

Functional flaxseed in baking

S. Hussain¹, F.M. Anjum², M.S. Alamri¹, A.A. Mohamed¹ and M. Nadeem²

¹King Saud University, College of Food and Agricultural Sciences, Department of Food Sciences and Nutrition, P.O. Box 2460, Riyadh 11451, Saudi Arabia; ²University of Agriculture Faisalabad, National Institute of Food Science and Technology, P.O. Box 38040, 38000 Faisalabad, Pakistan; shhussain@ksu.edu.sa

Received: 18 September 2012 / Accepted: 3 May 2013 © 2013 Wageningen Academic Publishers

REVIEW PAPER

Abstract

The use of flaxseed as a functional food has gained in popularity in recent years. It has been grown since ancient times for food and other uses. Flaxseed is an excellent source of nutrients including protein, soluble and insoluble dietary fibre as well as omega-3 fatty acids. The flaxseed can be used as a whole or it can be incorporated in other foods including bakery products. The flaxseed proteins can enhance the biological parameters of bread and unleavened flat bread (chapattis). The addition of flaxseed to wheat flour can also contribute towards several health benefits and can serve as a low-cost treatment for many diseases, e.g. diabetes, hypercholesterolemia and cardiovascular complications. The current review will focus on the health benefits of flaxseed and the potential of these seeds to be incorporated into breads and chapattis which are staple foods for a large segment of the population.

Keywords: bread, chapattis, flaxseed, functional foods

1. Flaxseed: general perspectives and composition

Functional foods are considered to play a key role in disease prevention and the maintenance of good health. Many common foods, especially modified/developed new food products, are referred to as 'functional foods', e.g. green tea, soy, flaxseed, garlic, fish, fruits, vegetables, grains and legumes (Arai, 1996). The flax (Linum usitatissimum) is a blue flowering rabi crop and is a member of the Linaceae family, commonly known as 'Alsi' in the Gujrati, Hindi and Punjabi languages (Gowda, 2013). Flaxseed and linseed are the other names which are often used interchangeably. In North America flax is called 'flaxseed' when eaten by humans, and 'linseed' when used for linoleum flooring. However, Europeans use the term flaxseed to explain the varieties grown for the manufacture of linen (BeMiller etal., 1993). The history of flaxseed cultivation goes back as far as 3000 B.C. World production of flaxseed during 2011 was 1,602,047 tons (FAOSTAT, 2011). The prospective health benefits of oil seeds such as flaxseed, especially in relation to cancer and cardiovascular disease, have received more attention from nutrition experts and food scientists.

Many researchers are conducting studies on its role in the cure and prevention of several diseases (Jenkins *et al.*, 1999). Due to the health-promoting properties and excellent nutrient profile of flaxseed, it has been becoming a popular candidate for incorporation in the human diet. Flaxseed is being used extensively for the development of functional foods. The components of flaxseed that have been identified as exhibiting health benefits are fibre, lignans and linolenic acid (omega-3 fatty acid). Moreover, flaxseed is a good source of high quality protein, soluble fibres and phenolic compounds (Oomah, 2001).

Flaxseed is the best source of lignans. It is also present in most whole grains (oats, millets, barley and buckwheat), vegetables (carrots, cauliflower, broccoli and spinach) and soybean. Phytochemicals have the ability to bind oestrogen receptors in the body and act as an anti-carcinogenic agent. These help to prevent prostate, breast and endometrium cancers. People who consume more lignans are least prone to these cancers (Setchell *et al.*, 1980; Toure and Xueming, 2010). Flaxseed is also an excellent source (about 28%) of dietary fibre. About two thirds of the total fibre in flaxseed is insoluble which increases the bulk in the digestive system,

thus helping digestion and preventing constipation. These properties of fibre provide great protection against cancers. Furthermore, the remaining fibre portion of the flaxseed is soluble and has the ability to lower cholesterol levels in the body. The soluble fibres also optimise blood sugar concentrations (Institute of Medicine of the National Academics, 2002).

The flaxseed is also a rich source of polyunsaturated fatty acids consisting of about 80% of total oil with a high ratio of omega-3 to omega-6, both of which are essential and eaten as a part of the diet since the body does not manufacture them from other sources (Anonymous, 2006). Flaxseed oil contains one of the essential fatty acids, i.e. alpha-linolenic acid (ALA). It is one of three omega-3 fatty acids; the other two are eicosapentaenoic and decosahexenoic from fish sources. Omega-3 fatty acids play a role in reducing the risk of cardiovascular diseases. All the omega-3 fatty acids regulate cholesterol, triglycerides and blood pressure, whereas ALA is particularly helpful in promoting proper growth in infants (Horrobin and Manku 1990; Morris, 2004).

The incorporation of flaxseed into the diet can improve taste in regularly consumed dishes. The reddish brown flaxseed grains have a pleasant flavour and taste resembling nuts, and they are easily incorporated in different products. It can be spread over soups, salads, cereals or yoghurt. The baked products can be supplemented with whole flaxseed grains to achieve an attractive and appealing form which enhances the texture of the final product. The grinding of flaxseed before its addition to products can be more beneficial to obtain the prospective health benefits from its active components like dietary fibre, lignans and omega-3 fatty acids. Several researchers has found that wheat flour can be replaced by ground flaxseed or whole flaxseed grains in the production of pancake, muffins, breads and cookies. Several food products containing flaxseed are available in the market. Energy bars, pasta, bagels, muffins and pancakes are some examples of products with added flaxseed either whole or in its ground form (Manthey et al., 2002b; Muir and Westcott, 2000). The average nutritional information about flaxseed grain is presented in Table 1.

2. Dietary fibre and alpha-linolenic acid

Dietary fibre is a common term used to describe a variety of plant substances that are not easily digested by the enzymes responsible for digestion in humans (Eastwood and Passmore, 1983). It is advised to consume an adequate amount of dietary fibre from a variety of plant foods (American Dietetic Association, 2008). An adequate intake of dietary fibre can provide a multitude of health benefits. The adequate recommend daily intake for different age groups from all sources (fruits and vegetables) is presented in Table 2.

There are two types of dietary fibre: soluble and insoluble. Soluble fibres like psyllium, guar gum and oats are responsible for a reduction in total cholesterol and low density lipoprotein (LDL) cholesterol (Glore *et al.*, 1994). Several studies on the health-promoting role of dietary fibre have been published. Table 3 is a summary of the health benefits associated with the use of dietary fibre based on the recent review of Hauner *et al.*, (2012).

There are two groups of omega fats; omega-3 and omega-6 fatty acids. Linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid are the three types of omega-3 fatty acids and are nutritionally important. All three fatty acids have been shown to reduce the risk of cardiovascular disease. Linolenic acid is naturally present in canola, flaxseed, and walnuts whereas the other two types of omega fats are mainly present in fish like salmon, mackerel and herring (Hurteau, 2004). ALA (18:3n-3) is mainly derived from plants and is the main n-3 (ω 3) fatty acid in the human diet. It is the principal precursor for long chain polyunsaturated fatty acids, of which eicosapentaenoic (20:5n-3) and docosahexaenoic acid (22:6n-3) are the most prevalent (Thomas, 2002). Intake of alpha-linolenic for a period of weeks to months results in an increase in the proportion of eicosapentaenoic acid (20:5n-3) in plasma lipids, in erythrocytes, leukocytes, platelets. These are required for maintaining optimal tissue function. Capacity to up-regulate ALA conversion in women may be important for meeting the demands of the foetus and neonate (Brena et al., 2009; Burdge and Calder, 2005).

3. Health benefits of flaxseed

Some of the studies showing the health benefits of whole flaxseed, defatted flaxseed meal, flaxseed oil and individual flaxseed components are reviewed in this section. Flaxseed fibre is also believed to reduce blood glucose and cholesterol levels by delaying and reducing their absorption in the body (Shen *et al.*, 1998). Studies by Jenkins *et al.* (1999) showed a 5 and 8% reduction, respectively, in serum total and LDL cholesterol levels in subjects fed partially defatted flaxseed. These researchers attributed the LDL reduction to the soluble fibre component of the flaxseed. Cunnane *et al.* (1995a) reported that blood glucose levels fell by about 27% when bread containing flaxseed was consumed.

Ground flaxseed is high in omega-3-fatty acids, which have been shown to reduce hypertension, cholesterol and triglyceride level (Oomah and Mazza, 1998). Flaxseed is a good food for lowering cholesterol and improving heart function due to the eicosanoids derived from omega-3-fatty acids (Simopoulos, 1999). Many studies reveal that monounsaturated and polyunsaturated fatty acids are responsible for lowering total cholesterol in the diet (Zambon *et al.*, 2000). ALA from flaxseed exerts positive effects on blood lipids. The dietary ALA was found to be

Table 1. Nutritional composition of flaxseed (per 100 g) according to USDA (2012) and Flax Council of Canada (2007).

Nutrients	USDA	Flax Council of Canada	Nutrients	USDA	Flax Council of Canada
Moisture (g)	6.96	8.75	22:0 (g)	0.052	-
Energy (kcal)	534	492	24:0 (g)	0.031	-
Crude protein (g)	18.29	19.50	Fatty acids, total monounsaturated (g)	7.527	-
Crude fat (g)	42.16	34.0	16:1 undifferentiated (g)	0.024	-
Ash (g)	3.72	3.50	18:1 undifferentiated (g)	7.359	-
Nitrogen free extract (g)	28.88	34.25	20:1 (g)	0.067	-
Total dietary fibre (g)	27.3	27.9	22:1 undifferentiated (g)	0.013	-
Minerals			24:1 c (g)	0.064	-
Calcium (mg)	255	199	Fatty acids, total polyunsaturated (g)	28.730	-
Iron (mg)	5.73	6.22	18:2 undifferentiated (g)	5.903	-
Magnesium (mg)	392	362	18:3 undifferentiated (g)	22.813	-
Phosphorus (mg)	642	498	18:4 (g)	0	-
Potassium (mg)	813	681	20:2 n-6 c,c (g)	0.007	-
Sodium (mg)	30	34	20:4 undifferentiated (g)	0	-
Zinc (mg)	4.34	4.17	20:5 n-3 (g)	0	-
Copper (mg)	1.22	1.04	22:5 n-3 (g)	0	-
Manganese (mg)	2.48	3.28	22:6 n-3 (g)	0	-
Selenium (µg)	25.4	5.50	Amino acids		
Vitamins			Tryptophan (g)	0.297	-
Vitamin C, total ascorbic acid (mg)	0.6	0.50	Threonine (g)	0.766	-
Thiamin (mg)	1.64	0.53	Isoleucine (g)	0.896	-
Riboflavin (mg)	0.161	0.23	Leucine (g)	1.235	-
Niacin (mg)	3.08	3.21	Lysine (g)	0.862	-
Pantothenic acid (mg)	0.99	0.57	Methionine (g)	0.370	-
Vitamin B-6 (mg)	0.47	0.92	Cystine (g)	0.340	-
Vitamin E (alpha-tocopherol) (mg)	0.31	-	Phenylalanine (g)	0.957	-
Tocopherol, gamma (mg)	19.95	-	Tyrosine (g)	0.493	-
Tocopherol, delta (mg)	0.35	-	Valine (g)	1.072	-
Vitamin K (phylloquinone) (µg)	4.3	-	Arginine (g)	1.925	-
Lipids			Histidine (g)	0.472	-
Fatty acids, total saturated (g)	3.663	3.196	Alanine (g)	0.925	-
4:0 (g)	0	0	Aspartic acid (g)	2.046	-
6:0 (g)	0	0	Glutamic acid (g)	4.039	-
8:0 (g)	0	0	Glycine (g)	1.248	-
10:0 (g)	0	0	Proline (g)	0.806	-
12:0 (g)	0	0	Serine (g)	0.970	-
14:0 (g)	0.008	0	Hydroxyproline (g)	0.175	-
16:0 (g)	2.165	1.802	7 71 (8)		
18:0 (g)	1.330	-	- = no data available.		
20:0 (g)	0.052				

as effective as oleic (18:1n-9) and linoleic acid (18:2n-6) in the reduction of plasma total cholesterol, low density lipoprotein cholesterol and very low density lipoprotein cholesterol in 20-34 year-old healthy men (Chan *et al.*, 1991). In another study, 12 g ALA was taken three times a day by a group of healthy young women in the form of flaxseed oil capsules and compared with other group given the flaxseed flour supplemented products. An impressive

reduction in blood lipids was observed in both cases (Cunnane *et al.*, 1993). A full-fat flaxseed meal enhanced the cholesterol-lowering effect of diets containing flaxseed oil (Ranhotra *et al.*, 1993). The flaxseed protein was also found to be effective in lowering plasma cholesterol and triacylglycerides (Bhathena *et al.*, 2002). Cunnane *et al.* (1995a) stated that an 8% reduction in LDL protein and a 30% increase in bowel movement were observed in adults

Table 2. Adequate recommended daily intake of dietary fibre (Institute of Medicine of the National Academics, 2002).

Age (years)	Adequate intake (g/day)			
	Male	Female		
1-3 4-8 9-13 14-18 19-50 ≥51 Pregnancy	19 25 31 38 38 30	19 25 26 26 25 21 28		
Lactation		29		

Table 4. Adequate recommended daily intake of alpha-linolenic acid (Institute of Medicine of the National Academics, 2002).

Age	Adequate intake (g/day)			
	Male	Female		
0-6 months	0.5	0.5		
7-12 months	0.5	0.5		
1-3 years	0.7	0.7		
4-8 years	0.9	0.9		
9-13 years	1.2	1.0		
≥14 years	1.6	1.1		
Pregnancy		1.4		
Lactation		1.3		

Table 3. Summary of relationships between dietary fibre intake and some nutrition-related diseases (review by Hauner et al., 2012).

Disease	Possible evidence, risk reducing	Probable evidence, risk reducing	Convincing evidence, risk reducing	Possible evidence, no association	Probable evidence, no association	Convincing evidence, no association
Obesity (children)	-	-	-	yes	-	-
Obesity (adult)	-	yes	-	-	-	-
Type II diabetes	-	-	-	-	yes	-
mellitus						
Total cholesterol	yes	-	-	-	-	-
LDL cholesterol	yes	-	-	-	-	-
HDL cholesterol	-	-	-	-	yes	-
Triglycerides	-	-	-	-	-	yes
Hypertension	-	yes	-	-	-	-
Metabolic syndrome	-	-	-	yes	-	-
Cardiac heart disease	-	yes	-	-	-	-

consuming 50 g flaxseed per day for 4 weeks. Hasler *et al.* (2000) observed a 6.9% reduction in total cholesterol of women fed on bread and muffins supplemented with 38 g of flaxseed for a period of six weeks. Lemay *et al.* (2002) noticed small changes in the cholesterol levels of 25 hypercholesterolaemic women fed on a diet containing 40 g flaxseed/day.

Arjmandi *et al.* (1998) reported that thirty-eight women with mild, moderate or severe hypercholesterolaemia were provided with 38 g of flaxseed incorporated into bread or muffins as part of their daily diet for six weeks. The total cholesterol, LDL cholesterol and lipoprotein concentrations fell significantly, possibly due to the activity of linolenic or linoleic acids, fibre and non-protein constituents present in this seed. In a clinical study by Lucas *et al.* (2002), 40 g of either ground flaxseed or a wheat-based comparative control regimen was fed to postmenopausal women on a

daily basis for three months. The flaxseed supplementation resulted in a 6% reduction in both serum total and high density lipoprotein (HDL) cholesterol, whereas no effect was observed due to the use of a control regimen. The flaxseed regimen reduced the serum levels of both LDL and HDL cholesterol by 4.7% and triglyceride by 12.8%. Dodin $et\ al.\ (2005)$ reported that the intake of flaxseed reduced serum total (-0.20±0.51 mmol/l) and HDL cholesterol (-0.08±0.24 mmol/l) concentrations of menopausal women who consumed 40 g flaxseed per day.

4. Storage and cooking stability of flaxseed

Oxidative rancidity is a major cause of the development of bad odour and flavour in foods containing higher oil contents. Free radical formation is responsible for that process. The by-product of this process is the development of peroxides. The measurement of peroxide value helps

to determine the degree of rancidity present (Martin, 2004). Addis and Warner (1991) found that in higher oilcontaining functional foods, lipid per oxidation results in the deterioration of their nutritive value and stability. The flavour and taste of such foods or the foods to which these oils are added are also affected (Barlow, 1990). The flaxseed meal or oil can easily be incorporated into common food products such as breads, rolls, cereals, muffins, margarines, and salad dressings (Fitzpatrick, 2006). Flaxseed oil is a source of essential fatty acids, such as linoleic acid and linolenic acid (LNA, 18:3n-3), required in the diet for normal health (Dobson, 2002; Lee and Lip, 2003). The level of LNA in flaxseed oil is generally higher than 50% of the total fatty acids. LNA has been reported to play an important role in the prevention of immune disorders, cardiovascular diseases and certain type of cancers (Kris-Etherton et al., 2002). However, there is great concern about the use of flaxseed oil as a nutraceutical supplement, owing to its high content of LNA which is prone to rapid oxidation, resulting in quality deterioration. The study by Hauman (1998) indicated that flaxseed oil is high in unsaturated fatty acids, mainly in ALA, which is about 52% of the total fatty acid content of flaxseed oil. The instability of flaxseed oil as regards oxidation is the limiting factor for its incorporation in food products. (Kolodziejczyk and Fedec, 1995) reported that the stability of oil can be extended by suitable storage which is vital for improving the oxidative stability of flaxseed oils. ALA in a remote form or as a part of an extracted oil is generally considered susceptible to oxidation as it is highly unsaturated and oxidation in oils is encouraged by both heat (auto-oxidation) and light (photo-oxidation). However, ALA in the intact seed of flax has proven particularly resistant to oxidation.

The storage stability of flaxseed is of major importance before using it in any food product. Due to its high oil content, proper cooking and storage assures better stability of high oil-containing flaxseeds in different products. Several researchers have worked on the storage and cooking stability of flaxseed. Macaroni fortified with ground flaxseed at levels of 10 and 20% was dried at 40, 70 and 90 °C. In dried macaroni after storage for 32 weeks, conjugated diene values indicated no significant increase while ALA levels in the fortified macaroni remained unchanged during the whole storage period (Hall et al., 2005). The study conducted by Lee et al. (2000) concluded that macaroni containing 20% ground flaxseed flour showed significant storage stability. ALA content and storage stability of the spaghetti were not affected by the processing method. Fatty acid profile of the pasta remained consistent during the storage. Conjugated dienes and headspace analysis also indicated non-significant variations.

Both the whole and coarsely ground flaxseed showed longterm storage stability at room temperature. No changes in the peroxide values were observed after 308 days of storage at a temperature of 22 °C. The percentage of ALA in fat extracted from the stored flaxseed samples also remained unchanged (Ratnayake *et al.*, 1992). The roasting of flaxseed significantly affected the peroxide value (POV). Roasted samples showed a lower peroxide value as compared to the non-roasted flaxseed samples. The storage time significantly affected the peroxide value; it increased after the 4-week storage period, which ultimately resulted in a decrease in the stability of the flaxseed. Storage temperatures also affected the peroxide value. Samples stored at 30 °C had a higher POV than those stored at 25 °C. Non-roasted samples had statistically (*P*<0.05) higher free fatty acid levels than roasted samples. The fatty acid profile showed low variation, indicating insignificant changes in terms of linolenic acid content (Scott *et al.*, 2004).

Flaxseed can be stored in different materials that affect its stability. The peroxide values were relatively unchanged and the ALA content was not affected in flaxseed packaged in loosely packed plastic bags and protected from light when stored at room temperature for 20 months in warehouse conditions (Daun, 2001). Flaxseed spread out in trays showed ample deterioration (high peroxide levels) after 14 weeks of storage. Flaxseed stored in bags showed very little increase in peroxide levels and fatty acids remained unaffected during storage period (Wiesenborn *et al.*, 2004).

Flaxseed samples milled and stored at 22.7 °C for 4 months in paper bags with plastic liners were tested after 0, 33, 66, 96 and 128 days of storage intervals. A slight increase in peroxide values and changes in ALA content was observed. There was no difference in odour or taste of fresh and stored samples of flaxseed tested by a sensory panel (Malcolmson et al., 2000). Negligible changes in chemical parameters of oxidation like peroxide value and free fatty acids were observed. No difference was observed in the aroma intensity of the water slurries of fresh and stored samples (Malcolmson et al., 1998). Similarly, flaxseed samples stored in a glass tube remained unchanged regarding their ALA content and showed stability in heat and light for 280 days during storage at room temperature. Few changes in head space oxygen were recorded during the said period (Chen et al., 1994).

Research conducted by Cunnane *et al.* (1995b) showed no significant reduction during the baking process in the thiobarbituric acid-reactive substances and alpha-linolenate content of muffins supplemented with 25 g of flaxseed. Malcolmson (1997) reported that 36 consumers could not tell the difference between the taste of yeast bread baked with either fresh or stored milled flaxseed at 11% of the flour weight in the recipe. In another study, Manthey *et al.* (2002a) concluded that processing and cooking of spaghetti did not significantly affect ALA contents.

During baking, a minimal loss of ALA from flaxseed was observed, which is helpful for the incorporation of flaxseed in different food products (Chen *et al.*, 1994). No changes in peroxide values and fatty acid composition were observed when whole and milled flaxseed was heated for 60 minutes at either 100 or 350 °C (Ratnayake *et al.*, 1992). Macaroni was fortified with 20% (by weight) ground flaxseed, stored for 20 weeks and cooked in boiling water for 12 minutes. The ALA content remained the same during the whole storage process and after cooking (Manthey *et al.*, 2002b).

Potential of flaxseed use in different food products

The flaxseed grain is oval and flat, slightly larger than a sesame seed and about $2.5 \times 5.0 \times 1.5$ mm in size. The colour of flaxseed ranges from reddish brown to a light yellow (Freeman, 1995). The texture of flaxseed is crisp and chewy and it has a pleasant nutty taste (Carter, 1996).

The approximate composition of flaxseed is 30% protein, 35% lipids and 35% fibre; though it varies depending upon the seed variety, cropping year, cropping location and environmental conditions. The protein content in flaxseed has been reported to range from 10.5 to 31% depending on environment and growing conditions (Bajpai et al., 1985). Flaxseed is not a good source of starch. The soluble fibre represents approximately a quarter of the total fibre present in flaxseed. Mucilaginous gum is the major component of the soluble fibre in flaxseed and its composition varies from 7-10 g per 100 g (Carter, 1993). ALA, which is an omega-3 fatty acid, forms the mass composition of polyunsaturated fatty acids in flaxseed. It makes up about 50% of the total fatty acids (Daun and Przybyliski, 2000). ALA cannot be synthesised by the human body from any other substance therefore it is considered as an essential fatty acid. The essential fatty acid requirements for the human body can be fulfilled by consuming flaxseed products (Morris, 2004). 100 g of flaxseed provides 100% of the recommended daily allowance (RDA) of manganese and potassium, 57-65% of the RDA of phosphorus and iron, and 13-35% of zinc, calcium and copper while its recommended daily intake is 25 to 50 g (Stitt, 1986). Specialty grains (bulgar wheat, barley, flax seed, sprouted grains and rice extract) are used in breakfast cereals to add novel textures, flavours and colours in these products (Kuntz, 1998). Al-Dmoor (2012) reviewed the importance of the fortification of flaxseed flour in flat breads. Hussain et al. (2012) reported that the level of soluble, insoluble and total dietary fibre and essential amino acids in flaxseed supplemented unleavened flat breads was higher. It was noticed that the net protein utilisation, biological value, protein efficiency ratio and true digestibility improved significantly ($P \le 0.05$) when diets containing flaxseed supplemented unleavened flat breads were fed to rats.

Similarly, chapattis containing 20% or lower levels of the full fat flaxseed flour were found acceptable by the panellists with respect to their sensory attributes. The mineral contents of the chapattis increased significantly as the levels of the full fat flaxseed flour were increased in the wheat flour (Hussain, 2004). The breads containing 10 and 13% levels of linseeds were characterised by higher amounts of protein, fat, dietary fibre, macro and microelements in comparison to standard bread. There was a significant increase in iron, zinc and manganese content of the bread with the increasing level of flaxseed flour in the wheat flour (Gambus et al., 2004; Naz, 2000). The ground flaxseed used at 30 to 50% has been found to be acceptable in muffins and quick breads (Alpers and Morse, 1996). The cookies prepared from wheat flour containing 20% whole flax grains, partially defatted flaxseed flour and full fat flaxseed flour were found acceptable with respect to their sensory attributes (Hussain et al., 2006).

Gambus et al. (2003) investigated the quality of two bakery products (cookies and muffins) containing brown and yellow flaxseed flour at 11 and 9%, respectively. These levels of replacement did not affect the sensory properties of flax hermit cookies and flax muffins. The increased linseed content improved the dietary and nutritional values of both types of bakery products due to the increased total protein and dietary fibre contents. The study conducted by Zaib-un-Nisa (2000) showed that the protein content of biscuits made from composite flour containing 15% ground flaxseed increased from 6.50 to 8.52%, fat content increased from 26.13 to 31.45%, fibre content increased from 0.15 to 3.78% and ash content increased from 0.26 to 1.00%. The supplementation of flaxseed flour up to 15% showed no deleterious effect on the sensory attributes of biscuits. Minerals like iron, zinc and manganese contents increased significantly with 15% supplementation of flaxseed flour. According to Gambus et al. (2004), a 3% increase in linseed in the recipe for flax hermit cookies and a 5% rise of linseed in flax muffins resulted in an increase in the amounts of proteins, dietary fibre, micro and macro minerals. Frank and Sarah (2006) also studied the effect of combining flaxseed meal (15%) and soy flour (5 and 10%) on the product quality in the production of yeast bread. The addition of flax and soy flour resulted in the reduction of bread volume. The sensory attributes like crust and crumb colour were also affected due to the addition of soy/flaxseed flours and a darker colour was observed in both products. No significant differences in moisture in the flax and soy/flax breads were recorded as compared to control breads prepared from wheat flour alone.

Kocka and Anil (2007) reported that the addition of flaxseed to wheat flour at 15 and 20% levels resulted in a decrease in dough stability, lower crust and crumb scores as compared to the control breads prepared from 100% wheat flour. In another study, conducted by Pohjanheimo *et al.* (2006),

the effect of the addition of flaxseed to bread rolls and cinnamon rolls on their sensory profile and chemical composition was studied. At 0 and 6 days of storage, no significant changes were observed in their sensory attributes. Higher contents of saturated fatty acids were observed in the cinnamon rolls. Both bakery products were found to be higher in ALA contents. The fibre content of the bread rolls also increased.

The wheat grown in Pakistan and in some other parts of Asia is mainly used for the preparation of unleavened flat breads, which are known locally as chapatti or roti. The chapattis are unleavened and are prepared from wholewheat flour or atta (95% extracted flour). Wheat is a basic raw material for the preparation of chapattis and its other variants like rotis and naans. The quality of chapattis is influenced by the wheat quality (Haridas et al., 1986; Prabhasankar, 2002). The most important parameters of chapatti quality are flavour and texture and are evaluated as soft texture, greater pliability, light creamy brown colour with small brown spots, slight chewiness, fully puffed, and baked wheaty aroma (Haridas et al., 1986; Shaikh et al., 2007). The composite flours can be prepared and used to improve the nutritional and technological properties of the chapattis. Gandhi et al. (1983) demonstrated that chapattis made from wheat flour containing 10-15% soy flour were judged to be of satisfactory flavour, texture, appearance and overall acceptability by a trained sensory panel, although flavour and texture were significantly different from the allwheat-flour chapattis. Khan et al. (2005) and Anjum et al. (2006) observed a significant improvement in the mineral content (iron, zinc, calcium, magnesium and copper) of chapattis supplemented with soy flour /hulls and found that soy flour and hulls can be replaced up to 24 and 4.5% levels, respectively, to produce organoleptically acceptable chapattis. The chapattis prepared from the composite flour containing 15 g roasted flaxseed powders, 0.05 g oil and 80 g of whole wheat flour provided 29.9 g carbohydrates, 6.3 g protein, 5.9 g fat and 198 Kcalories (Soniya et al., 2004). The texture of chapattis became progressively harder when stored at both room and refrigerated temperatures. A decrease in sensory quality and acceptability of the chapattis was observed with storage. The rate at which the chapattis went stale was lower at refrigerated temperature than at room temperature (Shaikh et al., 2007).

Rheological characteristics of composite flours containing flaxseed

The mechanical and rheological properties of the dough exert a promising effect on the overall quality of baked products (Blokshma and Bushuk, 1988). The arrangement and interaction of constituents (especially proteins) and the structure of materials are the factors that affect the rheological properties (Bushuk, 1985). The final product quality depends upon the dough rheology taking place

during the processing of the constituents (Lindahl, 1990). The nature of ingredients, their proportions, mixing time and beating conditions are responsible for the quality of batter which finally determines the baked product quality (Baixauli et al., 2007). The dough rheological properties are influenced by the structure of the aggregates and their tendency to interact with each other. The quality and quantity of the proteins affect the water absorption capacity of the dough (Finney, 1984). The farinograph or mixograph are the two most common methods used for measuring the rheological properties of dough during mixing (Mani et al., 1992). The mixing of flours results in hydration which leads to the formation of a gluten matrix. During the mixing process, air is also incorporated into the dough system (Bushuk, 1985). The mixograph provides an indication of the mixing requirements of flour (Hoseney and Finney, 1974). The peak height depends on the gluten content of the wheat flour. The wheat variety Barani-83 of Pakistan showed higher gluten levels which resulted in the increase of peak height (Anjum and Walker, 2000). The rheological properties of the composite flours are significantly affected as the level of replacement of wheat flour by cottonseed flour was increased (Bajwa, 1997). Similarly 10% replacement of wheat flour by defatted peanut flour altered the water absorption capacity and extensibility of the dough mix (Rao and Vakil, 1980), while no significant effect on the peak height and mixing time was observed with the 10% addition of cottonseed flour in the two different types of wheat flours (Rasool, 2004). More water absorption with sticky dough is observed, as the fibre content of chapattis was increased and the mixing time of the dough was decreased (Ahluwalia and Kuar, 2001). The addition of cottonseed, peanut, safflower and soy flour to wheat reduced the mixing tolerance while an increase in the water absorption is observed (Mathews, 1972). The water absorption of composite flour containing 10% chickpea flour decreased significantly from 68.40% at (0 day) to 66.5% (60 days) as a function of storage time (Shahzadi, 2004).

Flaxseed mucilage is composed mainly of polymeric carbohydrates while galacturonic acid, rhamnose, galactose, fructose, glucose are also present in small quantities. It can help to improve the water absorption characteristics of the dough (Fedeniuk and Biliaderis, 1989). Flaxseed may function as a natural additive that retards the staling of the bread (Pohjanheimo et al., 2006) as its gum possesses excellent water-binding capacities and technological benefits (Konecsni et al., 2005). The farinographic studies of bread prepared from wheat flour replaced with flaxseed flour at 5, 10, 15, and 20% showed that water absorption, dough development time and mixing tolerance index increased as the amount of flaxseed flour increased, while dough stability decreased at 10, 15 and 20% of flaxseed flour supplementation. The addition of 15 and 20% levels of flaxseed flour showed a decrease in the dough extensibility. The doughs containing 10, 15 and 20% flaxseed flour exhibited resistance to extension comparable to that of control dough containing no flaxseed flour (Koca and Anil, 2007).

The quality of breads based on sensory attributes is described by appearance, aroma, texture and flavour (Lawless and Heyman, 1999; Meilgard et al., 2007). Wang et al. (2002) reported that the addition of or increase in dietary fibre in breads results in a decrease in loaf volume, increase in crumb firmness and darker crumb appearance of bread. Filipovic et al. (2007) also found that incorporation of fibres (modified and unmodified) showed a decrease in scores assigned to volume and crumb quality of bread. The sensory scores for appearance, texture and flavour of breads have been reported to be decreased by the incorporation of non-wheat flours in wheat flours (Shittu et al., 2007). Frank and Sarah (2006) found that addition of 15% flaxseed meal to bread negatively affected the volume, crust colour and crumb colour of breads. Koca and Anil (2007) showed that crumb darkness increased by increasing the level of flaxseed flours levels. A significant decrease in scores for all the sensory attributes has also been supported by the study conducted by Naz (2000) who observed that breads exceeding 15% flaxseed supplementation in wheat flour resulted in lower scores for texture, crumb colour, grain, and volume and crust colours. The first limiting amino acid in wheat flour is lysine, but its quantity in flaxseed flour is 6.8 mg/100 g of protein (Dev and Quensel, 1986) which is higher than soy flour, i.e. 5.8 mg/100 g of protein (Friedman and Levin, 1989), and wheat flour. Thus the addition of flaxseed flour to chapattis and bread can be helpful in improving the biological parameters of these products.

7. Conclusions

Flaxseed grains are a good source of nutrients and also provide health benefits. The storage stability of flaxseed for about 2 months makes it suitable for blending with wheat flour. The flaxseed proteins can enhance the quality parameters of bread and chapattis. The addition of flaxseed to wheat flour can also contribute towards the several health benefits and can offer a low-cost treatment for many diseases, e.g. diabetes, hypercholesterolemia and cardiovascular complications. Flaxseed should be included in a daily diet plan through its incorporation into wheat flour used for the production of breads and other bakery products. The baking industry should focus on the fortification of bakery products with flaxseed flour. Flaxseed supplemented chapattis and breads should be advised for diabetic and heart patients. Lignans of flaxseed should be explored for their anticancer effects. Flaxseed should be used in various other products based on dairy and beverages. Active ingredients from flaxseed should be extracted and used as nutraceuticals in different food products including chapattis and other traditional products.

Acknowledgements

This project was financially supported by King Saud University, Deanship of Scientific Research, College of Food & Agricultural Sciences, Research Center.

References

- Addis, P.B. and Warner, G.J., 1991. The potential aspects of lipid oxidation products in food. In: Auroma, O.I. and Halliwal, B. (eds.) Free radicals and food additives. Taylor and Francis, London, UK.
- Ahluwalia, P. and Kaur, A., 2001. Studies on the use of Isabgol (*Psyllium mueilloid*) husk in atta for chapatti making. Journal of Food Science and Technology 38: 75-78.
- Al-Dmoor, H.M., 2012. Flat bread: ingredients and fortification. Quality Assurance and Safety of Crops and Foods 4: 2-8.
- Alpers, L. and Morse, M.S., 1996. Eating quality of banana nut muffins and oatmeal cookies made with ground flaxseed. Journal of the American Dietetic Association 96: 794-796.
- American Dietetic Association, 2008. Position of the American Dietetic Association: health implications of dietary fiber. Journal of the American Dietetic Association 108: 1716-1731.
- Anjum, F.M. and Walker, C.E., 2000. Grain, flour and bread making properties of eight Pakistani hard white spring wheat cultivars grown at three different locations for 2 years. International Journal of Food Science and Technology 35(4): 407-416.
- Anjum, F.M., Khan, M.I., Butt, M.S., Hussain, S. and Abrar, M., 2006. Functional properties of soy hulls supplemented wheat flour. Nutrition *and* Food Science 36(2): 82-89.
- Anonymous, 2006. Functional, flavourful, fantastic: flaxseed. Food Marketing and Technology 20: 22-24.
- Arai, S., 1996. Studies on functional foods in Japan: state of the art. Bioscience, Biotechnology and Biochemistry 60: 9-15.
- Arjmandi, B.H., Khan, D.A., Juma, S., Drum, M.I., Venkatesh, S., Sohn, E., Wei, L. and Derman, R., 1998. Whole flaxseed consumption lowers serum LDL-cholesterol and lipoprotein(a) concentrations in postmenopausal women. Nutrition Research 18: 1203-1214.
- Austin, A. and Ram, A., 1971. Studies on chapati making quality of wheat. Indian Council of Agricultural Research, Bulletin 31, New Delhi, India.
- Baixuli, R., Sanz, T, Salvador, A. and Fiszman, S.M., 2007. Influence of the dosing process on the rheological and microstructural properties of a bakery product. Food Hydrocolloids 21: 230-236.
- Bajpai, M., Pandey, S. and Vasishtha, A.K., 1985. Spectrum of variability of characteristics and composition of the oils from different genetic varieties of linseed. Journal of the American Oil Chemists' Society 6: 628.
- Bajwa, U., 1997. Soy enriched flat bread (chapaties): evaluation of texture using instron universal testing machine. Advances in Food Science 19: 167-171.
- Barlow, S.N., 1990. Toxicological aspects of antioxidants used as food additives. In: Hudson, B.J.F. (ed.) Food antioxidants. Elsevier, Amsterdam, the Netherlands, pp. 253-307.

- BeMiller, J.N., Whistler, R.L. and Barkalow, D.G., 1993. Aloe, chia, flaxseed, okra, psyllium seed, quince seed, and tamarind gums.
 In: Whistler, R.L. and BeMiller, J.N. (eds.) Industrial gums, 3rd Ed.
 Academic Press, New York, NY, USA, pp. 227-256.
- Bhathena, S.J., Ali, A.A., Mohamed, A.I., Hansen, C.T. and Velasquez, T., 2002. Differential effects of dietary flaxseed protein and soy protein on plasma triglyceride and uric acid levels in animal models. Journal of Nutritional Biochemistry 13: 684-689.
- Blokshma, A.H. and Bushuk, W., 1988. Rheology and chemistry of dough. In: Pomarenz, Y. (ed.). Wheat chemistry and technology, volume 2. American Association of Cereal Chemists International, St. Paul, MN, USA.
- Brena, J.T., Salem, N., Sinclair, A.J. and Cunnane, S.C., 2009. α -linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins, Leukotrienes and Essential Fatty Acids 80: 85-91.
- Burdge, G.C. and Calder, P.C., 2005. Conversion of α-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reproduction Nutrition Development 45: 581-597.
- Bushuk, W., 1985. Rheology: theory and application to wheat flour doughs. In: Faridi, H. (ed.). Rheology of wheat products. American Association of Cereal Chemists International, St. Paul, MN, USA, pp. 1-26.
- Butt, M.S., Anjum, F.M., Ali, A. and Rehman, A., 1997. Milling and baking properties of spring wheat. Journal of Agricultural Research 35: 403-412.
- Carter, J., 1993. Potential of flaxseed and flaxseed oil in baked goods and other products in human nutrition. Cereal Foods World 38: 753-759.
- Carter, J.F., 1996. Sensory evaluation of flaxseed of different varieties. FLAX Institute of the United States Proceedings 56: 201-203. Available at: http://library.ndsu.edu/flax/.
- Chan, J.K, Bruce, V.M. and McDonald, B.E., 1991. Dietary α -linolenic acid is as effective as oleic acid and linoleic acid in lowering blood cholesterol in normolipidemic men. American Journal of Clinical Nutrition 53: 1230-1234.
- Chen, Z.Y., Ratnayake, W.M.N. and Cunnane, S.C., 1994. Oxidative stability of flaxseed lipids during baking. Journal of the American Oil Chemists' Society 71: 629-632.
- Cunnane, S.C., Hamadeh, M.J., Liede, A.C., Thompson, L.U. and Wolever, T.M.S., 1995a. Nutritional attributes of traditional flaxseed in healthy young adults. American Journal of Clinical Nutrition 61: 62-68.
- Cunnane, S.C., Ganguli, S., Menard, C., Liede, A.C., Hamadeh, M.J., Zhen, Y.C., Wolever, T.M.S. and Jenkins, D.J.A., 1993. High alphalinolenic acid flaxseed (*Linum usitatissimum*): some nutritional properties in humans. British Journal of Nutrition 69: 443-453.
- Cunnane, S.C. and Thompson, L.U., 1995b. Flaxseed in human nutrition. AOCS press, Champaign, IL, USA, pp. 261-280.
- Daun, J.K., 2001. Additional data on the storage stability of milled flaxseed. Journal of the American Oil Chemists' Society 78: 105-106.
- Daun, J.K. and Przybylski, R., 2000. Environmental effects on the composition of four Canadian flax cultivars. FLAX Institute of the United States Proceedings 58: 80-91. Available at: http://library.ndsu.edu/flax/.

- Dev, D.K. and Quensel, E., 1986. Functional and micro structural characteristics of linseed (*Linum usitatissimum* L.) flour and a protein isolate. LWT-Food Science and Technology 19: 331-337.
- Dobson, G., 2002. Analysis of fatty acids in functional foods with emphasis on ω 3 fatty acids and conjugated linolenic acid. In: Hurst, W.J. (ed.) Methods of analysis for functional foods and nutraceuticals. CRC Press, New York, NY, USA, pp. 65-99.
- Dodin, S., Lemay, A., Jacques, H., Légaré, F., Forest, J.C. and Mâsse, B., 2005. Effects of flaxseed dietary supplement on lipid profile, bone mineral density, and symptoms in menopausal women. Journal of Clinical Endocrinology and Metabolism 90: 1390-1397.
- Eastwood, M.A. and Passmore, R., 1983. Dietary fiber. Lancet 2: 202-206
- Fedeniuk, R.W. and Biliaderis, C.G., 1994. Composition and physicochemical properties of linseed (*Linum usitatissimum* L.) mucilage. Journal of Agriculture and Food Chemistry 42: 240-247.
- Filipovic, N., Djuric, M. and Gyura, J., 2007. The Effect of the type and quantity of sugar-beet fibres on bread characteristics. Journal of Food Engineering 78: 1047-1053.
- Finney, K.F., 1984. An optimized straight-dough, bread making method after 44 years. Cereal Chemistry 621: 20.
- Fitzpatrick, K., 2006. Plant based omega-3: chemistry, applications and potential health benefits. In: Proceedings of the 97th AOCS Annual Meeting and Expo. April 30 May 3, 2006. St. Louis, MO, USA. Available at: www.aocs.org/archives/am2006/session. cfm?session=LOQ%204%3A%20Omega-3%20and%20Specialty%20 Lipids%3A%20Chemistry%2C%20Product%20Formulation%20 and%20Stability.
- Flax Council of Canada, 2007. Description and composition of flax. Available at: http://www.flaxcouncil.ca/english/pdf/FlxPrmr_4ed_Chpt1.pdf.
- Food and Agriculture Organization (FAO), 2011. FAO statistical yearbook. Available at: http://faostat3.fao.org/home/index. html#DOWNLOAD.
- Frank, D.C. and Sarah, F.D., 2006. The effect of soya flour and flaxseed as a partial replacement for bread flour in yeast bread International Journal of Food Science and Technology 41: 95-101.
- Freeman, T.P., 1995. Structure of flaxseed. In: Cunnane, S.C. and Thompson, L.U. (eds.) Flaxseed in human nutrition. AOCS Press, Champaign, IL, USA, pp. 11-21.
- Friedman, M. and Levin, E., 1989. Composition of jimson weeds (*Datura stramonium*) seeds. Journal of Agricultural and Food Chemistry 37: 998-1005.
- Gambus, H., Mikulec, A. and Matusz, A., 2003. The Canadian muffins and hermit cookies with linseed [in Polish]. Zywnosc-Nauka Technologia Jakosc 10: 82-93.
- Gambus, H., Mikulec, A., Gambus, F. and Pisulewski, P., 2004.Perspectives of linseed utilization in baking. Polish Journal of Food and Nutrition Sciences 13: 21-27.
- Gambus, H., Mikulec, A., Pisulewski, P., Borowiec, F., Zajac, T. and Kopec, A., 2001. Hypocholesteric properties of bread with the addition of oil flaxseed [in Polish]. Zywnosc-Nauka Technologia Jakosc 8: 55-65.
- Gandhi, A.P., Mishra, V.K. and Ali, N., 1983. Organoleptic assessment of full fat soy flour in various indigenous products. Journal of Food Technology 18: 771-775.

- Glore, S.R., Van Treeck, D., Knehans, A.W. and Guild, M., 1994. Soluble fiber and serum lipids: a literature review. Journal of the American Dietetic Association 94: 425-436.
- Gowda, B., 2013. Economic botany; fibres, rubber, firewood, timber and bamboo. Technical report. University of Agricultural Sciences, Bangalore, India. Available at: http://nsdl.niscair.res.in/bitstream/123456789/127/1/Fibre+crops,+bamboo,+timber++Final.pdf
- Hall, C.A., Manthey, F.A., Lee, R.E. and Niehaus, M., 2005. Stability of a-linolenic acid and secoisolariciresinol diglucoside in flaxseed fortified macaroni. Journal of Food Science 70: 483-489.
- Haridas, R.P., 1993. Chapati and related products. In: Macrae, R., Robinson, R.K. and Sadler, M.J. (eds.) Encyclopaedia of food science, food technology and nutrition. Academic Press, London, UK, pp. 795-801.
- Haridas, R.P., Leelavathi, K. and Shurpalekar, S.R., 1986. Test baking of chapatti - development of a method. Cereal Chemistry 63: 297-303.
- Hasler, C., Kundrat, S. and Wool, D., 2000. Functional foods in cardiovascular disease. Current Atherosclerosis Reports 2: 467-475.
- Hasler, C.M., 1998. A new look at the ancient concept. Chemistry and Industry 2: 84-89.
- Hauman, B.F., 1998. Alternative source for n-3 fatty acids. Inform 9: 1108-1119.
- Hauner, H., Bechthold, A., Boeing, H., Brönstrup, A., Buyken, A., Leschik-Bonnet, E., Linseisen, J., Schulze, M., Strohm, D. and Wolfram, G., 2012. Evidence-based guideline of the German nutrition society: carbohydrate intake and prevention of nutritionrelated diseases. Annals of Nutrition and Metabolism 60: 1-58.
- Horrobin, D.F. and Manku, M.S., 1990. Clinical biochemistry of essential fatty acids. In: Horrobin, D.F. and Alan, R. (eds.) Omega-6 essential fatty acids. Wiley-Liss, New York, NY, USA, pp. 21-53.
- Hoseney, R.C. and Finney, P.L., 1974. Mixing: a contrary view. Bakers Digest 48: 22-24, 26, 28, 66.
- Hurteau, M.C., 2004. Unique new food products contain good omega fats. Journal of Food Science Education 3: 52-53.
- Hussain, S., 2004. Biochemical and technological properties of flaxseed supplemented wheat flour. MSc thesis. University of Agriculture Faisalabad, National Institute of Food Science and Technology, Faisalabad, Pakistan.
- Hussain, S., Anjum, F.M., Butt, M.S., Alamri, M.S. and Khan, M.R., 2012. Biochemical and nutritional evaluation of unleavened flat breads fortified with healthy flaxseed. International Journal of Agriculture and Biology 14: 190-196.
- Hussain, S., Anjum, F.M., Butt, M.S., Khan, M.I. and Asghar, A., 2006.Physical and sensoric attributes of flaxseed flour supplemented cookies. Turkish Journal of Biology 30: 87-92.
- Institute of Medicine of the National Academics, 2002. Dietary reference intakes. Energy, carbohydrates, fiber, fat, fatty acids, cholesterol, protein and amino acids. National Academies Press, Washington, DC, USA.
- Jenkins, D.J.A., Kendall, C.W.C., Vidgen, E., Agarwal, S., Rao, A.V., Rosenberg, R.S., Diamandis, E.P., Novokmet, R., Mehling, C.C., Perera, T. and Griffin, L.C., 1999. Health aspects of partially defatted flaxseed including effects on serum lipids oxidative measures and ex vivo androgen and progestin activity: a controlled crossover trial. American Journal of Clinical Nutrition 69: 395-402.

- Khan, M.I., Anjum, F.M., Hussain, S. and Tariq, M.T., 2005. Effect of soy flour supplementation on mineral and phytate contents of unleavened flat bread (chapati). Nutrition and Food Science 35: 163-168
- Klopfenstein, C.F. and Hoseney, R.C., 1995. Nutritional properties of sorghum and the millets In: Dendy, D.A.V. (ed.) Sorghum and millets: chemistry and technology. American Association of Cereal Chemists International, St. Paul, MN, USA, pp. 125-168.
- Koca, A.F. and Anil, M., 2007. Effect of flaxseed and wheat flour blends on dough rheology and bread quality. Journal of the Science of Food and Agriculture 87: 1172-1175.
- Kolodziejczyk, P. and Fedec, P., 1995. Processing flaxseed for human consumption. In: Thompson, L.U. and Cunnane, S.C. (eds.) Flaxseed in human nutrition, 2nd Ed. AOCS Press, Champaign, IL, USA, pp. 194-218.
- Konecsni, J., Vidal, J., Kupper, C., Loutas, P. and Reaney, M., 2005.
 Functional fiber flour product and method for making same. US
 Patent 20050249860 A1. Available at: http://www.google.com/patents/US20050249860.
- Kris-Etherton, P.M., Harris, W.S. and Appel, L.J., 2002. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106: 2747-2757.
- Kuntz, L.A., 1994. Building a better breakfast cereal. Available at: http://www.foodproductdesign.com/articles/463/463_0498cs.html.
- Lawless, H. and Heyman, H., 1999. Sensory evaluation of food: principles and practices. Aspen Publishers, New York, NY, USA.
- Lee, K.W. and Lip, G.Y.H., 2003. The role of omega-3 fatty acids in the secondary prevention of cardiovascular disease. Quarterly Journal of Medicine 96: 465-480.
- Lee, R., Manthey, F. and Hall, C., 2000. Quality and alpha-linolenic acid content of spaghetti containing ground flaxseed. In: Proceedings of the Annual Meeting of AACC. November 5-8, 2000. Kansas City, MO, USA.
- Lemay, A., Dodin, S. and Kadri, N., 2002. Flaxseed dietary supplement versus hormone replacement therapy in hypercholesterolemic menopausal. Obstetrics and Gynecology 100: 495-504.
- Lindahl, L., 1990. Rheological properties in wheat flour systems.

 PhD thesis. University of Lund, Department of Food Technology,
 Lund, Sweden.
- Lindell, M.J. and Walker, C.E., 1984. Soy enrichment of chapattis made from wheat and non-wheat flours. Cereal Chemistry 61: 435-438.
- Lucas, E.A., Wild, R.D. and Hammond, L.J., 2002. Flaxseed improves lipid profile without altering biomarkers of bone metabolism in postmenopausal women. Journal of Clinical Endocrinology and Metabolism 87: 1527-1532.
- Malcolmson, L.J., 1997. Flax seed. Internal Report 15. Flax Council of Canada, Winnipeg, Canada.
- Malcomson, L.J., Przybylski, R. and Daun, J.K., 1998. Storage stability of milled flaxseed. Flax Institute of the United States Proceedings 57: 75-80. Available at: http://library.ndsu.edu/flax/.
- Malcolmson, L.J., Przybylski, R. and Daun, J.K., 2000. Storage stability of milled flaxseed. Journal of the American Oil Chemists' Society 77: 235-238.
- Mani, K., Eliasson, A., Lindahl, L. and Tragardh, C., 1992. Rheological properties and bread making quality of wheat flour doughs made with different dough mixers. Cereal Chemistry 69: 222-225.

- Manthey, F., Lee, R. and Hall, C., 2002a. Processing and cooking effects on lipid content and stability of alpha-linolenic acid in spaghetti containing ground flaxseed. Journal of Agricultural and Food Chemistry 50: 1668-1671.
- Manthey, F., Lee, R. and Hall, C., 2002b. Stablility of alpha-linolenic acid in macaroni containing ground flaxseed. FLAX Institute of the United States Proceedings 59: 14-20. Available at: http://library.ndsu.edu/flax/.
- Martin, J.R., 2004. Flax seed summary of storage and cooking stability studies. Available at: www.flaxrd.com.
- Mathews, R.H., 1972. Some functional aspects of oilseed flours in bread. Bakers Digest 46: 46-48, 78.
- Meilgard, M., Civille, G.V. and Carr, B.T., 2007. Sensory evaluation techniques, 4th ed. CRC Press, Boca Raton, FL, USA, pp. 43-57.
- Morris, D.H., 2004. Flax a health and nutrition primer. Available at: http://www.flaxcouncil.ca/english/index.jsp?p=primer&mp=nutrition.
- Muir, A.D. and Westcott, N.D., 2000. Quantitation of the lignan secoisolariciresinol diglucoside in baked goods containing flaxseed or flax meal. Journal of Agricultural and Food Chemistry 48: 4048-4052.
- Naz, N., 2000. Effect of Flaxseed supplementation on chemical properties of bread. MSc thesis. University of Agriculture Faisalabad, Department of Home Economics, Faisalabad, Pakistan.
- Nisa, Z.U., 2000. Effect of flaxseed supplementation on chemical properties of biscuits. MSc thesis. University of Agriculture Faisalabad, Department of Home Economics, Faisalabad, Pakistan.
- Oomah, B.D., 2001. Flaxseed as a functional food source. Journal of the Science of Food and Agriculture 81: 889-894.
- Oomah, B.D. and Mazza, G., 1998. Flaxseed products for disease prevention. In: Mazza, G. (ed.) Functional foods: biochemical and processing aspects. Technomic, Lancaster, PA, USA, pp. 91-138.
- Pohjanheimo, T.A., Hakala, M.A., Tahvonen, R.L., Salminen, S.J. and Kallio, H.P., 2006. Flaxseed in breadmaking: effects on sensory quality, aging, and composition of bakery products. Journal of Food Science 71: S343-S348.
- Prabhasankar, P., 2002. Electrophoretic and immunochemical characteristics of wheat protein fractions and their relationship to chapatti-making quality. Food Chemistry 78: 81-87.
- Ranhotra, G.S., Gelroth, J.A. and Glaser, B.K., 1993. Lipidemic responses in rats fed flaxseed oil and meal. Cereal Chemistry 70: 364-366.
- Rao, V.S. and Vakil, U.K., 1980. Improvement of baking quality of oilseed enriched wheat flour by addition of gluten and soy lecithin. Journal of Food Science and Technology 17: 259-262.
- Rasool, G., 2004. Characterization and evaluation of wheat flour enriched with oilseed proteins for chapatti making. PhD thesis. University of Agriculture Faisalabad, National Institute of Food Science and Technology, Faisalabad, Pakistan.
- Ratnayake, W.M.N., Behrens, W.A., Fischer, P.W.F., Abbe, M.R.L., Mongeau, R. and Beare-Rogers, J.L., 1992. Flaxseed: chemical stability and nutritional properties. Journal of Nutritional Biochemistry 3: 232-240.

- Scott, M., Tulbek, M.C. and Hall, C.A., 2004. Storage stability of roasted flaxseed. In: Proceedings of the IFT Annual Meeting, July 12-16, 2004, Las Vegas, NV, USA. Available at: http://ift.confex. com/ift/2004/techprogram/paper_24621.htm.
- Setchell, K.D.R., Lawson, A.M., Mitchell, F.L., Adlercreutz, H., Kirk, D.N. and Axelson, M., 1980. Lignans in man and in animal species. Nature 287: 740-742.
- Shahzadi, N., 2004. Use of composite flour for chapatti preparation in relation to serum profile. PhD thesis. University of Agriculture Faisalabad, National Institute of Food Science and Technology, Faisalabad, Pakistan.
- Shaikh, I.M., Ghodke, S.K. and. Ananthanarayan, L., 2007. Staling of chapatti (Indian unleavened flat bread). Food Chemistry 101: 113-119.
- Shen, H., He, L., Price, R.L. and Femandez, M.I., 1998. Dietary soluble fibers lowers plasma LDL cholesterol concentrations by altering lipoprotein metabolism in female guinea pigs. Journal of Nutrition 128: 1434-1441.
- Shittu, T.A., Raji, A.O. and Sanni, L.O., 2007. Bread from composite cassava-wheat flour: i effect of baking time and temperature on some physical properties of bread loaf. Food Research International 40: 280-290.
- Simopoulos, A.P., 1999. Essential fatty acids in health and chronic disease. American Journal of Clinical Nutrition 70: 560S-569S.
- Stitt, P., 1986. Nutritional importance of flax. Flax Institute of the United States Proceedings 51: 23. Available at: http://library.ndsu. edu/flax/.
- Thomas, B.J., 2002. Efficiency of conversion of [alpha]-linolenic acid to long chain n-3 fatty acids in man. Current Opinion in Clinical Nutrition and Metabolic Care 5: 127-132.
- Toure, A. and Xueming, X., 2010. Flaxseed lignans: source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits. Comprehensive Reviews in Food Science and Food Safety 9: 261-269.
- USDA, 2012. National Nutrient Database. Available at: http://www.ars.usda.gov/main/site_main.htm?modecode=12-35-45-00.
- Wang, J., Rosell, C.M., Benedito, D.E. and Barber, C., 2002. Effect of the addition of different fibers on wheat dough performance and bread Quality. Journal of Food Chemistry 79: 221-226.
- Wiesenborn, D.P., Zheng, Y., Kangas, N., Tostenson, K., Hall, C. and Chang, K.C., 2004. Quality of screw-pressed flaxseed oil. FLAX Institute of the United States Proceedings 60: 8-14. Available at: http://library.ndsu.edu/flax/.
- Zaib-un-Nisa, 2000. Effect of flaxseed supplementation on chemical properties of biscuits. MSc thesis. University of Agriculture, Faisalabad, Pakistan.
- Zambon, D., Sabate, J., Munoz, S., Campero, B., Casals, E., Merlos, M., Laguna, J.C. and Ros, E., 2000. Substituting walnuts for monounsaturated fat improves the serum lipid profile of hypercholestrolemic men and women: a randomized crossover trial. Annals of Internal Medicine 132: 538-546.