	180±6 ^{abc,A}	41.8±0.6a

¹ Means (± standard error of the mean; n=3) with different superscripts (in lower case) within the same column are significantly different (P≤0.05).

² Means with similar superscripts (in upper case) in the fresh yield column show a non significant difference (P>0.05) within a coagulant type.

the samples prepared by using magnesium sulphate had significantly ($P \le 0.05$) higher moisture contents than the other coagulants (Table 2).

The fresh tofu yield ranged from 168-198 g/100 g raw material for different coagulant type and concentration combinations which was lower than the values reported in the previous studies (Jayasena et al., 2010). The difference could be due to the use of different soybean samples/varieties. Soybean was purchased from the local retail market at about one year interval and there was no information available on the variety or age of the beans. Whereas soybean variety is one of the major factors that affects substantially on the tofu yield (Hou and Chang, 2004). Tofu yield was within the range of 150-200 g/100 g soybean using Korean and Canadian soybean cultivars as reported by Abd Karim et al. (1999), No and Meyers (2004), Noh et al. (2005), Yoon and Kim (2007). In contrast Mujoo et al. (2003) reported tofu yield that ranged from 269 to 343 g/100 g bean for seven American soybean varieties.

Concentration of coagulants ranging from 0.3 to 0.5% (w/v of milk) had no significant effect on fresh tofu yield. Similar results have been reported by earlier researchers (Prabhakaran *et al.*, 2006) that there was no effect on soy tofu yield when 0.4 or 0.5% (w/w of soy milk) of calcium sulphate, calcium chloride, magnesium sulphate, calcium lactate or calcium acetate were used.

The magnesium sulphate delivered the highest fresh (wet) tofu yield among coagulants (Table 2). It might be due to the higher moisture content of the samples prepared by using magnesium sulphate since tofu yield and moisture contents are highly correlated (Cai *et al.*, 1997). This is probably due to the difference in gel network within the particles which is influenced by different anions and their ionic strengths towards the water holding capacity of protein gels (Obatolu, 2008).

The dry yield, on the other hand, demonstrated no significant difference for different coagulants and their concentration (Table 1). This confirmed that the higher fresh yield delivered by magnesium sulphate was due to higher moisture holding capacity of those samples.

Colour

Table 3 shows the values of L*, a* and b* of soy-lupin tofu prepared by using different coagulant types at different concentrations. The coagulant type and concentration had no significant effect on L*, a* or b* values of the samples.

Having a greater L^* value is a favourable characteristics as consumer prefer lighter or whiter tofu (Hou and Chang, 2004) and good coagulant should produce a tofu with higher L* value (Tay et al., 2006). The different coagulating agents used at different concentrations in this study were found to have no significant effect ($P \le 0.05$) on the colour of tofu. All of the samples had a creamy white colour which is a desirable characteristic for good quality tofu. The results are in agreement to those of Prabhakaran et al. (2006) who found no difference in the colour of soybean tofu samples prepared by using 0.4-0.5% (w/v of soy milk) of calcium sulphate, magnesium sulphate, magnesium chloride, calcium acetate and calcium lactate. However the results are contrary to the study of Obatolu (2008) which revealed a significant difference in L*, a* and b* colour coordinates of tofu samples prepared from Epsom salt, alum and lemon juice. The difference in tofu colour in case of Obatolu (2008) might be due to the use of such coagulants that had their own colour such as lemon juice that imparted a change in the tofu colour.

Fat and protein contents

Coagulant concentration had an effect on the fat content of tofu but it depended upon the type of coagulant (Table 4). There was no effect of concentration on the fat contents of tofu samples in case of calcium salts (calcium sulphate and calcium lactate) whereas a significant decrease in fat content with increase in coagulant concentration was determined in case of magnesium salts (magnesium sulphate and magnesium chloride) (Table 4). The results are in agreement to those of Cai and Chang (1998) who demonstrated a decrease in tofu fat content with an increase in coagulant concentration. Although lower fat content may be preferable considering health benefits, higher quantity of coagulant (0.5% w/v magnesium sulphate or magnesium chloride of milk) is required to achieve the lower fat value.

Table 2. Effect of different coagulants (cumulative effect) on the moisture content and yield of soy-lupin tofu samples.¹

Coagulant	Moisture (%)	Wet yield (g/100 g raw material)	Dry yield (g/100 g raw material)
Calcium sulphate	75.9±1.5 ^b	173.8±9.7 ^b	41.8±1.1 ^a
Calcium lactate	76.3±1.5 ^b	174.5±8.9 ^b	41.3±1.2 ^a
Magnesium sulphate	78.4±1.1 ^a	191.9±9.2 ^a	41.4±2.2 ^a
Magnesium chloride	76.8±0.9 ^b	180.4±8.4 ^b	41.6±0.9 ^a

¹ Means (± standard error of the mean; n=3) with different superscripts (in lower case) within the same column are significantly different (P≤0.05).

Table 3. Colour analysis of soy-lupin tofu samples prepared from different coagulant types and concentrations.¹

Coagulant		Colour coordinates			
Туре	Concentration (% w/v of milk)	L*	a [*]	b*	
Calcium sulphate	0.3 (control)	85.8±0.3 ^a	0.24±0.12 ^a	16.7±0.1a	
	0.4	86.5±0.1a	0.26±0.11a	16.4±0.4a	
	0.5	86.6±0.1a	0.13±0.05 ^a	16.9±0.3a	
Calcium lactate	0.3	87.0±0.4 ^a	0.16±0.02a	17.1±0.3a	
	0.4	86.7±0.1a	0.14±0.03 ^a	16.8±0.3 ^a	
	0.5	86.3±0.4 ^a	0.11±0.04 ^a	17.0±0.3a	
Magnesium sulphate	0.3	87.1±0.1a	0.20±0.08a	17.0±0.2 ^a	
	0.4	87.3±0.1a	0.19±0.03a	16.7±0.1a	
	0.5	87.5±0.2 ^a	0.21±0.09 ^a	16.7±0.2a	
Magnesium chloride	0.3	86.4±0.5 ^a	0.21±0.08a	17.1±0.5 ^a	
	0.4	87.1±0.2 ^a	0.22±0.10 ^a	17.2±0.4 ^a	
	0.5	87.0±0.2a	0.19±0.08 ^a	17.1±0.3a	

¹ Means (± standard error of the mean; n=3) with similar superscripts in a column are not significantly different (P>0.05).

Table 4. Fat and protein contents of soy-lupin tofu samples from various coagulant types and concentrations. 1

Coagulant		Fat (g/100 g db) ²	Protein (g/100 g db)	
Туре	Concentration (% w/v of milk)			
Calcium sulphate	0.3 (control)	23.8±0.9 ^{ab, A}	55.0±0.5 ^a	
·	0.4	23.4±0.7 ^{ab, A}	53.8±1.1 ^a	
	0.5	22.9±0.9 ^{ab, A}	53.2±0.5a	
Calcium lactate	0.3	25.6±0.4 ^{a, A}	55.3±0.4a	
	0.4	24.3±0.7 ^{a, A}	54.9±0.3a	
	0.5	24.2±1.0 ^{a, A}	56.5±1.2a	
Magnesium sulphate	0.3	22.9±0.4 ^{ab, A}	55.4±0.4a	
	0.4	20.1±1.2 ^{bc, B}	55.3±0.6a	
	0.5	16.8±0.6 ^{c, C}	54.9±0.8a	
Magnesium chloride	0.3	26.0±0.3 ^{a, A}	54.8±1.1 ^a	
	0.4	22.4±1.4 ^{ab, B}	55.3±0.2 ^a	
	0.5	17.9±0.4 ^{c, C}	55.8±0.2 ^a	

¹ Means (± standard error of the mean; n=3) with different superscripts (in lower case) within the same column are significantly different (P≤0.05).

Analysing the cumulative effect, samples prepared by using calcium lactate had the highest and those prepared by using magnesium sulphate had the lowest fat contents (Table 5). This was most probably be due to the release of fats during the tofu making process as some coagulants can considerably decrease the fat binding capacity of the protein network formed during curding (Obatolu, 2008).

The coagulant concentration had no significant effect on protein contents (Table 4). The results are in agreement to previous studies (Cai and Chang, 1998). The protein content of lupin containing tofu might be able to improve by optimizing the processing conditions especially protein coagulation conditions. Zee *et al.* (1988) showed that faba bean having 24% less protein contents than soybean produced a tofu with 50% more protein content than soy

² Means with different superscripts (in upper case) in the fat content column show a significant difference (*P*≤0.05) within a coagulant type. db = dry basis.

tofu. This was mainly due to the reduction in protein loss during faba bean tofu preparation.

Textural properties

The textural properties of tofu play a critical role in tofu consumer acceptability (Hou and Chang, 2004; Sun and

Table 5. Effect of coagulant type (cumulative effect) on the fat and protein content of soy-lupin tofu samples.¹

Coagulant	Fat (g/100 g db)	Protein (g/100 g db)
Calcium sulphate Calcium lactate Magnesium sulphate Magnesium chloride	23.4±1.3 ^b 24.7±1.2 ^a 20.0±2.9 ^c 22.1±3.7 ^b	54.0±0.7 ^a 55.6±0.9 ^a 55.2±0.8 ^a 55.3±0.5 ^a

¹ Means (\pm standard error of the mean; n=3) with different superscripts within the same column are significantly different ($P \le 0.05$). db = dry basis.

Breene, 1991). The textural properties of tofu samples prepared using different types of coagulant at different concentrations demonstrated a variation in their textural properties (Table 6). The hardness and chewiness of tofu samples demonstrated substantial changes with different coagulants and their concentrations. The lowest hardness and chewiness was demonstrated by the sample prepared by using 0.5% magnesium sulphate. There was no significant difference in hardness among the samples prepared from calcium sulphate and calcium lactate. Similarly, both cohesiveness and springiness were not significantly affected ($P \le 0.05$) by the type and the concentration of coagulants.

In general soy-lupin tofu samples prepared by using calcium salts had higher hardness than those prepared from magnesium salts (Table 7). It may probably be caused by the ability of these salts to create a network structure with the protein molecules coming closer due to the loss of water during coagulation (Obatolu, 2008).

Among the coagulants, tofu samples made by using magnesium salts (magnesium sulphate and magnesium

Table 6. Textural properties of soy-lupin tofu samples made from different coagulant types and concentrations.

Coagulant		Hardness (g)	Cohesiveness	Springiness (cm)	Chewiness (g.cm)
Туре	Concentration (% w/v of milk)	_			
Calcium sulphate	0.3 (control)	348.1±56.2a	0.81± 0.02 ^a	0.88±0.03 ^a	246.1±37.0a
	0.4	310.9±12.7ab	0.80±0.01 ^a	0.88±0.02a	218.7±8.3ab
	0.5	251.5±14.3abc	0.80±0.01 ^a	0.87±0.04 ^a	173.5±7.7 ^{bcd}
Calcium lactate	0.3	255.4±10.6abc	0.81±0.03 ^a	0.85±0.04 ^a	175.4±5.5 ^{abcd}
	0.4	268.3±4.9 ^{abc}	0.80±0.01 ^a	0.88±0.03a	187.9±2.1 ^{abcd}
	0.5	307.9±20.9ab	0.80±0.01 ^a	0.87±0.03a	214.1±17.0abc
Magnesium sulphate	0.3	175.9±10.3 ^{cd}	0.81±0.01 ^a	0.91±0.05 ^a	128.2±3.6 ^{de}
	0.4	201.5±5.2 ^{cd}	0.80±0.01 ^a	0.86±0.04 ^a	147.4±6.6 ^{cde}
	0.5	133.7±16.5 ^d	0.79±0.01 ^a	0.86±0.04 ^a	91.1±11.9 ^d
Magnesium chloride	0.3	194.0±15.4 ^{cd}	0.80±0.01 ^a	0.90±0.03a	133.3±12.3 ^{de}
	0.4	235.7±15.0 ^{bcd}	0.80±0.01 ^a	0.84±0.03a	167.1±11.7 ^{bcd}
	0.5	207.9±0.4 ^{bcd}	0.80±0.01 ^a	0.88±0.04a	139.4±6.4 ^{de}

¹ Means (± standard error of the mean; n=3) with different superscripts within the same column are significantly different (P≤0.05).

Table 7. Effect of different coagulants (cumulative effect) on the textural properties of soy-lupin tofu samples. 1

Coagulant	Hardness (g)	Cohesiveness	Springiness (s)	Chewiness (s)
Calcium sulphate	303.4±66.4 ^a	0.80±0.01 ^a	0.88±0.03 ^a	278.3±67.3 ^a
Calcium lactate	277.3±31.6a	0.80±0.02a	0.87±0.03 ^a	256.7±30.6a
Magnesium sulphate	188.5±18.8 ^b	0.81±0.01a	0.91±0.04 ^a	167.7±18.0 ^b
Magnesium chloride	192.8±44.2 ^b	0.80±0.01a	0.86±0.04 ^a	177.4±39.8 ^b

¹ Means (± standard error of the mean; n=3) with different superscripts within the same column are significantly different (P≤0.05).

chloride) had lower hardness and chewiness than the samples prepared by using calcium salts, i.e. calcium sulphate and calcium acetate (Table 7). Previous researchers also found that the tofu made by using 0.4-0.5% (w/v of soymilk) magnesium sulphate had lower hardness than those prepared with the same concentrations of calcium sulphate, calcium acetate and calcium lactate (Prabhakaran et al., 2006). This may have link with the higher moisture content of the samples prepared by using magnesium sulphate (Table 1). According to Wang and Hesseltine (1982), cross-linking between protein molecules along with the presence of calcium ions are required for soy protein coagulation. Magnesium ions can also be used instead of calcium ions, since this divalent cation can form crosslinking between protein molecules. However, the sites of cross-linking in the protein molecules may be different for both calcium and magnesium causing the latter to form a loose network encompassing many air gaps within the network. This might be a reason why magnesium sulfate is rarely used alone as a coagulant for firm tofu preparation. It is commonly used along with other coagulants such as magnesium chloride and calcium chloride. 'Modified nigari' is a popular name used for such type of coagulant mix (Hou et al., 1997).

Sensory evaluation

The results for sensory evaluation are presented in Table 8. The scores for colour and appearance, which are the first deciding factors that determine the acceptance or rejection of a product, reflected that the tofu samples prepared by using different coagulants had a good acceptability. Acceptance by colour and appearance were not affected by the use of different coagulants. All samples had similar creamy white colour which is the acceptable colour for tofu (Hou and Chang, 2004).

Flavour, a combination of both taste and odour, was a concern in soy-lupin tofu as lupin has a natural beany flavour. However, the results indicated that all of the samples had acceptable flavour scores (Table 8). Besides lupin itself, the concentration and type of coagulant used

could determine the tofu flavour (Kao *et al.*, 2003). However in our study different coagulants had no significant effect on the flavour of soy-lupin tofu. It is possible that deep frying could have masked the beany flavour of the product.

Sensory acceptability of texture, which is perceived by touching and/or mouth feel, is an important determinant of consumer acceptability of tofu (Obatolu, 2008). The results showed that calcium salts had a greater coagulating power than magnesium salts causing them to produce a better texture profile in terms of hardness and chewiness than that produced by magnesium salts (Table 7). However sensory score for mouthfeel (oral texture) showed no significant difference among the samples prepared by using different coagulants.

The evaluation of overall acceptability is important in determining how well a product is accepted by consumers. Although a non-specific indication of the reasons, it is a good indication of the potential consumer demand of the product. The overall acceptability of soy-lupin tofu samples prepared by using different coagulants was not significantly different ($P \le 0.05$) to the control tofu sample. All samples had similar scores for overall acceptability. All samples received ≥ 6 out of 9 scores for overall acceptability.

4. Conclusions

This study contributes to a wider variation of coagulant options such as calcium lactate, magnesium sulphate and magnesium chloride to be used in the production of lupin incorporated tofu. However, use of magnesium sulphate may be preferred as it produced a higher fresh (wet) yield of lupin incorporated tofu. The market value of tofu depends on the yield and quality of fresh produce. Since fresh soylupin tofu prepared by using magnesium sulphate produced a softer product a combination of coagulants may be applied to get a better texture. However as tofu is mostly consumed after deep frying which changes the texture of the product and masks minor differences, a little softness of soy-lupin tofu prepared by using magnesium sulphate may not effect on its acceptability and marketing.

Table 8. Sensory evaluation of soy-lupin tofu prepared by using different coagulant types and concentrations.¹

Coagulant		Appearance	Colour	Flavour	Mouthfeel	Overall acceptability
Туре	Concentration (%w/v of milk)	_				
Calcium sulphate	0.3% (control)	6.1±0.2 ^a	6.4±0.2 ^a	5.9±0.2a	5.9±0.2 ^a	6.2±0.2 ^a
Calcium lactate	0.3%	6.2±0.2 ^a	6.3±0.2a	6.3±0.2 ^a	5.8±0.2 ^a	6.3±0.2 ^a
Magnesium sulphate	0.5%	6.2±0.2 ^a	6.3±0.1a	5.9±0.2a	5.7±0.2a	6.1±0.2 ^a
Magnesium chloride	0.4%	6.3±0.1a	6.3±0.2 ^a	5.8±0.2a	5.6±0.2 ^a	6.0±0.2 ^a

References

- Abd Karim, A., Sulebele, G.A., Azhar, M.E. and Ping, C.Y., 1999. Effect of carrageenan on yield and properties of tofu. Food Chemistry 66: 159-165.
- Association of Official Agricultural Chemists (AOAC), 2000. Official methods of analysis of AOAC International, vol. I & II. AOAC International, Gaitherburg, MD, USA.
- Bourne, M.C., 2002. Food texture and viscosity: concept and measurement. Academic Press, New York, NY, USA.
- Cai, T.D. and Chang, K.C., 1998. Characteristics of production-scale tofu as affected by soymilk coagulation method: propeller blade size, mixing time and coagulant concentration. Food Research International 31: 289-295.
- Cai, T.D., Chang, K.C., Shih, M.C., Hou, H.J. and Ji, M., 1997.
 Comparison of bench and production scale methods for making soymilk and tofu from 13 soybean varieties. Food Research International 30: 659-668.
- Hall, R.S. and Johnson, S.K., 2004. Sensory acceptability of foods containing Australian sweet lupin (*Lupinus angustifolius*) flour. Journal of Food Science 69: SNQ92-SNQ97.
- Hou, H.J. and Chang, K.C., 2004. Storage conditions affect soybean color, chemical composition and tofu qualities. Journal of Food Processing and Preservation 28: 473-488.
- Hou, H.J., Chang, K.C. and Shih, M.C., 1997. Yield and textural properties of soft tofu as affected by coagulation method. Journal of Food Science 62: 824-827.
- Hudson, J.F. (ed.), 1994. New and developing sources of food proteins.

 Proteins of some legume seeds: soybean, pea, fababean and lupin.

 Chapman and Hall, New York, NY, USA.
- Jayasena, V., Khu, W.S. and Nasar-Abbas, S.M., 2010. The development and sensory acceptability of lupin-based tofu. Journal of Food Ouality 33: 85-97.
- Jayasena, V., Nasar-Abbas, S.M., Yii, Y.J. and Senaratna, M., 2009.
 Development of lupin based low cost, high fibre and high protein innovative foods. In: Noomhorm, A. Rakshit, S.K. and Ahmad, I. (eds.) Proceedings of the 4th International Conference on Innovations in Food Processing Technology and Engineering, January 19-20, 2009. Asian Institute of Technology, Pathumthani, Thailand, pp. 1-10.
- Jayasena, V., Sartika, D. and Dods, K., 2004. A comparative assessment of the functional characteristics of lupin and soy protein isolates. In: Parker, W. (ed.) Proceedings of Agribussiness Crop Updates, Perth. Department of Agriculture and Food, Perth, WA, Australia.
- Jayasena, V. and Quail, K., 2004. Lupin: a legume with a future. Food and Beverage Asia 12: 16-21.
- Kao, F.J., Su, N.W. and Lee, M.K., 2003. Effect of calcium sulphate concentration in soymilk on the microstructure of firm tofu and the protein constituents in tofu whey. Journal of Agricultural and Food Chemistry 51: 6211-6216.

- Liu, K.S., 1999. Oriental soyfoods. In: Ang, C.Y.W., Liu, K.S. and Huang, Y.W. (eds.) Asian foods: science and technology. Technomic Publishing, Lancester, UK, pp. 139-199.
- Mujoo, R., Trinh, D.T. and Ng, P.K.W., 2003. Characterization of storage proteins in different soybean varieties and their relationship to tofu yield and texture. Food Chemistry 82: 265-273.
- No, H.K. and Meyers, S.P., 2004. Preparation of tofu using chitosan as a coagulant for improved shelf life International Journal of Food Science and Technology 39: 133-141.
- Noh, E.J., Park, S.Y., Pak, J.I., Hong, S.T. and Yun, S.E., 2005. Coagulation of soymilk and quality of tofu as affected by freeze treatment of soybeans. Food Chemistry 91: 715-721.
- Obatolu, V.A., 2008. Effect of different coagulants on yield and quality of tofu from soymilk. European Food Research and Technology 226: 467-472.
- Oboh, G., 2006. Coagulants modulate the hypocholesterolemic effect of tofu (coagulated soymilk). African Journal of Biotechnology 5: 290-294.
- Petterson, D.S. and Fairbrother, A.H., 1996. Lupin as a raw material for human foods and animal feeds. Indonesian Food and Nutrition Progress 3: 35-40.
- Poysa, V. and Woodrow, L., 2004. Stability of soybean seed composition and its effect on soymilk and tofu yield and quality. Food Research International 35: 337-345.
- Prabhakaran, M.P., Perera, C.O. and Valiyaveettil, S., 2006. Effect of different coagulants on the isoflavone levels and physical properties of prepared firm tofu. Food Chemistry 99: 492-499.
- Read, R.S.D., 2002. Protein. In: Wahlqvist, M.L. (ed.) Food and nutrition: Australia and New Zealand. Allen and Unwin, Sydney, Australia, pp. 210-267.
- Shih, M.C., Hou, H.J. and Chang, K.C., 1997. Process optimization for soft tofu. Journal of Food Science 62: 833-837.
- Sun, N. and Breene, W.M., 1991. Calcium sulphate concentration influence on yield and quality of tofu from five soybean varieties. Journal of Food Science 56: 1604-1607.
- Tay, S., Tan, H.Y. and Perera, A.C., 2006. The coagulating effects of cations and anions on soy protein. International Journal of Food Properties 9: 317-323.
- Wang, H.L. and Hesseltine, C.W., 1982. Coagulation conditions in tofu processing. Process Biochemistry 17: 7-12.
- Wilson, L.A., 1995. Soy foods. In: Erickson, D.R. (ed.) Practical handbook of soybean processing and utilization. AOCS Press, Champaign, IL, USA, pp. 428-459.
- Yoon, H.H. and Kim, M., 2007. Physicochemical and sensory properties of tofu prepared with heat-treated soybeans. Journal of Texture Studies 38: 393-403.
- Zee, J.A., Boudreau, A., Bourgeois, M. and Breton, R., 1988. Chemical composition and nutritional quality of faba bean (*Vicia faba* L. minor) based tofu. Journal of Food Science 53: 1772-1774.