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1. Introduction

Water elimination is a suitable way to protect foods from 
spoilage. Indeed, the lack of water prevents foods from 
the microorganisms’ development. In these conditions, 
little enzymatic activity is possible and the major part of 
chemical reactions is slowed down (Tortoe et al., 2007). In 
order to improve protection, practically all water quantity 
in foods must be carried away.

Potato is one of the most important agricultural crops 
and there is remarkable loss of this produce because of 
unfavourable storage conditions. Therefore, it is useful to 
convert raw potatoes into some processed products such as 
dried ones. Conventional air-drying is the most frequently 
used dehydration operation in food and chemical industry.

In this case, drying kinetics is greatly affected by air 
temperature and material characteristic dimension, while 
all other process factors exert practically negligible influence 
(Kiranoudis et al., 1997). In air drying of foods, together 
with the partial evaporation of the product’s water content, 

some physical and chemical changes in the tissue structure 
occur (Lewicki, 1998). Shrinkage, porosity decrease and 
changes in physical properties such as texture, are some 
of the alterations that may occur during drying (Lewicki 
and Jakubczyk, 2004; Maskan, 2001).

Most of the dehydrated products are usually rehydrated 
during their use. Mathematical models of dehydration 
and rehydration operations are important in the design 
and optimization of those operations (Berin and Blazquez, 
1986; Vagenas and Marinos-Kouris, 1991). It chiefly involves 
determination of drying and rehydration kinetics, which 
describe the mechanisms and the influence that certain 
process variables exert upon moisture transfer (Gekas and 
Lamberg, 1991). In typical industrial applications, kinetic 
models are often empirical equations involving parameters 
which are functions of the main process variables.

Many theoretical, empirical and semi-empirical models have 
been employed for modelling the water absorption behavior 
of agricultural products during soaking. Theoretical models 
allow us to relate the experimental results with physical 
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laws. The theoretical mechanisms for the kinetics of the 
diffusion process have been proposed, from the simplest, 
Fickian diffusion to other, more complex ones, of the non-
Fickian diffusion (Dhakal et al., 2007; Vogt et al., 2004).

Peleg (1988) proposed an empirical model to describe 
the water absorption kinetics during rehydration which 
has been successfully applied to different products such 
as chestnut (Moreira et al., 2008), apple (Bilbao- Sáinz et 
al., 2005) and potato (Cunningham and McMinn, 2007).

Some simple first order kinetic models can describe the 
moisture transfer during rehydration too (Krokida and 
Marinos-Kouris, 2003; Markowski et al., 2009; Piergiovanni, 
2011; Sopade et al., 2007).

Artificial neural network (ANN) is a mathematical tool, 
which tries to represent low-level intelligence in natural 
organisms and it is a flexible structure, capable of making 
a non-linear mapping between input and output spaces 
(Rumelhart et al., 1986).

The multi-layer perceptron (MLP) network (Figure 1), 
sometimes called back propagation network, is probably the 
most popular ANN in engineering problems in the case of 
non-linear mapping and is called ‘universal approximator’. 
It consists of an input layer, a hidden layer and an output 
layer. The input nodes receive the data values and pass 
them on to the first hidden layer nodes. Each one collects 
the input from all input nodes after multiplying each input 
value by a weight, attaches a bias to this sum, and passes 
on the results through a non-linear transformation like the 
sigmoid transfer function. This forms the input either for 
the second hidden layer or the output layer that operates 
identically to the hidden layer. The resulting transformed 
output from each output node is the network output. The 

network needs to be trained using a training algorithm such 
as back propagation, cascade correlation and conjugate 
gradient. Basically the objective of training patterns is to 
reduce the global error. The goal of every training algorithm 
is to reduce this global error by adjusting the weights and 
biases.

Artificial neural networks have already been applied to 
simulate processes such as fermentation (Latrille et al., 
1993), cross flow microfiltration (Dornier et al., 1995), 
drying behaviour of different food and agricultural materials 
such as carrot (Erenturk and Erenturk, 2007; Kerdpiboon 
et al., 2006), tomato (Movagharnejad and Nikzad, 2007), 
ginseng (Martynenko and Yang, 2006), cassava and mango 
(Hernandez-Perez et al., 2004) and osmotic dehydration 
(Trelea et al., 1997), but there is few information about 
application of artificial neural networks in simulation of 
soaking processes (in particular for grain).

This study was carried out to test and validate the efficiency 
of ANN for simulating the soaking behaviour and the effect 
of temperature and time on the rehydration of potato cubes. 
The results were also compared with those obtained from 
Peleg's model and from a simple first order kinetic model.

2. Materials and methods

Materials

Three potato cultivars (Agria, Satina and Kenebek) were 
supplied by the agricultural centre of Gorgan (Iran). 
Initial moisture contents were 82.05, 82.28 and 81.405%, 
respectively. Potatoes were peeled and cut to 1×1×1 cm 
cubes. To inhibit browning, samples were blanched in hot 
water (97±2 °C) for three min.

Drying treatments

To dry samples, a hot air oven (Memmert WB14, Memmert 
GmbH, Köln, Germany) was used and samples were dried 
in 65 °C in an air velocity of 2 m/s to reach to 6% moisture 
content (wet basis). Some of the dried samples were packed 
in polyethylene bags and stored in room temperature (25±2 
°C). Vacuum of packages was 30%, their thickness was 1 mm 
and there was not any permeability of water and moisture.

Rehydration

The dried potato samples were then rehydrated by 
immersing in distilled water at a thermostatically controlled 
temperature (Cunningham and McMinn, 2007). At specified 
time intervals, the samples were removed, blotted with 
tissue paper to remove superficial water and weighed. 
Soaking times to reach constant weight of samples were 
recorded in time intervals ranging from 10 min at the 
beginning of the rehydration process to 30 min towards 
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Figure 1. The multi-layer perceptron neural network.
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the end of water absorption at water temperature of 23±2 °C 
and 10 sec at 100±2 °C (Cunningham and McMinn, 2007). 
No correction was made for lost solids, as the quantity 
of absorbed water was much greater than the quantity 
of solids leached (Maskan, 2001). Each experiment was 
performed in triplicate.

Mathematical modelling

For mathematical modelling of the variation of either 
moisture content or moisture ratio of potato cubes during 
soaking at each temperature, the Peleg’s model and multi-
layer perceptron ANN were tested. The performances of 
the models were compared according to their coefficient of 
determination (R2) and mean square error (MSE) of either 
moisture content or moisture ratio (Resio et al., 2003).

Peleg's model

Peleg (1988) proposed an empirical model to describe 
the water absorption kinetics during rehydration, which 
is given by:

X = Xi+       t� (1)
               K1+K2×t

Where X is the moisture content at time t, Xi is the 
initial moisture content, K1, the Peleg’s rate constant, is 
a kinetic parameter and K2 is another parameter related 
to the equilibrium moisture content, Xeq. When t→∞, the 
equilibrium moisture content can be calculated by:

Xeq = Xi+   1K2
� (2)

Equation 1 can be linearized:

   tX-Xi
 = K1+K2×t� (3)

Training the artificial neural network

Experimental data from this study were used to train 
and test multi-layer perceptron ANN for prediction of 
potato cubes moisture content during the soaking process. 
Totally, 215 data were collected for two different soaking 
temperatures of 23±2 and 100±2 °C and three potato variety 
which 60% of them (include of maximums and minimums) 
were used as train data for learning process and 40% were 
used as test data for calibrating and verification.

The number of neurons in input and output layers depends 
on independent and dependent variables, respectively. 
Moisture content was considered as dependent variable 
and soaking temperature, time and variety were selected as 
independent variables. Therefore, one and three neurons 
were devoted to output and input layers, respectively. The 
number of neurons in the hidden layer and the parameter α 

were determined by calibration through several run tests. In 
this study one hidden layer including 8, 10, 12, 17, 20, 25 and 
30 neurons were used for the MLP neural networks. Various 
activation functions were tested for MLP neural networks 
and the sigmoid function presented the best results.

3. Results and discussion

Peleg’s model

Parameters of Peleg’s model were calculated according to 
Equation 1. In order to do this, Equation 1 was linearized as 
has been shown in Equation 3. Results are shown in Table 1.

The Peleg’s rate constant (K1), decreased with increase of 
temperature, which shows that water transfer (related to 
the inverse of K1) is promoted by increase of temperature. 
After drying, shrinkage and hardness of samples delayed 
water penetration and samples needed to be immersed for 
longer time in 100 °C water. This caused some damages 
in structure and texture of cubes and their water capacity 
decreased, so K2, which is the capacity constant of Peleg’s 
model, increased with temperature (Salimi et al., 2010).

Some authors indicate that the K2 value can change if 
structure or other properties are modified by temperature 
during rehydration (García-Pascual et al., 2005; Lopez et 
al., 1995). In this manner, the K2 parameter increases with 
temperature during rehydration of chickpea (Turhan et al., 
2002) and carrot (Planinic et al., 2005).

Multi-layer perceptron artificial neural networks

In order to obtain a desired answer, multi-layer perceptron 
was utilized. When the error between desired and predicted 
values is minimum, training process meets the stability. 
The increasing method was used for selection of neurons. 
By this method, when the network is trapped into the 
local minimum, new neurons are gradually added to the 

Table 1. Parameters of Peleg’s model.

Potato variety Water temperature Xeq
1 K1

2 K2
3

Agria 23 °C 3.002 23.326 0.340
Satina 23 °C 3.064 15.903 0.350
Kenebek 23 °C 3.080 17.200 0.331
Agria 100 °C 2.076 0.466 0.496
Satina 100 °C 2.004 0.579 0.515
Kenebek 100 °C 2.541 0.480 0.403

1 Equilibrium moisture content.
2 Peleg’s rate constant.
3 Peleg’s capacity constant.
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network. This method has more practical potential to 
detect the optimum size of the network. The increasing 
method has some advantages which are: (a) the network 
complexity gradually increases with increasing neurons; 
(b) the optimum size of the network always obtains by 
adjustments; and (c) monitoring and evaluation of local 
minimum carry out during the training process. Various 
threshold functions were used to reach the optimized 
status (Amiri Ghayjan and Esna-Ashari, 2010; Demuth 
and Beale, 2003), but it should be noted that there are 
two basic commonly used sigmoidal activation functions 
which are the logistic sigmoid (LOGSIG) and the tangental 
sigmoid (TANSIG), which is derived from the hyperbolic 
tangent and has the advantage over the LOGSIG of being 
able to deal directly with negative numbers:

Yj =
         1		  (LOGSIG)� (4)

       1+exp(-Xj)

Yj =         2		  (TANSIG)� (5)
       (1+exp(-2Xj))-1

Where X is the independent variable and Y is the dependent 
variable in the functions.

As is shown in Table 2, the best results for MLP network 
with the Levenberg-Marquardt algorithm in the first 
strategy belonged to TANSIG threshold function with one 
hidden layer and 10 neurons. This composition produced 
MSE=0.0001%, R2=0.987 converged in 54 epochs. MSE for 
training and testing patterns is shown in Figure 2.

Table 2. Levenberg-Marquardt algorithm for different neurons and threshold functions in a multi-layer perceptron.

Threshold function Number of neurons MSE1 (%) R22 Epochs

tangental sigmoid 8 0.0005 0.945 38
10 0.0001 0987 54
12 0.0004 0.955 34
17 0.0021 0.799 76
20 0.0007 0.639 16
25 0.0008 0.917 38
30 0.0012 0.886 13

logistic sigmoid 8 0.0021 0.759 174
10 0.0003 0.961 112
12 0.0010 0.888 220
17 0.0002 0.973 52
20 0.0012 0.876 25
25 0.0023 0.760 33
30 0.0006 0.943 65

1 Mean square error.
2 Coefficient of determination.
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Figure 2. Mean square error of training and testing patterns for the best artificial neural network.
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Comparison between a mathematical model and MLP 
can be observed by statistical parameters as MSE and R2. 
Also some other parameters such as average of proportion 
of calculated moisture contents to measured ones can 
be used to find out which models are more suitable. The 
proportions which are nearer to one show less dispersion 
between measured and calculated data (Table 3).

Moisture content predicted with the generalized Peleg’s 
model and MLP network were compared to the observed 
moisture content in Figures 3 and 4. In these figures the 
dotted lines represent the 0.95 and 1.05 measured data. 
These results demonstrate that the agreement is very good 
in MLP neural network and this model tracks the observed 
moisture contents well throughout the various conditions.

Models (generalized Page’s model and MLP network) were 
compared based on R2, MSE, the average of the proportion 
of calculated moisture contents to the measured ones, 
and the standard deviation of the proportion of calculated 

moisture contents to the measured ones. The results are 
shown in Table 4.

Table 3. Statistical results obtained for Peleg’s model and multi-layer perceptron (MLP).

Potato variety Water temperature Model R21 MSE2 (%) Average3 STDEV4

Agria 23 °C Peleg 0.990 0.01 0.97 0.11
Satina 23 °C Peleg 0.991 0.009 0.98 0.08
Kenebek 23 °C Peleg 0.993 0.007 0.98 0.09
Agria 100 °C Peleg 0.994 0.001 0.99 0.03
Satina 100 °C Peleg 0.988 0.003 0.99 0.05
Kenebek 100 °C Peleg 0.988 0.005 0.99 0.05
Agria, Satina and Kenebek MLP 0.987 0.0001 0.99 0.06

1 Coefficient of determination.
2 Mean square error.
3 Average of the proportion of calculated moisture contents to the measured ones.
4 Standard deviation of the proportion of calculated moisture contents compared to the measured contents.
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Figure 3. Comparison between measured and calculated values 
of moisture content (MC) by multi-layer perceptron neural 
network model.
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Figure 4. Comparison between measured and calculated values 
of moisture content (MC) by generalized Peleg’s model.

Table 4. Statistical results obtained for the generalized Peleg’s 
model and multi-layer perceptron (MLP).

Model R21 MSE2 (%) Average3 STDEV4

Generalized Peleg’s 
model

0.832 0.001 0.99 0.1

MLP 0.987 0.0001 0.99 0.06

1 Coefficient of determination.
2 Mean square error.
3 Average of the proportion of calculated moisture contents to the 
measured ones.
4 Standard deviation of the proportion of calculated moisture contents 
compared to the measured contents.
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It is assumed that the model with the lowest MSE and the 
highest R2 is the best to describe rehydration behaviour 
(Kashaninejad et al., 2009). Therefore, the suitable model 
to describe the soaking characteristics of potato cubes was 
found to be MLP neural network with one hidden layer, 10 
neurons and TANSIG threshold function.

4. Conclusions

Based on this study it was concluded that Peleg’s model 
had proper correlation coefficients for each variety and 
water temperature with underlining Agria variety in 100 
°C (R2=0.994). However, the correlation coefficient of the 
generalized Peleg’s model was significantly lower (0.832) 
in comparison to MLP.

The best correlation coefficient was observed by MLP ANN 
with one hidden layer, 10 neurons and TANSIG threshold 
function. In spite of the results of this article, yet more 
work is needed to show that the ANN model is useful in 
a wider context.
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