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Abstract

In this study an artificial neural network, multi-layer perceptron (MLP), and Peleg’s mathematical model were used
to find the best model for the prediction of rehydration kinetic of air dried potato cubes. For rehydration, samples
were immersed in water during different periods of time and temperatures (2312 °C and 100+2 °C). Rehydration
kinetic was monitored by measuring samples weights at regular intervals. In MLP neural network, water temperature,
soaking time and potato varieties (Agria, Satina and Kenebek) were used as input parameters and the moisture
content was used as output parameter. The results were compared with experimental data. Both Peleg’s model and
MLP had a proper correlation coefficient for each variety and water temperature but the correlation coefficient of

the generalized Peleg’s model was lower than of MLP.
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1. Introduction

Water elimination is a suitable way to protect foods from
spoilage. Indeed, the lack of water prevents foods from
the microorganisms’ development. In these conditions,
little enzymatic activity is possible and the major part of
chemical reactions is slowed down (Tortoe et al., 2007). In
order to improve protection, practically all water quantity
in foods must be carried away.

Potato is one of the most important agricultural crops
and there is remarkable loss of this produce because of
unfavourable storage conditions. Therefore, it is useful to
convert raw potatoes into some processed products such as
dried ones. Conventional air-drying is the most frequently
used dehydration operation in food and chemical industry.

In this case, drying kinetics is greatly affected by air
temperature and material characteristic dimension, while
all other process factors exert practically negligible influence
(Kiranoudis et al., 1997). In air drying of foods, together
with the partial evaporation of the product’s water content,

some physical and chemical changes in the tissue structure
occur (Lewicki, 1998). Shrinkage, porosity decrease and
changes in physical properties such as texture, are some
of the alterations that may occur during drying (Lewicki
and Jakubczyk, 2004; Maskan, 2001).

Most of the dehydrated products are usually rehydrated
during their use. Mathematical models of dehydration
and rehydration operations are important in the design
and optimization of those operations (Berin and Blazquez,
1986; Vagenas and Marinos-Kouris, 1991). It chiefly involves
determination of drying and rehydration kinetics, which
describe the mechanisms and the influence that certain
process variables exert upon moisture transfer (Gekas and
Lamberg, 1991). In typical industrial applications, kinetic
models are often empirical equations involving parameters
which are functions of the main process variables.

Many theoretical, empirical and semi-empirical models have
been employed for modelling the water absorption behavior
of agricultural products during soaking. Theoretical models
allow us to relate the experimental results with physical
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laws. The theoretical mechanisms for the kinetics of the
diffusion process have been proposed, from the simplest,
Fickian diffusion to other, more complex ones, of the non-
Fickian diffusion (Dhakal et al., 2007; Vogt et al., 2004).

Peleg (1988) proposed an empirical model to describe
the water absorption kinetics during rehydration which
has been successfully applied to different products such
as chestnut (Moreira et al., 2008), apple (Bilbao- Sdinz et
al., 2005) and potato (Cunningham and McMinn, 2007).

Some simple first order kinetic models can describe the
moisture transfer during rehydration too (Krokida and
Marinos-Kouris, 2003; Markowski et al., 2009; Piergiovanni,
2011; Sopade et al., 2007).

Artificial neural network (ANN) is a mathematical tool,
which tries to represent low-level intelligence in natural
organisms and it is a flexible structure, capable of making
a non-linear mapping between input and output spaces
(Rumelhart et al., 1986).

The multi-layer perceptron (MLP) network (Figure 1),
sometimes called back propagation network, is probably the
most popular ANN in engineering problems in the case of
non-linear mapping and is called ‘universal approximator’.
It consists of an input layer, a hidden layer and an output
layer. The input nodes receive the data values and pass
them on to the first hidden layer nodes. Each one collects
the input from all input nodes after multiplying each input
value by a weight, attaches a bias to this sum, and passes
on the results through a non-linear transformation like the
sigmoid transfer function. This forms the input either for
the second hidden layer or the output layer that operates
identically to the hidden layer. The resulting transformed
output from each output node is the network output. The

Neurons

Input layer Output layers

Hidden layer

Figure 1. The multi-layer perceptron neural network.

network needs to be trained using a training algorithm such
as back propagation, cascade correlation and conjugate
gradient. Basically the objective of training patterns is to
reduce the global error. The goal of every training algorithm
is to reduce this global error by adjusting the weights and
biases.

Artificial neural networks have already been applied to
simulate processes such as fermentation (Latrille et al.,
1993), cross flow microfiltration (Dornier et al., 1995),
drying behaviour of different food and agricultural materials
such as carrot (Erenturk and Erenturk, 2007; Kerdpiboon
et al., 2006), tomato (Movagharnejad and Nikzad, 2007),
ginseng (Martynenko and Yang, 2006), cassava and mango
(Hernandez-Perez et al., 2004) and osmotic dehydration
(Trelea et al., 1997), but there is few information about
application of artificial neural networks in simulation of
soaking processes (in particular for grain).

This study was carried out to test and validate the efficiency
of ANN for simulating the soaking behaviour and the effect
of temperature and time on the rehydration of potato cubes.
The results were also compared with those obtained from
Peleg's model and from a simple first order kinetic model.

2. Materials and methods
Materials

Three potato cultivars (Agria, Satina and Kenebek) were
supplied by the agricultural centre of Gorgan (Iran).
Initial moisture contents were 82.05, 82.28 and 81.405%,
respectively. Potatoes were peeled and cut to 1x1x1 cm
cubes. To inhibit browning, samples were blanched in hot
water (97+2 °C) for three min.

Drying treatments

To dry samples, a hot air oven (Memmert WB14, Memmert
GmbH, Kéln, Germany) was used and samples were dried
in 65 °C in an air velocity of 2 m/s to reach to 6% moisture
content (wet basis). Some of the dried samples were packed
in polyethylene bags and stored in room temperature (25+2
°C). Vacuum of packages was 30%, their thickness was 1 mm
and there was not any permeability of water and moisture.

Rehydration

The dried potato samples were then rehydrated by
immersing in distilled water at a thermostatically controlled
temperature (Cunningham and McMinn, 2007). At specified
time intervals, the samples were removed, blotted with
tissue paper to remove superficial water and weighed.
Soaking times to reach constant weight of samples were
recorded in time intervals ranging from 10 min at the
beginning of the rehydration process to 30 min towards
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the end of water absorption at water temperature of 23+2 °C
and 10 sec at 100+2 °C (Cunningham and McMinn, 2007).
No correction was made for lost solids, as the quantity
of absorbed water was much greater than the quantity
of solids leached (Maskan, 2001). Each experiment was
performed in triplicate.

Mathematical modelling

For mathematical modelling of the variation of either
moisture content or moisture ratio of potato cubes during
soaking at each temperature, the Peleg’s model and multi-
layer perceptron ANN were tested. The performances of
the models were compared according to their coefficient of
determination (R2) and mean square error (MSE) of either
moisture content or moisture ratio (Resio et al., 2003).

Peleg's model

Peleg (1988) proposed an empirical model to describe
the water absorption kinetics during rehydration, which
is given by:

_ t
X=Xt o W)

Where X is the moisture content at time t, X, is the
initial moisture content, K,, the Peleg’s rate constant, is
a kinetic parameter and K, is another parameter related
to the equilibrium moisture content, X, . When t—eo, the
equilibrium moisture content can be calculated by:

- 1
Xeq - Xi+ KZ (2)

Equation 1 can be linearized:

e = KirKoxt (3)
1

Training the artificial neural network

Experimental data from this study were used to train
and test multi-layer perceptron ANN for prediction of
potato cubes moisture content during the soaking process.
Totally, 215 data were collected for two different soaking
temperatures of 23+2 and 100+2 °C and three potato variety
which 60% of them (include of maximums and minimums)
were used as train data for learning process and 40% were
used as test data for calibrating and verification.

The number of neurons in input and output layers depends
on independent and dependent variables, respectively.
Moisture content was considered as dependent variable
and soaking temperature, time and variety were selected as
independent variables. Therefore, one and three neurons
were devoted to output and input layers, respectively. The
number of neurons in the hidden layer and the parameter «

Artificial neural network (multi-layer perceptron)

were determined by calibration through several run tests. In
this study one hidden layer including 8, 10, 12, 17, 20, 25 and
30 neurons were used for the MLP neural networks. Various
activation functions were tested for MLP neural networks
and the sigmoid function presented the best results.

3. Results and discussion
Peleg’s model

Parameters of Peleg’s model were calculated according to
Equation 1. In order to do this, Equation 1 was linearized as
has been shown in Equation 3. Results are shown in Table 1.

The Peleg’s rate constant (K;), decreased with increase of
temperature, which shows that water transfer (related to
the inverse of K, ) is promoted by increase of temperature.
After drying, shrinkage and hardness of samples delayed
water penetration and samples needed to be immersed for
longer time in 100 °C water. This caused some damages
in structure and texture of cubes and their water capacity
decreased, so K,, which is the capacity constant of Peleg’s
model, increased with temperature (Salimi et al., 2010).

Some authors indicate that the K, value can change if
structure or other properties are modified by temperature
during rehydration (Garcia-Pascual et al., 2005; Lopez et
al., 1995). In this manner, the K, parameter increases with
temperature during rehydration of chickpea (Turhan et al.,
2002) and carrot (Planinic et al., 2005).

Multi-layer perceptron artificial neural networks

In order to obtain a desired answer, multi-layer perceptron
was utilized. When the error between desired and predicted
values is minimum, training process meets the stability.
The increasing method was used for selection of neurons.
By this method, when the network is trapped into the
local minimum, new neurons are gradually added to the

Table 1. Parameters of Peleg’s model.

Potato variety Water temperature X, K2 K,®

Agria 23°C 3.002 23326 0.340
Satina 23°C 3.064 15.903  0.350
Kenebek 23°C 3.080 17.200  0.331
Agria 100 °C 2.076 0.466  0.496
Satina 100 °C 2.004 0.579  0.515
Kenebek 100 °C 2.541 0.480  0.403

1 Equilibrium moisture content.
2 Peleg’s rate constant.
3 Peleg’s capacity constant.
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network. This method has more practical potential to
detect the optimum size of the network. The increasing
method has some advantages which are: (a) the network
complexity gradually increases with increasing neurons;
(b) the optimum size of the network always obtains by
adjustments; and (c) monitoring and evaluation of local
minimum carry out during the training process. Various
threshold functions were used to reach the optimized
status (Amiri Ghayjan and Esna-Ashari, 2010; Demuth
and Beale, 2003), but it should be noted that there are
two basic commonly used sigmoidal activation functions
which are the logistic sigmoid (LOGSIG) and the tangental
sigmoid (TANSIG), which is derived from the hyperbolic
tangent and has the advantage over the LOGSIG of being
able to deal directly with negative numbers:

_ 1
Y, _1—+exp(—Xj) (LOGSIG) (4)
2 (TANSIG) (5)

Y="*~%
) (1+exp(—2Xj))—1

Where X is the independent variable and Y is the dependent
variable in the functions.

As is shown in Table 2, the best results for MLP network
with the Levenberg-Marquardt algorithm in the first
strategy belonged to TANSIG threshold function with one
hidden layer and 10 neurons. This composition produced
MSE=0.0001%, R2=0.987 converged in 54 epochs. MSE for
training and testing patterns is shown in Figure 2.

Table 2. Levenberg-Marquardt algorithm for different neurons and threshold functions in a multi-layer perceptron.

Threshold function Number of neurons MSE"! (%) R22 Epochs
tangental sigmoid 8 0.0005 0.945 38
10 0.0001 0987 54
12 0.0004 0.955 34
17 0.0021 0.799 76
20 0.0007 0.639 16
25 0.0008 0.917 38
30 0.0012 0.886 13
logistic sigmoid 8 0.0021 0.759 174
10 0.0003 0.961 12
12 0.0010 0.888 220
17 0.0002 0.973 52
20 0.0012 0.876 25
25 0.0023 0.760 33
30 0.0006 0.943 65
1 Mean square error.
2 Coefficient of determination.
Best validation performance 0.00058749 at epoch 48
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Figure 2. Mean square error of training and testing patterns for the best artificial neural network.
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Comparison between a mathematical model and MLP
can be observed by statistical parameters as MSE and R2.
Also some other parameters such as average of proportion
of calculated moisture contents to measured ones can
be used to find out which models are more suitable. The
proportions which are nearer to one show less dispersion
between measured and calculated data (Table 3).

Moisture content predicted with the generalized Peleg’s
model and MLP network were compared to the observed
moisture content in Figures 3 and 4. In these figures the
dotted lines represent the 0.95 and 1.05 measured data.
These results demonstrate that the agreement is very good
in MLP neural network and this model tracks the observed
moisture contents well throughout the various conditions.

Models (generalized Page’s model and MLP network) were
compared based on R2, MSE, the average of the proportion
of calculated moisture contents to the measured ones,
and the standard deviation of the proportion of calculated

MC calculated

MC Measured

Figure 3. Comparison between measured and calculated values
of moisture content (MC) by multi-layer perceptron neural
network model.

Artificial neural network (multi-layer perceptron)

moisture contents to the measured ones. The results are
shown in Table 4.

Table 4. Statistical results obtained for the generalized Peleg’s
model and multi-layer perceptron (MLP).

Model R2!  MSE?(%) Average® STDEV*
Generalized Peleg's 0.832  0.001 0.99 0.1
model

MLP 0.987  0.0001 0.99 0.06

1 Coefficient of determination.

2 Mean square error.

3 Average of the proportion of calculated moisture contents to the
measured ones.

4 Standard deviation of the proportion of calculated moisture contents
compared to the measured contents.
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Figure 4. Comparison between measured and calculated values
of moisture content (MC) by generalized Peleg’s model.

Table 3. Statistical results obtained for Peleg’s model and multi-layer perceptron (MLP).

Potato variety Water temperature ~ Model R2! MSE2 (%) Average® STDEV*
Agria 23°C Peleg 0.990 0.01 0.97 0.11
Satina 23°C Peleg 0.991 0.009 0.98 0.08
Kenebek 23°C Peleg 0.993 0.007 0.98 0.09
Agria 100 °C Peleg 0.994 0.001 0.99 0.03
Satina 100 °C Peleg 0.988 0.003 0.99 0.05
Kenebek 100 °C Peleg 0.988 0.005 0.99 0.05
Agria, Satina and Kenebek MLP 0.987 0.0001 0.99 0.06

1 Coefficient of determination.

2 Mean square error.

3 Average of the proportion of calculated moisture contents to the measured ones.

4 Standard deviation of the proportion of calculated moisture contents compared to the measured contents.
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It is assumed that the model with the lowest MSE and the
highest R2 is the best to describe rehydration behaviour
(Kashaninejad et al., 2009). Therefore, the suitable model
to describe the soaking characteristics of potato cubes was
found to be MLP neural network with one hidden layer, 10
neurons and TANSIG threshold function.

4. Conclusions

Based on this study it was concluded that Peleg’s model
had proper correlation coefficients for each variety and
water temperature with underlining Agria variety in 100
°C (R2=0.994). However, the correlation coefficient of the
generalized Peleg’s model was significantly lower (0.832)
in comparison to MLP.

The best correlation coefficient was observed by MLP ANN
with one hidden layer, 10 neurons and TANSIG threshold
function. In spite of the results of this article, yet more
work is needed to show that the ANN model is useful in
a wider context.
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