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1. Introduction

Tea is one of the most popular beverages in the world. In 
particular, Chinese tea has been used since ancient times, 
during thousands of years of human history and culture. 
Tea not only has a long history of producing, with special 
shapes, tastes and fragrance, but has also been attributed 
to have a beneficial effect to human health (Liao et al., 
2001). In 2016, the amount consumed was 2.41 million 
tons, and the market for Chinese tea was about 44.2 billion 
US dollars (China Tea Marketing Association, http://www.
ctma.com.cn/index.html). Chinese Tea contains substantial 
amounts of polyphenols, caffeine, volatile oils, vitamins, 
aroma-forming substances and other compounds that have 
unique biological activities and health benefits (Sereshti et 
al., 2013). The main varieties of Chinese tea are classified 
into six groups (green tea, black tea, oolong tea, white tea, 
yellow tea, and dark tea). Chinese teas are produced mainly 
in the Southwest, South, Jiangnan and Jiangbei tea-area’s. 

Geographical origin is an important quality parameter for 
Chinese tea because its chemical composition varies with 
climate, water, soil, cultivation method and production 
process. The aroma information of Chinese tea is one of 
the main characteristics for tea identification. Chinese teas 
labelled with false aroma information not only harm the 
interests of consumers but also damage the reputation of 
the producers. The aroma of tea is determined by various 
factors, such as types of tea, its production area, tea making 
techniques, etc. As tea is traded all over the world, some 
trade disputes as regard to the types of teas sometimes 
occur. For example, many tea-producing countries or 
areas, such as Japan, Taiwan, and Korea, tax imported 
teas differently, based on the fermentation degree (Wang et 
al., 2008). However, no internationally recognised standard 
method for tea classification exists.

Generally, aroma identification is performed by 
professionals, and the outcomes depend mainly on the 

Convenient and accurate method for the identification of Chinese teas by an 
electronic nose

H. Liu1, Q. Li1 and Y. Gu2,3*

1School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China P.R.; 
2Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 
Beijing 100029, China P.R.; 3Department of Chemistry, Institute of Inorganic and Analytical Chemisty, Goethe-University, 
Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; guyu@mail.buct.edu.cn

Received: 16 May 2018 / Accepted: 13 August 2018 
© 2018 Wageningen Academic Publishers

RESEARCH ARTICLE
Abstract

A convenient, accurate, and effective approach for the identification of Chinese teas and their production area 
has been developed. For this, Chinese tea samples from different regions were collected and their odours were 
analysed by an electronic nose (E-nose). An unambiguous identification of the Chinese teas could not be achieved 
by means of traditional principal component analysis or linear discriminant analysis methods. Thus, multiple logistic 
regression (MLR), support vector machines (SVM), and random forests (RF) were employed as alternative to build 
identification models. The experimental results show that the method aiming within scope based on the RF performs 
very well, with prediction accuracies and computation times being superior to the two others (MLR and SVM). The 
results were demonstrated that E-nose could be used in the classification of Chinese teas, when an optimal pattern 
recognition algorithm is selected. The present study provides a critical outlook on the developments of Chinese 
teas identification, authenticity control and against adulteration in the Chinese circulation market.

Keywords: Chinese teas, electronic nose, identification, random forest

http://www.ctma.com.cn/index.html
http://www.ctma.com.cn/index.html
mailto:guyu@mail.buct.edu.cn


H. Liu et al.

80 Quality Assurance and Safety of Crops & Foods 11 (1)

acute olfaction and gustation of the tester. This approach 
is tedious and may be affected by subjective factors or 
even bias. Other methods of analysis are very helpful, such 
as gas chromatography, mass spectrometry and liquid 
chromatography, etc., but they are time-consuming and 
labour-intensive (Brudzewski et al., 2012). So, there is a call 
for cost-effective, easy-to-build and convenient detection 
systems for Chinese teas.

Electronic nose (E-nose), an apparatus designed to mimic 
the human olfactory perception, can be an innovative 
measurement system in this area (Qiu and Wang, 2017). 
The principle of E-nose detection is that the sensor array 
defines a smell composed of a large amount of different 
volatiles in a sample’s headspace, and then provides an 
output that represents a ‘fingerprint’ of all the components 
for the sample (Hartyáni et al., 2013). The ‘fingerprint’ 
described by E-nose sensors is employed to mine potential 
information about samples based on appropriate algorithm. 
In recent years, as an objective automated non-destructive 
technique, E-nose is effective in dealing with odour analysis 
problems (Ciosek and Wróblewski, 2006; Liu et al., 2013; 
Sohn et al., 2008), and has been introduced to many fields, 
such as disease diagnosis (Chapman et al., 2012; Green et 
al., 2011; Jia et al., 2014, 2016), food engineering (Dai et al., 
2015; Gobbi et al., 2015; Loutfi et al., 2015; Roy et al., 2016, 
2018), environmental control (Cesare et al., 2008; Romain 
and Nicolas, 2009), explosive detection (Brudzewski et al., 
2012; Ling et al., 2007; Norman et al., 2003), spaceflight 
applications (Young et al., 2003) and so on.

As we know, each of the sensors in the array in the E-nose, 
responds to different set of volatile organic compounds 
in tested substances. Because the differing responses the 
response of the array is unique for each test sample. The 
sensor responses are digitised and from these, relevant 
features are extracted. The appropriate algorithm is one 
of the key factors of the E-nose application.

In this study, an E-nose was employed as a convenient, 
automated and alternative technique to identify the 
different information (category, origin) of Chinese tea based 
on multinomial logistic regression (MLR), support vector 
machines (SVM), and random forests (RF). The main aims 
of this study were: (1) to characterise the ‘fingerprints’ of 
Chinese tea using an E-nose; and (2) to identify an algorithm 
with the best performance to discriminate category and 
origin of Chinese teas.

2. Materials and methods

Instruments and equipment

In this work, a PEN3 E-nose (Portable Electronic Nose, 
Airsense Analytics GmbH, Hagenover, Schwerin, Germany) 
was used. This E-nose has an array of 10 different metal 

oxide sensors (MOS) positioned inside a small chamber 
(1.8 ml). Each MOS sensor detects a different set of volatile 
molecules during the process, resulting in a change of the 
conductivity of sensors. Therefore, a unique set of response 
curves of the sensor array can be obtained for each distinct 
sample. The nomenclature and characteristics of the sensors 
used are listed in Table 1.

Experimental samples

Six kinds of Chinese tea (Table 2) were tested by means 
of the PEN3 E-nose. All the experimental samples were 
purchased from an official tea market (Beijing) authorised 
by the China Tea Marketing Association.

Experiments and data acquisition

All the experiments were carried out in the author’s lab, the 
whole samples were measured at a temperature of 25±1 °C 
and air relative humidity of 39±2%. As shown in Figure 1, 
the experiments were carried out on six groups of samples 
(class 1-6). For each group, 20 samples were prepared. Thus, 
a total of 120 tea samples were used in the experiments. For 
each experiment, 4 g of the respective tea was put into a vial 
(50 ml) and was allowed to equilibrate with the air in the 
vial for 90 min. Five separate experiments were carried out 
every day. The experiments lasted for 4 days. As shown in 
Figure 2, before measurement, the filtered air was suctioned 
in reverse through the E-nose to flush the sensor array and 
the gas line with the valve 2 open. This flushing lasted for 
100 seconds. For the measurement process, valve 2 was 
closed and valve 1 was opened, to pump the headspace gas 
of the sample into the sensor chamber at a constant rate of 
10 ml/sec via a Teflon-tubing connected to a needle. The 
measurement time was 100 s, and data were acquired by the 
WinMuster software (version 1.6.2.18, Airsense Analytics 
GmbH) every second. For the whole 120 samples, only 

Table 1. The standard sensor array in a PEN3 E-nose.1

No. Sensor Sensor Object substances for sensing

MOS1 W1C aromatic compounds
MOS2 W5S sensitive to nitric oxides
MOS3 W3C ammonia, aromatic compounds
MOS4 W6S hydrogen
MOS5 W5C alkane, aromatic compounds
MOS6 W1S sensitive to methane
MOS7 W1W sensitive to sulphide
MOS8 W2S sensitive to alcohol

MOS9 W2W
aromatic compounds,  
organic sulphur compounds

MOS10 W3S sensitive to alkane

1 MOS = metal oxide sensors.
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the data acquired in steady phase (10 data points) was 
kept for the later analysing, a 1,200×10 matrix formed the 
dataset (dataset A). Furthermore, a new testing samples set 
was used to verify the generalisation of those three built 
regression models. Note that all the samples were produced 
in 2017 and purchased from the same manufacturer and 
each kind of teas has 10 samples. After all samples had 
been tested by the PEN3 e-nose, similar to the process 
of building dataset A, a 600×10 matrix formed the new 
dataset (dataset B).

3. Results

Response curves and feature

To describe the sensor response to a given tea sample, 
the relative change of the sensors’ conductance during 
the measurement was calculated by using the formula 
R=G0/G, where R is the response, G0 is the conductance of 
the sensor in reference air, and G is the conductance of the 
sensor when exposed to the sample vapor. Figure 3 shows 
the typical response signals of the sensor array to the six tea 
samples during 100 s of measurement, respectively. Each 
response curve represents the variation in conductivity of 
each sensor with time when the tea volatiles reached the 
measurement chamber. In the initial period, the R value 
of each sensor was low, then increased quickly, typically 
reaching a peak value before a slow decrease over the next 
seconds. After about 76 s, steady signals could be obtained, 
with the exception of the MOS7 sensor responding to the 
Tieguanyin sample (Figure 3F).

Of the ten sensors, five (MOS7, MOS9, MOS2, MOS6 and 
MOS8) responded to the volatiles in the teas and their 
response sensitivity levels were distinct for each kind of 
sample. Thus, six fingerprints could be obtained, showing 
the difference between the six teas (Figure 4).

Generally, several kinds of feature (mean-differential 
coefficient value (Yun et al., 2007) and response area value 
(Wei et al., 2013)), extracted from E-nose signals, were used 
in pattern recognition algorithms. Here, we used a simpler 
feature parameter, i.e. the stable value. Since the detection 

lasted 100 s, and the response value of each sensor stabilised 
after about 75 s, the value after 75th second of each sensor 
was regarded as the stable value. So, 10 data points (from 
85th to 94th seconds; the black dotted-line area in Figure 3A) 
were used as input features for classification in our study.

Principal component analysis classification

Principal component analysis (PCA) is a linear, unsupervised 
and pattern recognition technique used for analysing, 
classifying and reducing the dimensionality of numerical 
datasets with a minimum loss of information (Fluky, 2012) 
in a multivariate problem (Chen et al., 2013).

In the study, PCA was used first for classification of the 
same batch experimental data. PCA was operated with 
the raw data imported into the WinMuster software. The 
accumulated variance contribution rate of the first two 
principal components (PC) included sufficient information 
about the samples, which was of 99.96%. And the variance 
of PC1 and PC2 accounted for 99.56 and 0.40%, respectively. 
Thus, PC1 and PC2 were utilised to make a score plot with 
standardised scores.

As shown in Figure 5A, the six tea samples of which data 
were acquired from same experiment are distinguished 
correctly though a small overlap exists. However, in Figure 
5B, where we tried to classify using all the experimental 
data that was collected on the first day (exp. 1-5), the PCA 
was not qualified anymore because during the process 
of dimension reduction, some information was lost and 
ambiguity could arise.

Linear discriminant analysis classification

Linear discriminant analysis (LDA) is a generalisation of 
Fisher’s linear discriminant and has been widely used in 
statistics, pattern recognition and machine learning to 
find a linear combination of features that characterises 
or separates two or more classes of objects or events. It 
projects high-dimensional data onto a low dimensional 
space where the data achieves maximum class separability 
and considers the information related to both the within-

Table 2. Details of the teas in the study.

No. Samples Year of production Place of origin Price ($/50 g) Category

1 Mudan White 2017 Fuding City (Fujian Province) 5.9 White tea
2 Biluochun 2017 Dongting Hill (Jiangsu Province) 8.5 Green tea
3 Lapsang Souchong 2017 Wuyishan City (Fujian Province) 9.8 Black tea
4 Huoshan Huangya 2017 Huoshan Country (Anhui Province) 9.9 Yellow tea
5 Fermented Pu-erh 2017 Puer City (Yunnan Province) 4.4 Dark tea
6 Tieguanyin 2017 Anxi Country (Fujian Province) 7.9 Oolong tea
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class as well as the between-class distribution (Banerjee 
et al., 2012).

As shown in Figure 6A, for the same experiment, the 
cumulative variance of the first two canonical linear 
discriminant functions (LD) reached 98.79% (greater than 
85%), a score plot was depicted with LD1 and LD2, whose 
variances were of 69.39 and 29.40%, respectively. The 
figure suggests that the tested samples of tea could still be 
distinguished without effort. As shown in Figure 6B, LDA 
is poor for the distinction of all the samples, except for 
Tieguanyin tea that was tested on the first day.

Pattern recognition

Multiple logistic regression

In statistics, logistic regression or logit model is a regression 
model where the dependent variable is categorical (Barrett, 
2009). Binomial or binary logistic regression deals with 
situations in which the observed outcome for a dependent 
variable can have only two possible types, ‘0’ and ‘1’ (which 
may represent, for example, ‘yes’ vs ‘no’ or ‘win’ vs ‘loss’) 
by means of logistic function (sigmoid function). MLR is 
frequently the method of choice when the response is a 
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Figure 1. Illustration of the experimental program. Class codes: 1 = MuDan White tea; 2 = Biluochun tea; 3 = Lapsang Souchong 
tea; 4 = Huoshan Huangya tea; 5 = Fermented Pu-erh tea; 6 = Tieguanyin tea.
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Figure 2. Illustration of the test for a given sample.
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qualitative variable, with two or more mutually exclusive 
unordered response categories (Castilla et al., 2017).

As shown in Figure 7A and B, two structures of the MLR 
are available when it is employed for multi-classification 
(n≥3; n is the number of categories) tasks. For one-vs-
rest structure, n classifiers are needed, to train a logistic 
regression classifier (one versus rest) for each class samples. 
And for many-vs-many structure, n(n-1)/2 (n is the number 
of categories) classifiers are needed, to train n-1 logistic 
regression classifiers (many versus many) for each class 

samples. Both structure A and B, on a new input, to make 
a prediction, pick the maximum probability vin output of 
all the classifiers, the class associated with the model is 
considered to be the final result. It can be deduced from the 
above description that the one-vs-rest structure is faster, 
while the many-vs-many structure is more accurate. In our 
study, we have used the second one with higher accuracy.
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(C) Lapsang Souchong tea; (D) Huoshan Huangya tea; (E) Fermented Pu-erh tea; (F) Tieguanyin tea; metal oxide sensors (MOS) 
codes are explained in Table 1.
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Support vector machines

SVM are supervised learning models with associated 
learning algorithms that analyse data used for classification 
and regression analysis (Cortes and Vapnik, 1995). 
Operation of the SVM algorithm is based on finding the 
hyperplane that gives the largest margin to the training 

examples. Therefore, the optimal separating hyperplane 
maximises the margin of the training data.

As shown in Figure 8A, for a given training set:

D={(x1,y1),(x2,y2), ... , (xm,ym)}, yiϵ{-1,+1}
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Figure 4. The fingerprints to six kinds of tea samples at the 90th second; metal oxide sensors (MOS) codes are explained in Table 1.

Mudan White
Biluochun
Lapsang Souchong
Huoshan Huangya
Fermented Pu-erh
Tieguanyin

-1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 3.0
PC1 (99.56%)

2.0

1.5

1.0

0.5

0

-0.5

-1.0

-1.5

PC
2 (

0.4
%

)

PC1 (94.93%)

3.5A B
3.0
2.5
2.0
1.5
1.0
0.5

0
-0.5
-1.0
-1.5

PC
2 (

3.8
6%

)

Figure 5. Principal component analysis (PCA) score plot responses to samples with PC1, and PC2. (A) The same ergodic 
experimental data; (B) The whole experimental data collected on the first day.



 Identification of Chinese teas by an E-nose

Quality Assurance and Safety of Crops & Foods 11 (1) 85

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5

2.0

1.5

1.0

0.5

0

-0.5

-1.0

-1.5

A B 1.5

1.0

0.5

0

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0

LD1 (69.39%)

LD
2 (

29
.4%

)

LD1 (62.89%)

LD
2 (

15
.79

%
)

Mudan White
Biluochun
Lapsang Souchong
Huoshan Huangya
Fermented Pu-erh
Tieguanyin

Figure 6. Linear discriminant analysis (LDA) score plot responses to samples with LD1, and LD2. (A) The same ergodic experimental 
data; (B) The whole experimental data collected on the first day.

Class 1:
Class 2:
Class n:

...

...
...

... ...
... ...

Classifier 1 Classifier 1 Classifier n(n-1)/2Classifier 2
A

Classifier 2
B

Classifier n

Figure 7. Illustration of the multiple logistic regression (MLR) for multi-classification task. (A) One-vs-rest structure; (B) Many-
vs-many structure.

x1

x2

0
A B

1T bW X

1T bW X

0T bW X

2
|| ||r W+ =

+ =

+ = -

ϕ

Figure 8. Illustration of support vector machines (SVM) basic principle.  (A) SVM basic structure; (B) Feature mapping



H. Liu et al.

86 Quality Assurance and Safety of Crops & Foods 11 (1)

Obviously, when the selected hyperplane is wTx+b=0 it has 
the best robustness and generalisation ability. The basic 
idea of SVM is to use linear models to implement nonlinear 
class boundaries through some nonlinear mapping of the 
input vector into the high-dimensional feature space (Wang 
et al., 2009).

For nonlinear separable classification problems, the 
SVM applies a kernel function K (vi, vj) to transform the 
original space to a higher-dimensional space, and a hyper 
plane is constructed in the higher-dimensional space to 
solve problems of nonlinear separable classification in 
the original low-dimensional space as shown in Figure 
8B. The four most known kernels are commonly used: 
linear, polynomial, radial basis function, and sigmoid (Li 
et al., 2017a). In this work, we applied an SVM algorithm 
(Pardo and Sberveglieri, 2005) for classification of teas. A 
radial basis function was chosen as the kernel function. 
To optimise penalty parameter (C) and kernel parameter 
gamma (c) in the SVM model, a grid search method with 
exponentially growing sequences of C and c were applied.

Random forests

RF is a classification method consisting of independent 
classification trees. The prediction of the classification is 
obtained by the majority voting of the classification trees 
that have been formed (Kuswanto et al., 2017). In this 
work, RF was employed in classification of the Chinese 
tea samples. The illustration of the algorithm is shown in 
Figure 9.

First, for a given training set, some bootstrap samples 
(the amount depends on the number of classification and 
regression trees) were obtained by bootstrapping. Secondly, 
it was crucial for RF algorithm to growing classification and 
regression trees (CARTs). Every CART is built by using 
random vectors. The general approach used to insert 
random vectors in the formation of the tree is to choose 
the number of variables (NF) in the random subset at each 
node, as NF attributes input to be split at each node in 
the CART to be formed. Experimentally, the NF can be 
determined by using the formula (Li et al., 2017b):

NF=log2(M+1)

where M is the total number of features. Finally, a RF 
classifier was built by growing CARTs and training was 
supervised, and it determined the final classification results 
based on the CARTs’ voting (majority rule).

Comparison of classification results

The ultimate performance of the above three classifier on 
testing samples is shown in Figure 10. Although MLR-based 
method achieved accuracy rate of 97.2% and consumed less 
time, its robustness is not good. In repeated experiments, 
the MLR method often has to re-adjust the parameters in 
order to achieve a good result. Both SVM-based and RF-
based methods achieved an accuracy rate of 100%, but the 
training time of SVM is five times the time of RF.

In summary, in the case of the current sample size, the 
RF-based classification method is an ideal choice for the 

Training
dataset

   

N instance
 

Create bootstrap samples
from the training data Grow decision trees

Majority voting

Figure 9. Illustration of the random forests algorithm.
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distinction of Chinese tea. So, for a real application, we can 
conclude that training the classifier with data collected at 
different time (different dates) should be enough to palliate 
the negative effect of deviation during the measuring, and 
improve the overall classification performance.

4. Conclusions

The discrimination result of RF is better than that of PCA, 
LDA, MLR and SVM. The essence of PCA and LDA is 
dimension reduction of data, by which the classification 
result relies on human observation. Especially, PCA is useful 
to identify the tea type clusters but it only fits to a handful 
of samples at a time. If the number of tea samples to be 
investigated increases, the identification of the tea types 
clusters in a crowded PCA plot would become difficult. 
The performance of LDA in multiple experiments is far 
less than that of a single experiment. Also, the performance 
of MLR-based algorithm indicates that the MLR model 
suffers from underfitting because it is not complex enough 
to capture the pattern in the training data well. Both SVM 
and RF have achieved good experimental results, however 
according to our experiments, the training time of SVM 
model is five times of that of the RF model.

In conclusion, the results are encouraging, and it was 
demonstrated that E-nose, a convenient, accurate, and 
non-destructive practical means, could be used in the 
classification of Chinese tea, when an optimum pattern 
recognition algorithm is selected. Further results have 
revealed that E-nose technology has excellent sensitivity 
and selectivity to the teas with different aroma. The present 
study provides a critical outlook on the developments of 
Chinese tea identification, authenticity control and against 
adulteration in the Chinese circulation market.
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