

Results of a proficiency test for multi-mycotoxin determination in maize by using methods based on LC-MS/(MS)

M. Solfrizzo¹, A. De Girolamo¹, V.M.T. Lattanzio¹, A. Visconti¹, J. Stroka², A. Alldrick³ and H.P. van Egmond⁴

¹National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), Via Amendola 122/o, 70126 Bari, Italy; ²European Commission, DG Joint Research Centre (JRC), Food Safety & Quality Unit, Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, 2440 Geel, Belgium; ³Campden BRI, Station Road, Chipping Campden, GL55 6LD, United Kingdom; ⁴Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, P.O. Box 230, 6700 AE Wageningen, the Netherlands; michele.solfrizzo@ispa.cnr.it

Received: 20 February 2012 / Accepted: 11 January 2013 © 2013 Wageningen Academic Publishers

Abstract

Liquid chromatography coupled with single or tandem mass spectrometry (LC-MS/(MS)) is routinely used for the simultaneous determination of mycotoxins in food and feed although official methods using this technique have not yet been adopted by the European Committee for Standardization and the Association of Analytical Communities. A proficiency test (PT) was conducted for the simultaneous determination of up to 11 mycotoxins (aflatoxin B₁ (AFB_1) , aflatoxin B_2 (AFB_2) , aflatoxin G_1 (AFG_1) , aflatoxin G_2 (AFG_2) , ochratoxin A (OTA), deoxynivalenol (DON), T-2 toxin (T-2), HT-2 toxin (HT-2), zearalenone (ZEA), fumonisin B_1 (FB₁) and fumonisin B_2 (FB₂)) in maize using LC-MS/(MS) to benchmark laboratories currently using this technique and to obtain information on currently used methodologies and method-related performances. Each participant received the following: instructions; a comprehensive questionnaire; a mixed mycotoxins calibration solution; a spiking solution (AFB₁, AFB₂, AFG₁ and AFG₂, OTA, DON, T-2, HT-2, ZEA, FB₁ and FB₂); and two test materials, namely a contaminated maize sample and a blank maize sample to be spiked with a spiking solution containing 11 mycotoxins. Laboratory results were rated with z-scores. Of the 64 laboratories enrolled in the PT, 41 laboratories from 14 countries returned 43 sets of results for various combinations of analytes. The majority of laboratories (61%) reported results for all 11 mycotoxins, whereas the remaining laboratories reported results for a restricted combination (from 2 to 10 analytes). For contaminated maize and spiked maize the percentage of satisfactory z-score values ($|z| \le 2$) were: DON 55% and 49%, FB₁ 50% and 30%, FB₂ 52% and 38%, ZEA 68% and 64%, T-2+HT-2 toxins 82% and 85%, OTA 58% and 60%, AFB₁ 56% and 62%, AFG₁ 73% and 84%, AFB₂ 40% and 78%, AFG₂ 64% and 78%, respectively. The poorest performance (|z| > 3) was obtained for FB₁ (31%), FB₂ (32%), AFB₁ (32%) and AFB₂ (32%) in contaminated maize and for DON (35%), FB₁ (63%) and FB₂ (52%) in spiked maize. Mean recovery results were acceptable for all mycotoxins (74% to 109%), except for fumonisins, where these were unacceptably high (159% for FB₁ and 163% for FB₂). A robust and reliable method for simultaneous determination of 11 mycotoxins in maize could not be identified from the results of this PT. Additional experimental work is necessary to set up a method suitable for inter-laboratory validation. The results of this PT and the relevant method's details can be useful to identify methodology strengths and weaknesses.

Keywords: maize, test-material, validation, z-score

1. Introduction

Most of the EU-regulated mycotoxins, including deoxynivalenol (DON), zearalenone (ZEA), fumonisin B_1

(FB $_1$), fumonisin B $_2$ (FB $_2$), aflatoxin B $_1$ (AFB $_1$), aflatoxin G $_1$ (AFG $_1$), aflatoxin B $_2$ (AFB $_2$), aflatoxin G $_2$ (AFG $_2$), ochratoxin A (OTA), T-2 toxin (T-2) and HT-2 toxin (HT-2), can contaminate maize alone or in various combinations

(CAST, 2003; Commission of the European Communities, 2006; Miller, 2008). Several liquid chromatography coupled with single or tandem mass spectrometry (LC-MS/ (MS)) based methods have been recently developed for multi-mycotoxin determination in maize, food and feed (reviewed in Shephard et al., 2012, 2013). A survey on the use and application of methods for the determination of mycotoxins in food and feed revealed that 42% of participant laboratories routinely use LC-MS/(MS) methodology for their single or simultaneous determination (Solfrizzo et al., 2009). However, within both the European Committee for Standardization (CEN) and the Association of Analytical Communities (AOAC International) contexts there are no LC-MS/(MS)-based official methods for the measurement of this group of contaminants. The Mycotoxins and Phycotoxins Working Group (MPWG) of the MoniOA Network of Excellence conducted an enquiry among their 22 members about their willingness to participate in a collaborative study for validation of an LC-MS/(MS)based method for simultaneous determination of the 11 mycotoxins regulated in maize in the European Union i.e. DON, ZEA, FB₁, FB₂, AFB₁, AFG₁, AFB₂, AFG₂, OTA, T-2 and HT-2. Ten respondent members positively judged the initiative, but actually only 5 of them were interested to take part in the proposed validation study. It was therefore decided to conduct a proficiency test (PT) to benchmark laboratories currently using this technique and to obtain information on currently used methodologies. This would be the first step to select (and exclude) methods with the aim to organize an inter-laboratory validation trial (e.g. in CEN and/or AOAC International context) to derive performance characteristics of a method for simultaneous determination of EU-regulated mycotoxins in maize. Only laboratories having experience with LC-MS(MS) determinations of mycotoxins in food and feed were accepted to take part in the PT. Laboratories were not obliged to determine all the regulated mycotoxins and were free to report results only for those mycotoxins that can be simultaneously determined with their LC-MS(MS)-based method. In this paper we report the results of the PT, involving 41 laboratories from 14 countries.

2. Materials and methods

Organization of the proficiency test

Invitation letters were sent to potential participants among MoniQA partners and associated partners, universities, research centres, control and private laboratories and members of the CEN working group Biotoxins (CEN/TC 275/WG 5). Sixty-four participants located in 18 countries registered to the PT. Each participant received: (a) one plastic bottle containing approximately 25 g of contaminated maize and one containing approximately 25 g of blank maize; (b) one ampoule containing the blind spiking solution and one containing the calibration solution; (c) an

accompanying form with instruction on sample storage; and (d) instructions, spiking protocol, reporting sheets and a detailed questionnaire to describe the method used.

Forty-one laboratories located in 14 countries performed the exercise and reported results for contaminated maize and spiked maize. A laboratory (lab code 2) reported two sets of results for contaminated maize that were obtained by analysing the sample with two different methods. Another laboratory (lab code 60) reported two sets of results for both contaminated and spiked maize. These results were obtained by splitting each final extract in two aliquots that were analysed with two different LC-MS(MS) apparatuses. In total, 43 sets of results were obtained for contaminated maize and 42 for spiked maize. Thirteen laboratories reported no results and no explanation for this behaviour. One laboratory did not perform the analyses because the parcel was stuck in the customs for a long time and was therefore considered unsuitable. Three registered laboratories were from the same organization, therefore only one laboratory performed the analyses. The results of one laboratory could not be considered because they were received too late. Six laboratories from two countries did not receive the parcels because they were rejected at customs.

The PT aimed to assess the concentration of up to 11 mycotoxins in both spiked and contaminated test maize materials. The laboratories were free to choose and use the method (based on LC/MS technology) they believe was most appropriate for simultaneous determination of the target mycotoxins in maize. A request, however, was that they had to start from a test portion size of 20.0 g. The laboratories were asked to spike the blank maize material by using the provided blind spiking solution according to the provided spiking protocol. The results were to be reported in μ g/kg by completing the provided reporting sheets. The laboratories were also asked to complete a questionnaire that was intended to provide detailed information on the method used and relevant LC-MS(MS) apparatus and conditions.

Spiking and calibration solutions

A mixed DON, ZEA, FB₁, FB₂, AFB₁, AFG₁, AFB₂, AFG₂, OTA, T-2 and HT-2 spiking solution was prepared by mixing adequate volumes of each mycotoxin standard solution. Mycotoxins were sourced as follows: FB₁ and FB₂ (powder) were purchased from Sigma-Aldrich (Milan, Italy) and dissolved in acetonitrile:water (50:50); powder of DON was purchased from Romer Labs® Diagnostic GmbH (Tulln, Austria) and dissolved in acetonitrile. Commercial standard solutions of ZEA, AFB₁, AFG₁, AFB₂, AFG₂, OTA, T-2 and HT-2, in acetonitrile, were purchased from Romer Labs® Diagnostic GmbH. Adequate aliquots of these standard solutions were mixed to obtain a spiking solution containing

40.0 µg/ml DON, 8.4 µg/ml ZEA, 21.0 µg/ml FB $_1$, 9.0 µg/ml FB $_2$, 0.2 µg/ml AFB $_1$, 0.2 µg/ml AFG $_1$, 0.083 µg/ml AFG $_2$, 0.2 µg/ml OTA, 5.0 µg/ml T-2 and 5.0 µg/ml HT-2. Seventy-five amber glass vials were filled each with 0.6 ml of spiking solution, sealed and stored at -20 °C until dispatch. Fifteen ml of spiking solution were diluted to 150.0 ml with acetonitrile and used to prepare 75×2 ml calibration solutions in amber glass vials that were sealed and stored at -20 °C until dispatch. The calibration solutions contained the 11 mycotoxins at concentrations one-tenth of the spiking solutions and were suitable to determine the mycotoxin levels in spiked and contaminated test maize samples.

Test materials

A maize sample naturally contaminated with FB₁ (580 μg/kg) and FB₂ (145 μg/kg) was ground and further fortified with culture extracts of mycotoxigenic species of Fusarium sporotrichioides, F. graminearum, F. verticillioides, Aspergillus ochraceus and A. parasiticus (deposited at the Institute of Sciences of Food Production collection, http://www.ispa.cnr.it/Collection), cultured on cereals. In particular, each fungal culture was dried, ground and extracted with methanol, water or mixtures of methanol:water. Aliquots of culture extracts were adequately diluted with mobile phase and analysed by HPLC to measure their mycotoxin concentrations. To reach the levels around the regulatory limits of each mycotoxin, adequate amounts of fungal culture extracts were added to ground maize naturally contaminated with FB₁ and FB₂. The contaminated maize was then slurry homogenized with water (1:1, w/w) for 5 min and freeze-dried for 48 h. The homogenized freeze-dried material was ground to a particle size <500 μm . To prepare the blank maize material, two different samples of maize were mixed, ground and slurry homogenized with water (1:1, w/w) for 5 min, freeze-dried for 48 h and ground to a particle size <500 μm . This material contained low levels of some mycotoxins (see Table 1). Two and ten kg of blank and contaminated maize materials, respectively, were prepared. The two test materials were then dispensed (about 25 g each) in plastic bottles that were labelled, sealed and stored at -20 °C until dispatch. For the homogeneity study bigger aliquots (3×150 g for blank maize, 10×300 g for contaminated maize) were sampled during the filling sequence.

Homogeneity testing

Homogeneity of the contaminated maize material was evaluated according to chapter 3.11.2 of the international harmonized protocol for the proficiency testing of analytical chemistry laboratories (Thompson *et al.*, 2006). In particular, 10 aliquots of about 300 g of contaminated maize were taken at regular intervals from the filling sequence. Each of the 10×300 g samples was divided in 6×50 g aliquots that were analysed in duplicate. In this way 6 sets of 10 identical test portions were obtained. Each set of test portions was analysed by a different reference method specific for a mycotoxin or group of mycotoxins. These were: (a) CEN EN 15851:2010 for AFB₁, AFB₂, AFG₁ and AFG₂; (b) Solfrizzo *et al.* (2011) for FB₁ and FB₂; (c) Visconti *et al.* (2005) for T-2 and HT-2 toxins; (d) MacDonald *et al.* (2005b) for DON; (e) Entwisle *et al.* (2000) for OTA;

Table 1. Mean levels of mycotoxins in contaminated and blank maize test materials derived from the homogeneity study.

Analyte	Contaminated maize ¹ (μg/kg±SD)	Blank maize ² (μg/kg±SD)	
DON	652±59	94±3	
FB ₁	2,150±101	29±2	
FB ₂	729±63	nd ³	
ZEA	437±20	6±1	
T-2	nd	nd	
HT-2	189±3	25±4	
T-2+HT-2	189±3	25±4	
OTA	7.1±0.2	0.4±0.01	
AFB ₁	5.9±0.3	nd	
AFG ₁	11.6±0.4	nd	
AFB ₂	0.5±0.02	nd	
AFG ₂	0.7±0.03	nd	

¹ Overall mean from 10 samples analysed in duplicate.

² Mean from 3 samples.

 $^{^3}$ Not detected (limit of detection for FB $_2$ was 10 μ g/kg, for T-2 8 μ g/kg, for AFB $_1$ and AFG $_1$ 0.07 μ g/kg, for AFG $_2$ 0.02 μ g/kg, respectively).

and (f) MacDonald et al. (2005a) for ZEA. In Table 2 are the homogeneity test results reported for all mycotoxins in the contaminated maize. Since the between-sample variance (S_{sam}²) was lower than the critical factor (c) for all mycotoxins, the test for homogeneity passed meaning that the contaminated maize was sufficiently homogeneous. Moreover, the visual appraisal of analytical results did not show any systematic effects such as discordant duplicated results, trends or discontinuities. The presence and levels of mycotoxins in the blank maize material were checked in 3 samples (150 g each). The 3×150 g samples were each divided in 6 aliquots that were analysed by using the 6 reference HPLC methods reported above. This homogeneity study for the blank material was limited in scope due to the limited availability of material. The levels of mycotoxins in contaminated and blank maize derived from the homogeneity study are reported in Table 1. No detectable levels of aflatoxins, FB2 and T-2 were found in the blank maize material whereas DON, FB₁, ZEA, HT-2 and OTA were present and measured at low levels. A true blank maize material for 11 mycotoxins could not be found. The measured levels of DON, FB₁ ZEA, T-2+HT-2 and OTA were reasonably low (≤10% of spiking levels, see Tables 1 and 3) and assumed to be acceptable for the purpose of this study. As shown in Table 1 T-2 was not detected in contaminated maize whereas the level of HT-2 was higher than expected since the culture extract of *E*. sporotrichioides, used to fortify the contaminated maize material, contained both T-2 (66 μg/ml) and HT-2 (16 μg/ ml). This is not surprising because T-2 was expected to convert to HT-2 during the homogenization of the test material (addition of water, slurry and freeze-drying) as a result of a selective enzymatic deacetylation of T-2 to give HT-2 (Lattanzio et al., 2009). This was confirmed in the coordinating laboratory since the increase in HT-2 was similar as the decrease of T-2. Maize and other cereals contain inherently hydrolytic enzymes that are activated in the presence of water and are able to convert T-2 into HT-2 (Lattanzio *et al.*, 2009).

Stability study

Eight vials of calibration solutions and 8 bottles of contaminated maize test material were stored for 1, 3 and 6 months at -18 °C, 4 °C and 25 °C. At the end of each storage period calibration solutions and test materials were transferred at -18 °C to be analysed in duplicate at the end of the stability study within the shortest time. The results of this study will be reported in a separate paper.

Scores and evaluation criteria

Individual laboratory performance is expressed in terms of *z*-score in accordance with Thompson *et al.* (2006):

$$Z = \frac{X_{lab} - X_{ref}}{\sigma_p}$$

where

 X_{lab} is the measurement result reported by a participant expressed as a dimensionless mass ratio, e.g. 1 μ g/kg = 10^{-9} ; X_{ref} is the assigned (consensus) value expressed as a dimensionless mass ratio, e.g. 1 μ g/kg = 10^{-9} ; and σ is the standard deviation for proficiency assessment

and $\sigma_{\rm p}$ is the standard deviation for proficiency assessment (target standard deviation).

The assigned value for each mycotoxin in contaminated maize was the median of reported results. The assigned value for each mycotoxin in spiked maize was the spiking level.

The target standard deviation (σ_p) was calculated by the modified Horwitz equation (Thompson, 2000):

Table 2. Homogeneity test results for all mycotoxins in the contaminated maize.

Mycotoxin	s ² an	s _{sam} ²	$\sigma_{\rm p}$	$\sigma^2_{\ all}$	С
DON	1,115	2,458	111	1,113	3,218
FB ₁	3,018	7,535	306	8,454	18,941
FB ₂	1,603	2,440	122	1,345	4,148
ZEA	176	227	79	564	1,238
HT-2 ¹	12	0	39	135	267
OTA	0.03	0.003	1.55	0.22	0.44
AFB₁	0.04	0.034	1.30	0.15	0.33
AFB ₂	0.0001	0.0002	0.11	0.0010	0.0023
AFG ₁	0.135	0.037	2.54	0.58	1.23
AFG ₂	0.0002	0.0005	0.16	0.002	0.005

Abbreviations used: s_{an} = experimental estimate of analytical standard deviation; s_{sam} = experimental estimate of sampling standard deviation; σ_p = standard deviation for proficiency testing; σ_{all} = allowed standard deviation; c = critical value in a test for sufficient homogeneity (c = $F_1\sigma_{all}^2$ + $F_2s_{an}^2$). ¹ T-2 was not detected in contaminated maize.

- for analyte concentrations <120 μ g/kg (OTA, AFB₁, AFB₂, AFG₁, AFG₂): σ _p = 0.22×c
- for analyte concentrations \geq 120 µg/kg (DON, FB₁, FB₂, ZEA, HT-2, T-2+HT-2, Spiked T-2): $\sigma_{\rm p} = 0.22 \times {\rm c}^{0.8495}$

where:

c = concentration of the assigned value, expressed as a dimensionless mass ratio, e.g. $1 \mu g/kg = 10^{-9}$, $1 mg/kg = 10^{-6}$.

The z-score compares the participant's deviation from the reference value with the target standard deviation accepted for the proficiency test (σ_n) .

The z-score is interpreted as:

$ z \le 2$	satisfactory result
$2 < z \le 3$	questionable result
z > 3	unsatisfactory result

3. Results and discussion

This is the first PT for multi-mycotoxin determination by using LC-MS(MS) methodology. The results of the PT are summarised in the Tables 3 and 4 for spiked maize and contaminated maize, respectively. The statistical evaluations of the results for contaminated maize and spiked maize materials are reported in Tables 5 and 6, respectively. Individual results for each mycotoxin in contaminated maize and spiked maize materials are reported in Tables 7 and 8, respectively. Individual *z*-score results for each mycotoxin in contaminated maize and spiked maize materials are reported in Tables 9 and 10, respectively. Some details of the analytical methods used and the

mycotoxins analysed by each participant are reported in Table 1 of the Supplementary Online Material. Graphical representation of z-scores and kernel density plot for each mycotoxin in contaminated maize and spiked maize materials are shown in Figures 1-10 and 11-21, respectively. Kernel density plots were computed (ProLab™ Software, Quodata, Dresden, Germany) from the analytical results by representing the individual numeric values each as a normalised Gaussian distribution centred on the respective analytical value. The sum of these normal distributions forms then the Kernel density distribution (Kunsagi et al., 2010). The mean mycotoxin values of the PT results, for contaminated maize, matched quite well with mean values obtained from the homogeneity study with the exception of ZEA and AFG₂ and to a lesser extent of FB₂ and AFG₁ (Table 5). For contaminated maize a high percentage of satisfactory z-scores ($|z| \le 2$) was obtained for HT-2 (82%), T-2+HT-2 (82%) and AFG₁ (73%) (Table 4). For spiked maize a high percentage of satisfactory z-scores ($|z| \le 2$) was obtained for T-2 (74%), HT-2 (76%), T-2+HT-2 (85%), AFG₁ (84%), AFB₂ (78%) and AFG₂ (78%) (Table 3). The poorest performance (|z| > 3) for contaminated maize were obtained for FB₁ (31%), FB₂ (32%), AFB₁ (32%) and AFB₂ (32%) (Table 4). For spiked maize they occurred for DON (35%), FB₁ (63%), FB₂ (52%) (Table 3). As shown in Tables 9 and 10 only 2 laboratories (lab codes 32 and 41) scored acceptable values of z-score for all mycotoxins, both in contaminated and spiked maize. However, only the method used by laboratory 41 can be considered a multi-toxin method. Indeed, the method used by laboratory 32 could not be considered a multi-toxin method because the sample was divided in four aliquots that were separately extracted with 4 different extraction solvent mixtures. As reported in

Table 3. Spiked maize test material: results of mycotoxin analysis and relevant scoring.

Analyte	Assigned value ¹ (μg/kg)	Mean of reported results (µg/kg)	Mean recovery ² (%)	No. of results ³	% satisfactory z-scores (z ≤2)	% questionable z-scores (2< z ≤3)	% unsatisfactory z-scores (z ≥3)
DON	1000.0	869.5	87	37	49	16	35
FB ₁	525.0	834.5	159	30	30	7	63
FB ₂	225.0	366.1	163	29	38	10	52
ZEA	210.0	155.0	74	36	64	17	19
T-2	125.0	96.4	77	31	74	6	20
HT-2	125.0	136.7	109	33	76	15	9
T-2+HT-2	250.0	225.7	90	33	85	3	12
OTA	5.0	5.25	105	30	60	13	27
AFB ₁	5.0	3.89	78	32	62	19	19
AFG ₁	5.0	4.11	82	32	84	10	6
AFB ₂	2.0	1.68	84	31	78	16	6
AFG ₂	2.0	1.58	79	27	78	15	7

¹ Spiking level.

² Based on the spiked values, mycotoxin levels measured in blank maize were not considered.

³ Out of 42 sets of data.

Table 4. Contaminated maize test material: results of mycotoxin analysis and relevant scoring.

Analyte	Assigned value ¹ (µg/kg)	No. of results ²	% satisfactory z-scores (z ≤2)	% questionable z-scores (2< z ≤3)	% unsatisfactory z-scores (z ≥3)
DON	567.2	38	55	19	26
FB ₁	2,085.0	32	50	19	31
FB ₂	726.0	31	52	16	32
ZEA	273.0	37	68	5	27
T-2	na	-	-	-	-
HT-2	184.7	34	82	6	12
T-2+HT-2	184.7	34	82	6	12
OTA	6.7	31	58	16	26
AFB ₁	4.8	34	56	12	32
AFG ₁	8.7	34	73	9	18
AFB ₂	0.5	25	40	28	32
AFG ₂	1.0	25	64	8	28

¹ Median of reported results.

Table 5. Contaminated maize material: statistical evaluation of results for each mycotoxin.

		DON	FB ₁	FB ₂	ZEA	T-2	HT-2	T-2+HT-2	OTA	AFB ₁	AFG ₁	AFB ₂	AFG ₂
Number of results		38	32	31	37	na	34	34	31	34	34	25	25
Range of results	from	44.4	160.0	56.7	3.7	na	11.4	11.7	0.4	0.4	0.5	nd	nd
(µg/kg)	to	1,512.5	6,794.8	2,814.2	720.0	na	724.6	728.2	13.2	11.8	18.2	1.7	3.3
Assigned value (media	n) (µg/kg)	567.2	2,085.0	726.0	273.0	na	184.7	184.7	6.7	4.8	8.7	0.5	1.0
Mean (µg/kg)		562.6	2,258.0	942.6	269.9	na	184.6	193.7	7.1	4.9	8.8	0.5	1.1
Target standard deviation	on (µg/kg)	98.8	298.6	121.9	53.1	na	38.1	38.1	1.5	1.1	1.9	0.1	0.2
Overall standard deviat	ion (µg/kg)	266.9	970.1	447.3	119.4	na	46.5	53.0	3.6	2.9	3.9	0.4	0.7
Relative target standard	d deviation (%)	17.4	14.3	16.8	19.4	na	20.6	20.6	21.9	22.0	21.9	21.7	22.0
Overall relative standar	d deviation (%)	47.0	46.5	61.6	43.7	na	25.2	28.7	53.6	59.6	45.3	84.1	66.6
Lower limit of tolerance		369.6	1,487.8	482.3	166.8	na	108.5	108.5	3.8	2.7	4.9	0.3	0.6
$(z = -2) (\mu g/kg)$													
Upper limit of tolerance		764.9	2,682.2	969.7	379.2	na	260.9	261.0	9.6	6.9	12.5	0.7	1.4
$(z = 2) (\mu g/kg)$													
Number of results of		20 (53)	16 (50)	16 (52)	25 (68)	na	28 (82)	28 (82)	18 (58)	19 (56)	25 (73)	10 (40)	16 (64)
z ≤2 (%)													
Number of results of		7 (18)	6 (19)	5 (16)	2 (5)	na	2 (6)	3 (9)	5 (16)	4 (12)	3 (9)	7 (28)	2 (8)
2< z ≤3 (%)													
Number of results of		11 (29)	10 (31)	10 (32)	10 (27)	na	4 (12)	3 (9)	8 (26)	11(32)	6 (18)	8 (32)	7 (28)
z >3 (%)													
Homogeneity study res	ults:	626±59	2,150±101	729±63	437±20	nd	189±3	189±3	7.1±0.2	5.9±0.3	11.6±0.4	0.5±0.02	0.7±0.03
mean±standard deviati	on (µg/kg)												

² Out of 43 sets of data.

 $^{^{3}}$ na = not applicable.

Table 6. Spiked maize material: statistical evaluation of results for each mycotoxin.

	DON	FB ₁	FB ₂	ZEA	T-2	HT-2	T-2+HT-2	ОТА	AFB ₁	AFG ₁	AFB ₂	AFG ₂
Number of results	37	30	29	36	31	33	33	30	32	32	31	27
Range of results from	8.4	38.8	7.0	0.9	0.02	13.6	13.6	0.3	0.4	0.3	0.1	0.04
(µg/kg) to	4,800.0	2,000.4	965.5	290.0	168.8	319.5	429.0	11.0	9.7	6.9	2.7	3.3
Assigned value (spiking level) (µg/	kg) 1000.0	525.0	225.0	210.0	125.0	125.0	250.0	5.0	5.0	5.0	2.0	2.0
Median (µg/kg)	915.5	820.0	313.0	179.2	109.5	136.2	250.9	5.1	3.9	4.3	1.7	1.6
Mean (µg/kg)	869.5	834.5	366.1	155.0	96.4	136.7	225.7	5.2	3.9	4.1	1.7	1.6
Target standard deviation (µg/kg)	160.0	92.5	45.1	42.5	27.3	27.3	49.3	1.1	1.1	1.1	0.4	0.4
Overall standard deviation (µg/kg)	396.2	496.7	190.0	73.9	43.4	43.4	64.8	3.1	2.1	1.3	0.7	0.5
Relative target standard deviation	%) 16.0	17.6	20.0	20.2	21.9	21.9	19.7	22.0	22.0	22.0	22.0	22.0
Overall relative standard deviation	(%) 39.6	94.6	84.4	35.2	34.7	34.7	25.9	62.1	42.0	26.6	33.3	25.4
Mean recovery (%)	87	159	163	74	77	109	90	105	78	82	84	79
Lower limit of tolerance (z = -2) (µg	/kg) 680.1	339.9	134.9	125.0	70.3	70.3	151.5	2.8	2.8	2.8	1.1	1.1
Upper limit of tolerance (z = 2) (µg	'kg) 1319.9	710.1	315.1	295.0	179.7	179.7	348.5	7.2	7.2	7.2	2.9	2.9
Number of results of z ≤2 (%)	18 (49)	9 (30)	11 (38)	23 (64)	23 (74)	26 (79)	28 (85)	18 (60)	20 (62)	27 (84)	24 (78)	21 (78)
Number of results of 2< z ≤3 (%)	6 (16)	2 (7)	3 (10)	6 (17)	2 (7)	5 (15)	1 (3)	4 (13)	6 (19)	3 (9)	5 (16)	4 (15)
Number of results of z >3 (%)	13 (35)	19 (63)	15 (52)	7 (19)	6 (19)	2 (6)	4 (12)	8 (27)	6 (19)	2 (7)	2 (6)	2 (7)

Table 1 of the Supplementary Online Material, laboratory 41 used MeOH:H2O (80:20) as extraction solvent and no clean-up of crude extract that was directly analysed by ultra performance liquid chromatography-MS/MS (UPLC-MS/MS). The standard calibration curve was used (no matrix effect compensation) for all mycotoxins and a very small amount of matrix equivalent (0.083 mg in 0.5 µl of undiluted crude sample extract) was injected in the UPLC-MS/MS apparatus. Despite its simplicity in sample preparation this method seems to be very reliable if under control. It could be proposed for a possible inter-laboratory validation provided that the elements that need to be kept under control for reliable measurements can be identified and transferred to other laboratories. Further, the very small amount of matrix equivalent injected (0.083 mg) requires a very sensitive mass spectrometer apparatus to reach the limits of quantification required to allow the measurement of the 11 mycotoxins in maize at EUlimits. Indeed, laboratory 12 used a method similar to the method used by laboratory 41 but a UPLC column with a different selectivity, chromatographic conditions and mass spectrometer apparatus. This laboratory did not detect AFB2 and AFG2 in contaminated maize and AFG2 in spiked maize (Tables 7 and 8). Moreover, this laboratory scored acceptable z-score for only 5/10 and 4/11 mycotoxins for contaminated maize and spiked maize, respectively (Tables 9 and 10).

Satisfactory mean recovery results (74 to 109%) were obtained for all mycotoxins with the exception of FB_1 and FB_2 which were unacceptably high (159-163%) (Table 3). Although the mean recovery for DON was acceptable (87%) a consistent group of laboratories reported low recovery

values for this mycotoxin as shown in Figure 11 (z-score <-3 for 11/37 laboratories). The results of these 11 laboratories were also evident from the kernel density plot that showed a bimodal distribution of analytical results (Figure 11). In particular, these laboratories reported results of DON <530 μg/kg as compared to a spiking level of 1000 μg/kg (Table 8). The examination of the methods used by these laboratories showed that most of them (9 laboratories) used a standard calibration curve (no matrix effect compensation), 6 laboratories used the multi antibodies immunoaffinity column whereas 3 laboratories analysed the crude extract (Tables 8 and Table 1 of the Supplementary Online Material). The DON results of contaminated maize were more balanced, however the number of laboratories that scored values of *z*-score <-3 was higher (n=6) than the number of laboratories that scored values of z-score >3 (n=4) (Figure 1). Moreover, for contaminated maize, the 6 laboratories that scored values of z-score <-3 belong to the group of 11 laboratories that scored values of *z*-score <-3 for spiked maize (Figures 1 and 11).

A more complex set of results was obtained for fumonisins in spiked maize since the majority of laboratories (16/30) scored values of z-score >3 (Figures 12 and 13). Historically laboratories have often had problems with low recoveries of fumonisins whereas in this case a consistent overestimation was observed for the majority of laboratories. In particular, unacceptable high mean recoveries were obtained for spiked maize (159% for FB $_1$ and 163% for FB $_2$). When looking at the methods used by the 16 laboratories with z-score >3 no common factor could be identified that may explain these results (Supplementary Online Material Table 1). The calibration solution and the spiking solution provided to participants should not be blamed because they were

Table 7. Contaminated maize material: individual results for each mycotoxin reported by participating laboratories.

Lab code	DON (µg/kg)	FB ₁ (µg/kg)	FB ₂ (µg/kg)	ZEA (μg/kg)	T-2 (μg/kg)	HT-2 (μg/kg)	T-2+HT-2 (µg/kg)	OTA (µg/kg)	AFB ₁ (µg/kg)	AFG ₁ (µg/kg)	AFB ₂ (µg/kg)	AFG ₂ (μg/kg)
1	1,512.5	2,294.5	1,019.0	231.0	nd	183.5	183.5	8.8	4.0	7.6	nd	nd
2	730.3	6,794.8	2,814.2	379.0	1.4	217.5	218.9	13.2	9.5	13.3	0.7	3.3
2A	728.4	1,291.0	695.7	313.7	nd	185.9	185.9	6.2	11.7	13.7	na	3.2
3	na	na	na	na	na	na	na	na	3.2	7.1	0.2	0.4
4	777.0	na	na	286.0	91.0	196.0	287.0	na	na	na	na	na
5	765.9	3,335.9	2,566.4	70.0	2.2	91.7	93.9	12.7	2.1	5.1	nd	nd
6	620.0	1,712.0	755.0	481.0	16.0	208.0	224.0	12.4	nd	7.9	nd	nd
8	144.2	2,926.9	1,930.6	327.1	nd	231.5	231.5	6.5	0.9	0.5	0.7	nq
11	462.0	na	na	na	59.8	na	na	na	na	na	na	na
12	482.0	2,500.0	1,310.0	313.0	nd	195.0	195.0	2.9	1.9	7.8	nd	nd
13	430.0	na	na	284.0	3.7	175.2	178.9	na	na	na	na	na
14	720.9	3,356.4	1,737.9	166.7	nd	219.2	219.2	13.2	5.1	14.9	nd	nd
18	153.0	1,724.0	726.0	68.0	nd	38.0	38.0	2.7	1.1	1.2	0.1	0.2
21	329.8	4,271.4	nd	261.2	5.0	112.8	117.8	10.4	6.0	11.0	nd	nd
22	44.4	160.0	56.7	21.0	0.3	11.4	11.7	0.4	0.4	0.6	0.0	0.0
24	558.2	1,003.9	436.2	61.5	3.4	196.5	199.9	5.3	2.1	5.0	0.7	1.4
25	850.7	1,354.8	531.3	nr	31.3	193.6	224.9	nr	9.6	12.3	0.7	1.2
26	480.3	884.0	392.4	415.2	na	na	na na	na	4.8	10.2	0.5	0.8
27	873.8	3,979.1	1,904.6	375.9	2.9	204.9	207.8	11.7	6.8	10.2	1.0	1.2
28	540.4	1,321.3	565.9	111.5	106.9	42.8	149.7	8.0	2.7	10.0	0.1	1.1
29	613.5	na	na	364.4	6.6	167.3	173.9	na	na	na	na	
30	784.2	1,623.2	724.6	360.1	3.6	724.6	728.2	8.0	5.5	11.2	1.0	na 1.4
32	692.0	1,838.0	907.0	273.0	nd	142.0	142.0	7.1	4.8	10.4	0.5	1.1
33		2,490.0	934.0									
34	na 649.2	2,490.0		na 280.1	na nd	na 216.0	na 216.0	na 8.6	na 6.0	na 8.9	na	na
			1,079.0								nd 1.7	nd 1.0
35	232.0	2,615.0	697.0	265.0	na	na 455.0	na 457.0	8.6	9.4	18.2	1.7	1.8
36	na	na	na	na ozo o	2.5	155.3	157.8	na	na	na > 10	na	na
38	529.0	na	na	272.0	nd	149.0	149.0	3.5	5.0	>10	0.5	0.7
39	45.9	1,040.0	594.0	190.0	nd	154.0	154.0	6.7	1.2	6.3	0.2	0.4
40	680.8	na	na	351.3	3.0	198.8	201.8	na	na	na	na	na
41	545.1	2,130.0	903.0	265.9	2.6	161.5	164.1	5.8	5.4	8.9	0.5	0.7
43	na	na	na	248.3	na	na	na	5.7	4.8	8.5	0.4	0.8
44	476.0	2,900.0	240.0	3.7	1.1	na	na	1.6	5.1	8.9	0.4	1.0
45	463.6	1,241.6	637.5		3.0	196.6	199.6	2.6	1.8	3.9	0.2	0.6
47	638.2	1,970.3	832.2	372.0	3.6	180.0	183.6	7.6	6.3	12.1	0.8	1.1
48	331.2	3,017.2	1,520.9	232.2	nq	161.8	161.8	7.5	4.6	7.4	0.4	8.0
51	972.0	2,040.0	807.0	447.0	9.4	214.0	223.4	na	na	na	na	na
56	900.0	2,400.0	700.0	720.0	nd	na	na	13.0	11.8	7.9	nd	nd
57	46.2	1,683.8	93.4	200.0	0.7	191.8	192.5	5.6	3.8	7.3	0.4	8.0
58	na	2,134.5	696.5	na	na	na	na	na	9.2	15.4	0.6	1.1
60	687.5	na	na	238.0	nd	130.6	130.6	4.3	1.2	8.5	nd	nd
60A	576.3	na	na	283.5	11.5	274.6	286.1	6.1	4.0	5.8	nd	nd
61	315.2	1,703.3	412.9	405.9	nd	155.2	155.2	5.0	6.9	9.9	0.3	1.8

Abbreviations used: na = not analysed; nd = not detected (below limit of detection); nr = not reported because of problems with internal standard of ZEA and OTA; nq = not quantifiable (below limit of quantification).

Table 8. Spiked maize material: individual results for each mycotoxin reported by participating laboratories.

Lab code	DON (µg/kg)	FB ₁ (µg/kg)	FB ₂ (µg/kg)	ZEA (μg/kg)	T-2 (µg/kg)	HT-2 (µg/kg)	T-2+HT-2 (µg/kg)	OTA (µg/ kg)	AFB ₁ (μg/kg)	AFG ₁ (µg/kg)	AFB ₂ (μg/kg)	AFG ₂ (µg/kg)
1	1,801.0	1,343.0	683.7	180.4	148.2	111.3	259.5	6.3	3.5	3.2	1.1	1.5
2	1,113.2	2,000.4	965.5	227.9	134.4	136.2	270.6	9.6	3.9	3.6	2.2	1.8
3	na	na	na	na	na	na	na	na	2.6	2.9	1.0	0.9
4	946.0	na	na	178.0	2.8	123.0	125.8	na	na	na	na	na
5	917.6	1,081.3	378.7	92.4	100.1	91.6	191.7	9.3	5.2	4.8	2.1	1.6
6	933.0	501.0	226.0	201.0	130.0	124.0	254.0	9.0	nd	nd	2.1	nd
3	220.3	1,064.4	744.4	214.2	nd	171.6	171.6	4.7	nq	nq	nq	nq
11	302.0	na	na	na	1.6	na	na	na	na	na	na	na
12	901.0	848.0	496.0	115.0	88.5	205.0	293.5	2.1	1.9	3.7	1.9	nd
13	658.0	na	na	192.2	124.6	124.4	249.0	na	na	na	na	na
14	1,028.6	1,381.7	778.1	93.6	52.6	188.9	241.5	11.0	2.8	6.4	1.4	nd
18	243.0	889.0	449.0	49.0	14.0	32.0	46.0	2.3	1.0	8.0	0.4	0.4
21	613.0	1476.8	nd	206.8	71.8	97.8	169.6	5.8	5.7	4.9	1.5	nd
22	50.0	38.8	13.4	0.9	0.0	13.6	13.6	0.3	0.4	0.3	0.1	0.0
24	658.0	370.9	254.7	46.6	128.7	149.7	278.4	4.4	1.3	3.1	1.0	1.0
25	1,426.5	505.9	242.5	nr	141.0	144.4	285.4	nr	6.9	4.8	2.3	1.5
26	390.3	365.9	201.9	231.8	na	na	na	na	4.1	4.1	1.3	1.1
27	1,064.2	1,539.4	775.3	240.4	144.4	138.2	282.6	7.2	5.3	5.3	2.6	2.1
28	1,107.9	441.2	255.6	102.1	101.8	187.2	289.0	7.0	4.0	6.9	2.4	3.3
29	1,079.1	na	na	221.8	131.8	127.9	259.7	na	na	na	na	na
30	1,049.6	694.0	319.5	212.0	109.5	319.5	429.0	5.3	4.9	4.3	1.7	1.8
32	1,207.0	552.0	313.0	214.0	138.0	127.0	265.0	5.6	5.3	5.3	2.3	2.2
33	na	939.0	410.0	na	na	na	na	na	na	na	na	na
34	1,094.0	1,058.0	543.0	190.6	129.7	122.9	252.6	5.4	5.1	4.8	2.0	2.4
35	269.0	730.0	216.0	187.0	na	na	na	8.6	3.8	3.8	2.1	1.9
36	na	na	na	na	131.2	146.3	277.5	na	na	na	na	na
38	609.0	na	na	135.0	98.0	79.0	177.0	2.0	3.0	4.4	1.6	1.3
39	8.4	816.0	294.0	103.0	nq	157.0	157.0	4.2	2.1	4.1	1.1	1.3
40	1,071.8	na	na	209.2	158.4	159.2	317.6	na	na	na	na	na
41	869.8	594.6	287.5	152.4	102.7	100.2	202.9	4.1	4.5	4.3	1.7	1.8
43	na	na	na	166.0	na	na	na	3.8	3.8	3.9	1.7	1.7
44	510.0	1,186.0	7.0	55.6	0.6	nd	0.6	1.5	4.3	4.2	1.9	1.6
45	915.5	749.5	318.7	35.6	168.8	143.5	312.3	3.9	1.9	2.3	0.9	1.4
47	1,086.8	884.0	391.4	226.3	124.9	126.0	250.9	5.2	4.8	5.1	2.2	1.7
48	289.2	582.4	359.2	121.8	nq	182.0	182.0	4.9	4.1	4.3	2.0	1.7
51	1,148.0	na	na	268.0	137.0	144.0	281.0	na	na	na	na	na
56	4,800.0	1,300.0	300.0	290.0	50.0	nd	nd	7.0	7.7	6.7	2.7	1.6
57	39.2	165.4	38.0	129.8	nd	171.6	171.6	3.3	2.6	2.6	1.5	1.2
58	na	824.0	288.0	na	na	na	na	na	9.7	6.2	1.5	1.8
60	548.9	na	na	62.5	39.4	57.8	97.2	2.8	0.8	2.3	nd	nd
60A	1,061.9	na	na	47.8	84.4	130.0	214.4	2.4	1.5	3.5	nd	nd
61	142.0	1,14.9	67.0	180.9	nd	177.9	177.9	8.5	5.9	4.6	1.7	2.1

Abbreviations used: na = not analysed; nd = not detected (below limit of detection); nr = not reported because of problems with internal standard of ZEA and OTA; nq = not quantifiable (below limit of quantification).

Table 9. Contaminated maize material: individual z-score results for each mycotoxin.

Lab code	DON	FB ₁	FB ₂	ZEA	T-2	HT-2	T-2+HT-2	ОТА	AFB ₁	AFG ₁	AFB ₂	AFG ₂
1	9.57	0.70	2.40	-0.79	nd	-0.03	-0.03	1.43	-0.76	-0.58	nd	nd
2	1.65	15.77	17.13	2.00	nc	0.86	0.90	4.42	4.42	2.41	2.40	10.45
2A	1.63	-2.66	-0.25	0.77	nd	0.03	0.03	-0.34	6.50	2.62	na	10.00
3	na	na	na	na	na	na	na	na	-1.52	-0.84	-2.60	-2.73
4	2.12	na	na	0.24	nc	0.30	2.68	na	na	na	na	na
5	2.01	4.19	15.10	-3.82	nc	-2.44	-2.38	4.08	-2.56	-1.88	nd	nd
6	0.53	-1.25	0.24	3.92	nc	0.61	1.03	3.88	nd	-0.42	nd	nd
8	-4.28	2.82	9.88	1.02	nd	1.23	1.23	-0.14	-3.69	-4.29	2.40	nq
11	-1.07	na	na	na	nc	na	na	na	na	na	na	na
12	-0.86	1.39	4.79	0.75	nd	0.27	0.27	-2.59	-2.75	-0.47	nd	nd
13	-1.39	na	na	0.21	nc	-0.25	-0.15	na	na	na	na	na
14	1.55	4.26	8.30	-2.00	nd	0.91	0.90	4.42	0.27	3.25	nd	nd
18	-4.19	-1.21	0.00	-3.86	nd	-3.85	-3.85	-2.72	-3.50	-3.93	-3.60	-3.64
21	-2.40	7.32	nd	-0.22	nc	-1.89	-1.76	2.52	1.12	1.20	nd	nd
22	-5.29	-6.45	-5.49	-4.75	nc	-4.55	-4.54	-4.29	-4.16	-4.24	-4.20	-4.41
24	-0.09	-3.62	-2.38	-3.98	nc	0.31	0.40	-0.95	-2.56	-1.94	2.40	1.82
25	2.87	-2.45	-1.60	nr	nc	0.23	1.05	nr	4.52	1.88	2.40	0.91
26	-0.88	-4.02	-2.74	2.68	na	na	na	na	-0.01	0.79	0.40	-0.91
27	3.10	6.34	9.67	1.94	nc	0.53	0.60	3.40	1.88	1.10	5.40	0.91
28	-0.27	-2.56	-1.31	-3.04	nc	-3.72	-0.92	0.88	-1.99	0.79	-3.60	0.45
29	0.47	na	na	1.72	nc	-0.46	-0.28	na	na	na	na	na
30	2.20	-1.55	-0.01	1.64	nc	14.17	14.26	0.88	0.65	1.31	5.40	1.82
32	1.26	-0.83	1.49	0.00	nd	-1.12	-1.12	0.27	-0.01	0.89	0.40	0.45
33	na	1.36	1.71	na	na	na	na	na	na	na	na	na
34	0.83	1.46	2.90	0.13	nd	0.82	0.82	1.29	1.12	0.10	nd	nd
35	-3.39	1.77	-0.24	-0.15	na	na	na	1.29	4.33	4.97	12.40	3.64
36	na	na	na	na	nc	-0.77	-0.71	na	na	na	na	na
38	-0.39	na	na	-0.02	nd	-0.94	-0.94	-2.18	0.18	>0.68	0.40	-1.36
39	-5.28	-3.50	-1.08	-1.56	nd	-0.81	-0.81	0.00	-3.41	-1.26	-2.60	-2.73
40	1.15	na	na	1.47	nc	0.37	0.45	na	na	na	na	na
41	-0.22	0.15	1.45	-0.13	nc	-0.61	-0.54	-0.61	0.56	0.10	0.40	-1.36
43	na	na	na	-0.47	na	na	na	-0.68	-0.01	-0.10	-0.60	-0.91
44	-0.94	2.73	-3.99	-5.07	nc	nd	nd	-3.47	0.27	0.10	-0.60	0.00
45	-1.05	-2.82	-0.73	-4.25	nc	0.31	0.39	-2.79	-2.84	-2.51	-2.60	-1.82
47	0.72	-0.38	0.87	1.86	nc	-0.12	-0.03	0.61	1.41	1.78	3.40	0.45
48	-2.39	3.12	6.52	-0.77	nq	-0.60	-0.60	0.54	-0.20	-0.68	-0.60	-0.91
51	4.10	-0.15	0.66	3.28	nc	0.77	1.01	na	na	na	na	na
56	3.37	1.05	-0.21	8.42	nc	na	na	4.29	6.59	-0.42	-4.60	-4.55
57	-5.27	-1.34	-5.19	-1.38	nc	0.19	0.20	-0.75	-0.95	-0.73	-0.60	-0.91
58	na	0.17	-0.24	na	na	na	na	na	4.14	3.51	1.40	0.45
60	1.22	na	na	-0.66	nd	-1.42	-1.42	-1.63	-3.41	-0.10	nd	nd
60A	0.09	na	na	0.20	nc	2.36	2.66	-0.41	-0.76	-1.52	nd	nd
61	-2.55	-1.28	-2.57	2.50	nd	-0.77	-0.78	-1.16	1.97	0.63	-1.60	3.64

Abbreviations used: na = not analysed; nd = not detected (below limit of detection); nr = not reported because of problems with internal standard of ZEA and OTA; nq = not quantifiable (below limit of quantification); nc = not calculated.

Table 10. Spiked maize material: individual z-score results for each mycotoxin.

Lab code	DON	FB ₁	FB ₂	ZEA	T-2	HT-2	T-2+HT-2	ОТА	AFB ₁	AFG ₁	AFB ₂	AFG ₂
1	5.01	8.84	10.18	-0.70	0.85	-0.50	0.19	1.18	-1.36	-1.64	-2.05	-1.14
2	0.71	15.95	16.44	0.42	0.34	0.41	0.42	4.18	-1.00	-1.27	0.45	-0.45
3	na	na	na	na	na	na	na	na	-2.18	-1.91	-2.27	-2.50
4	-0.34	na	na	-0.75	-4.47	-0.07	-2.52	na	na	na	na	na
5	-0.52	6.01	3.41	-2.77	-0.91	-1.22	-1.18	3.91	0.18	-0.18	0.23	-0.91
6	-0.42	-0.26	0.02	-0.21	0.18	-0.04	0.08	3.64	nd	nd	0.23	nd
8	-4.87	5.83	11.53	0.10	nd	1.70	-1.59	-0.27	nq	nq	nq	nq
11	-4.36	na	na	na	-4.51	na	na	na	na	na	na	na
12	-0.62	3.49	6.02	-2.24	-1.34	2.93	0.88	-2.64	-2.82	-1.18	-0.23	nd
13	-2.14	na	na	-0.42	-0.01	-0.02	-0.02	na	na	na	na	na
14	0.18	9.26	12.28	-2.74	-2.65	2.34	-0.17	5.45	-2.00	1.27	-1.36	nd
18	-4.73	3.93	4.97	-3.79	-4.06	-3.40	-4.14	-2.45	-3.64	-3.82	-3.64	-3.64
21	-2.42	10.29	nd	-0.08	-1.95	-0.99	-1.63	0.73	0.64	-0.09	-1.14	nd
22	-5.94	-5.25	-4.70	-4.92	-4.57	-4.07	-4.80	-4.27	-4.18	-4.27	-4.32	-4.45
24	-2.14	-1.67	0.66	-3.85	0.14	0.90	0.58	-0.55	-3.36	-1.73	-2.27	-2.27
25	2.67	-0.21	0.39	nr	0.59	0.71	0.72	nr	1.73	-0.18	0.68	-1.14
26	-3.81	-1.72	-0.51	0.51	na	na	na	na	-0.82	-0.82	-1.59	-2.05
27	0.40	10.96	12.22	0.72	0.71	0.48	0.66	2.00	0.27	0.27	1.36	0.23
28	0.67	-0.91	0.68	-2.54	-0.85	2.28	0.79	1.82	-0.91	1.73	0.91	2.95
29	0.49	na	na	0.28	0.25	0.11	0.20	na	na	na	na	na
30	0.31	1.83	2.10	0.05	-0.57	7.11	3.63	0.27	-0.09	-0.64	-0.68	-0.45
32	1.29	0.29	1.95	0.09	0.48	0.07	0.30	0.55	0.27	0.27	0.68	0.45
33	na	4.47	4.11	na	na	na	na	na	na	na	na	na
34	0.59	5.76	7.06	-0.46	0.17	-0.08	0.05	0.36	0.09	-0.18	0.00	0.91
35	-4.57	2.22	-0.20	-0.54	na	na	na	3.27	-1.09	-1.09	0.23	-0.23
36	na	na	na	na	0.23	0.78	0.56	na	na	na	na	na
38	-2.44	na	na	-1.77	-0.99	-1.68	-1.48	-2.73	-1.82	-0.55	-0.91	-1.59
39	-6.20	3.14	1.53	-2.52	nq	1.17	-1.89	-0.73	-2.64	-0.82	-2.05	-1.59
40	0.45	na	na	-0.02	1.22	1.25	1.37	na	na	na	na	na
41	-0.81	0.75	1.39	-1.36	-0.82	-0.91	-0.96	-0.82	-0.45	-0.64	-0.68	-0.45
43	na	na	na	-1.04	na	na	na	-1.09	-1.09	-1.00	-0.68	-0.68
44	-3.06	7.12	-4.84	-3.64	-4.55	na	na	-3.18	-0.64	-0.73	-0.23	-1.36
45	-0.53	2.43	2.08	-4.10	1.60	0.68	1.26	-1.00	-2.82	-2.45	-2.50	-1.36
47	0.54	3.88	3.69	0.38	0.00	0.04	0.02	0.18	-0.18	0.09	0.45	-0.68
48	-4.44	0.62	2.98	-2.08	nq	2.08	-1.38	-0.09	-0.82	-0.64	0.00	-0.68
51	0.93	na	na	1.37	0.44	0.69	0.63	na	na	na	na	na
56	23.75	8.38	1.66	1.88	-2.74	nd	nd	1.82	2.45	1.55	1.59	-0.91
57	-6.01	-3.89	-4.15	-1.89	nd	1.70	-1.59	-1.55	-2.18	-2.18	-1.14	-1.82
58	na	3.23	1.40	na	na	na	na	na	4.27	1.09	-1.14	-0.45
60	-2.82	na	na	-3.47	-3.13	-2.46	-3.10	-2.00	-3.82	-2.45	nd	nd
60A	0.39	na	na	-3.82	-1.49	0.18	-0.72	-2.36	-3.18	-1.36	nd	nd
61	-5.36	-4.43	-3.51	-0.68	nd	1.93	-1.46	3.18	0.82	-0.36	-0.68	0.23

Abbreviations used: na = not analysed; nd = not detected (below limit of detection); nr = not reported because of problems with internal standard of ZEA and OTA; nq = not quantifiable (below limit of quantification).

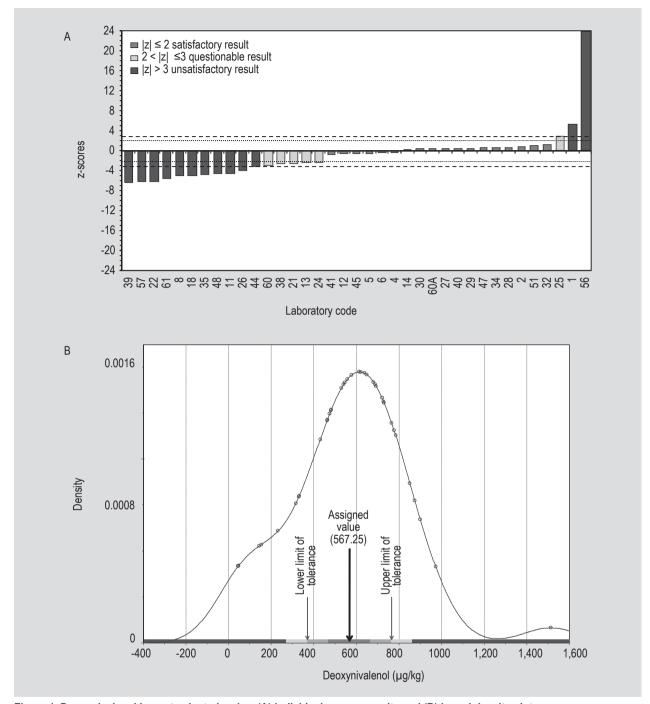


Figure 1. Deoxynivalenol in contaminated maize: (A) individual z-score results and (B) kernel density plot.

prepared from the same stock solution. As observed for DON the fumonisin results of contaminated maize were more balanced, however the number of laboratories that scored values of z-score >3 was higher than the number of laboratories that scored values of z-score <-3 (Figures 2 and 3). Moreover, for contaminated maize, 5 of the 6 laboratories with z-score >3 belong to the group of the 16 laboratories that scored values of z-score >3 for spiked maize. A clear bimodal distribution of analytical results was also observed in the kernel density plot of ZEA in contaminated maize (Figure 4).

In particular, 6 laboratories reported results of ZEA <115 μ g/kg as compared to an assigned value of 273 μ g/kg (Table 7). The examination of the methods used by these laboratories showed that all of them used a standard calibration curve (no matrix effect compensation), 2 laboratories analysed the crude extract, 2 laboratories purified the sample extract with a multi antibodies immunoaffinity column whereas 1 laboratory purified the sample extract with a liquid-liquid partitioning with n-hexane (Tables 7 and Table 1 of the Supplementary Online Material).

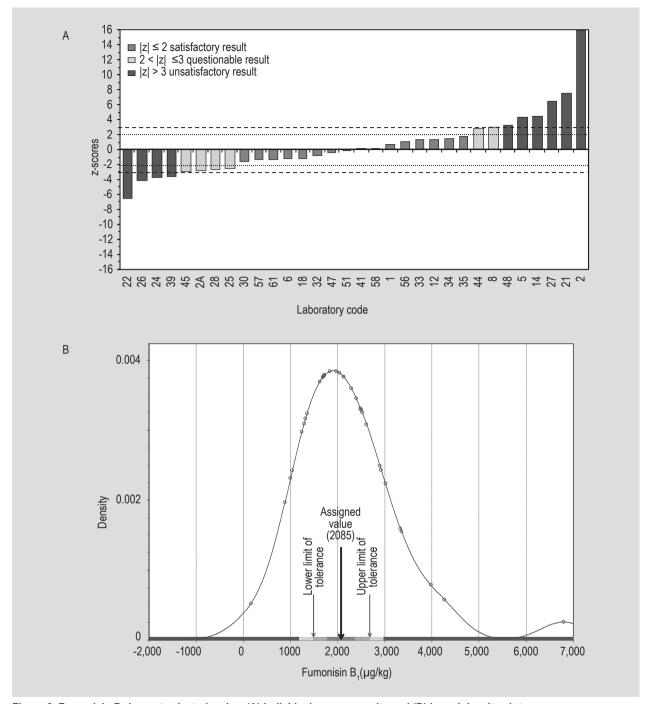


Figure 2. Fumonisin B₁ in contaminated maize: (A) individual z-score results and (B) kernel density plot.

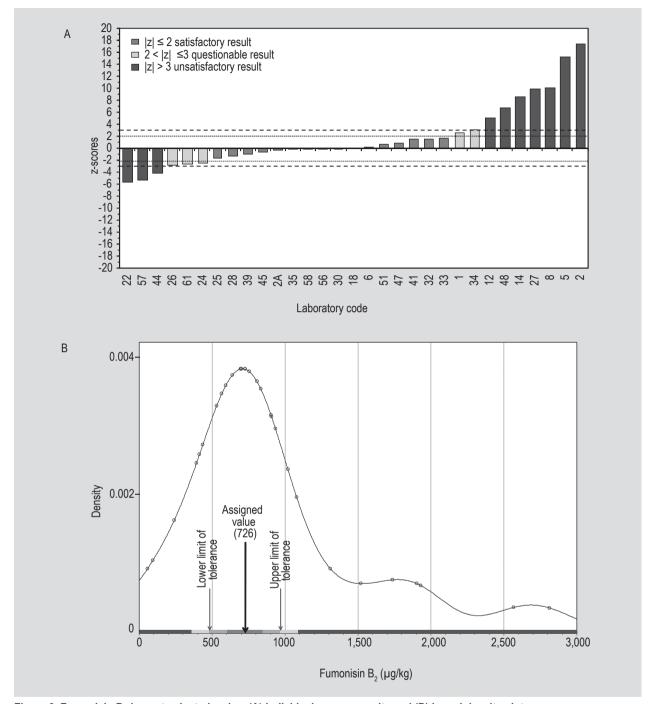


Figure 3. Fumonisin B₂ in contaminated maize: (A) individual z-score results and (B) kernel density plot.

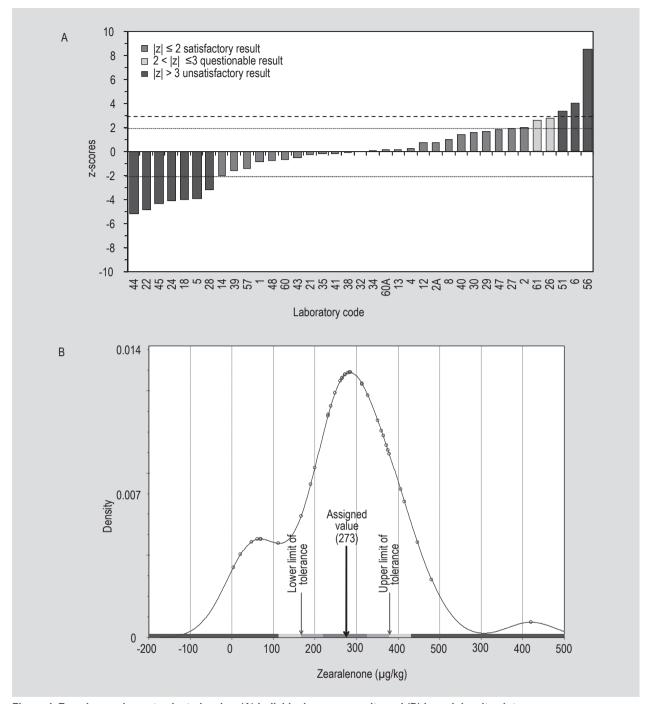


Figure 4. Zearalenone in contaminated maize: (A) individual z-score results and (B) kernel density plot.

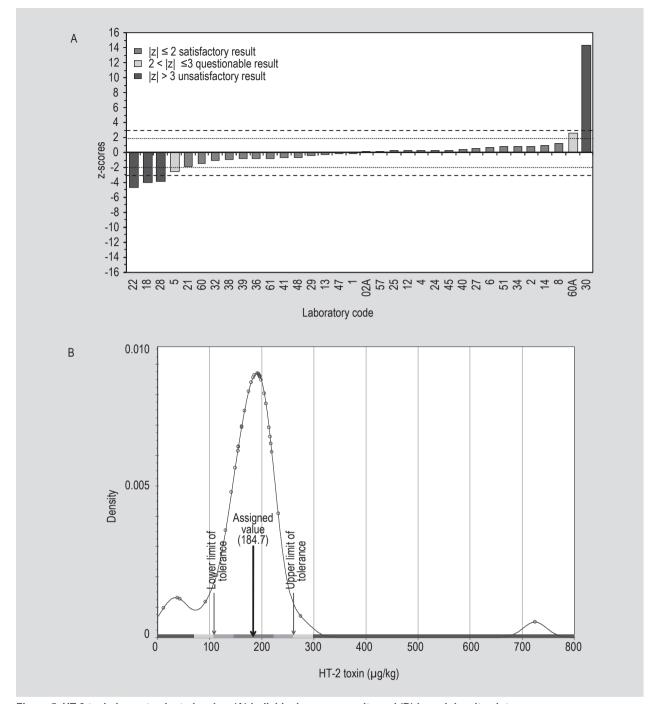


Figure 5. HT-2 toxin in contaminated maize: (A) individual z-score results and (B) kernel density plot.

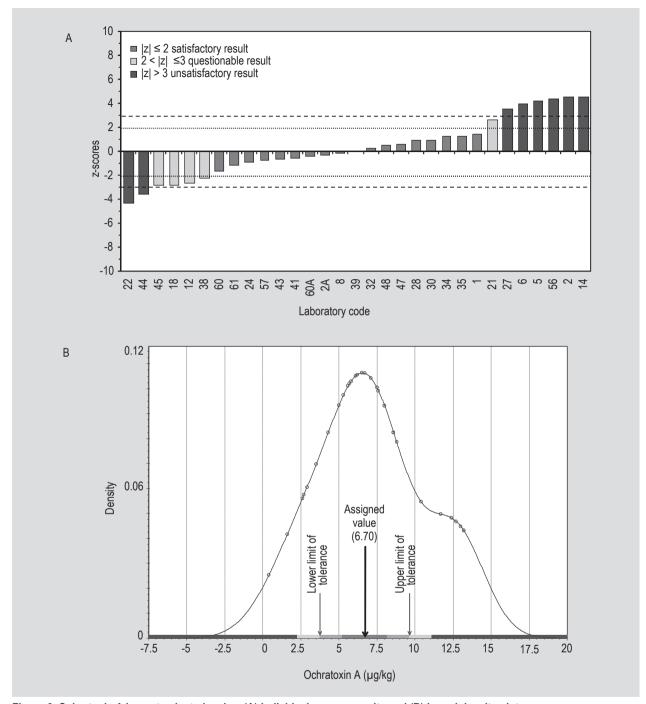


Figure 6. Ochratoxin A in contaminated maize: (A) individual z-score results and (B) kernel density plot.

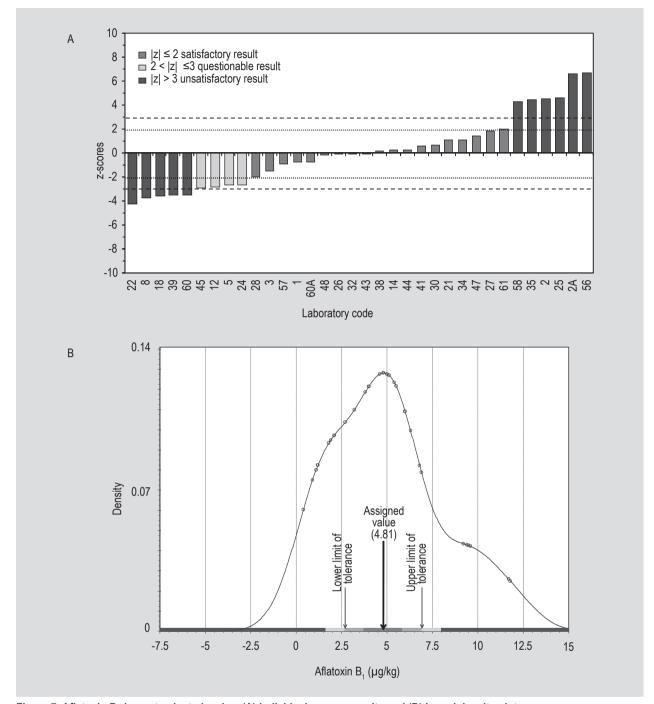


Figure 7. Aflatoxin B₁ in contaminated maize: (A) individual z-score results and (B) kernel density plot.

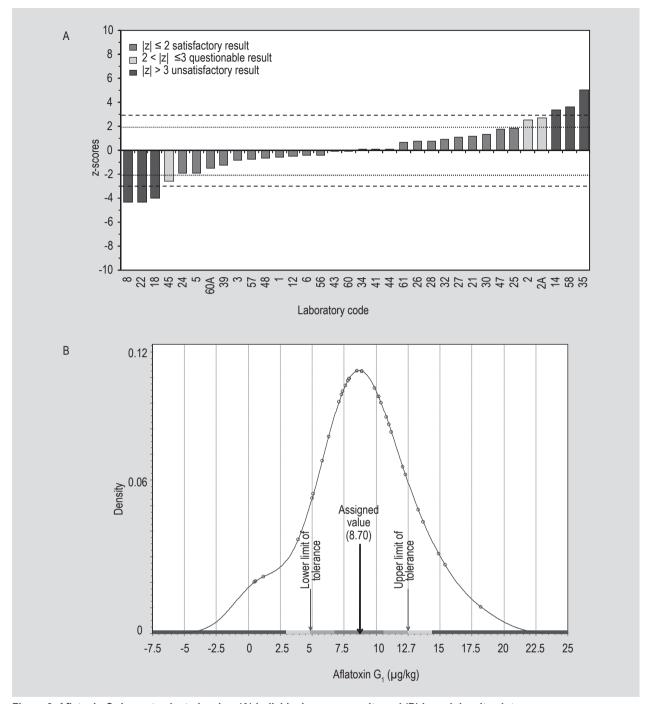


Figure 8. Aflatoxin G₁ in contaminated maize: (A) individual z-score results and (B) kernel density plot.

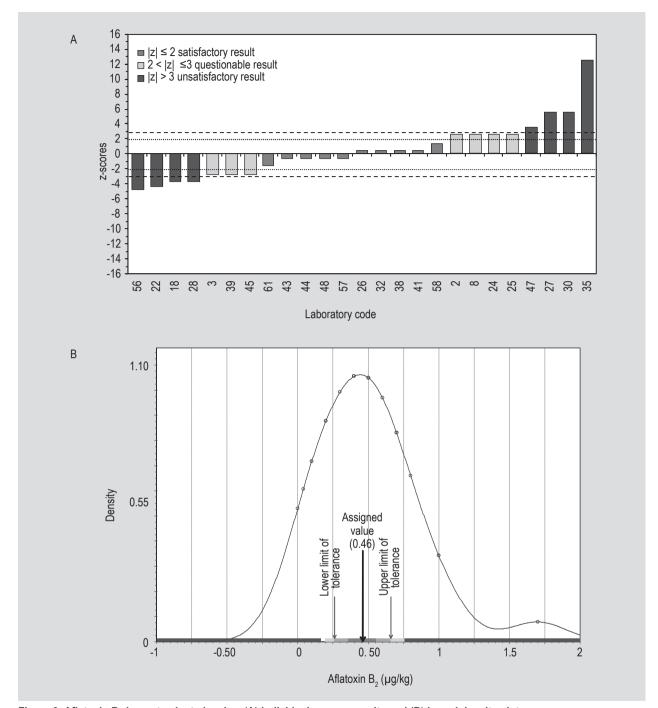


Figure 9. Aflatoxin B₂ in contaminated maize: (A) individual z-score results and (B) kernel density plot.

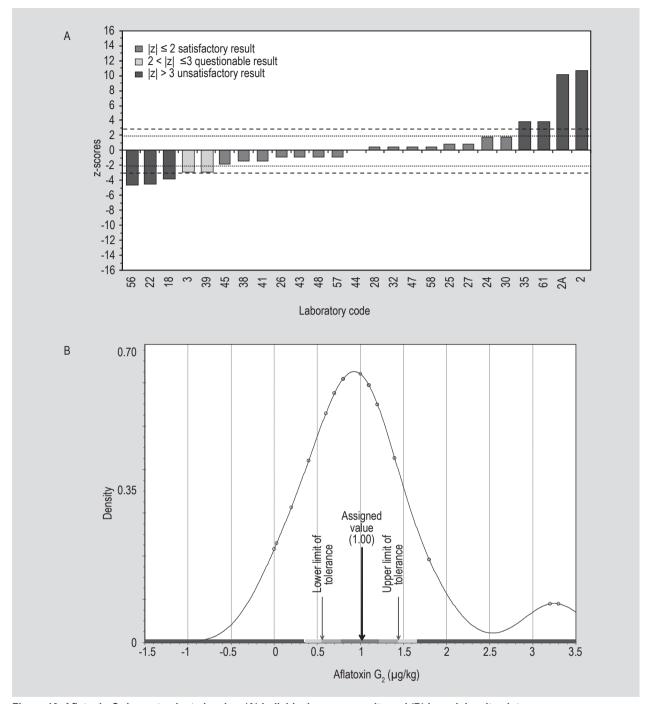


Figure 10. Aflatoxin G₂ in contaminated maize: (A) individual z-score results and (B) kernel density plot.

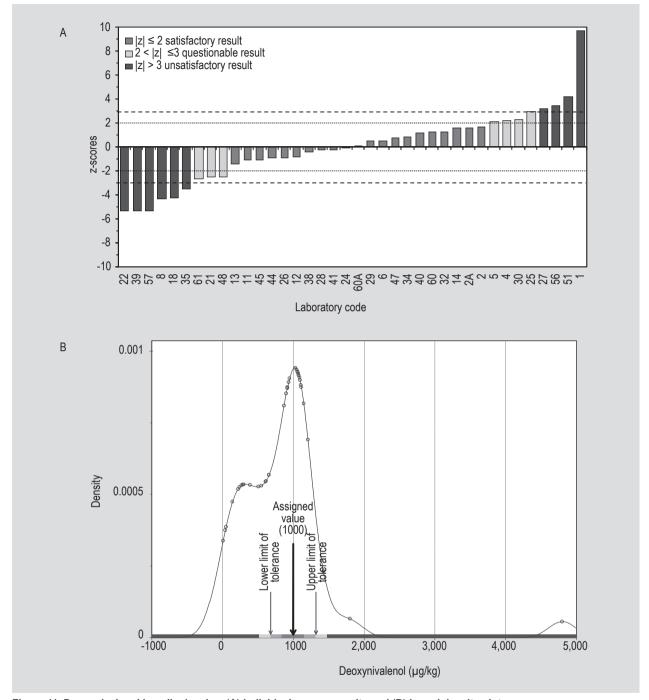


Figure 11. Deoxynivalenol in spiked maize: (A) individual z-score results and (B) kernel density plot.

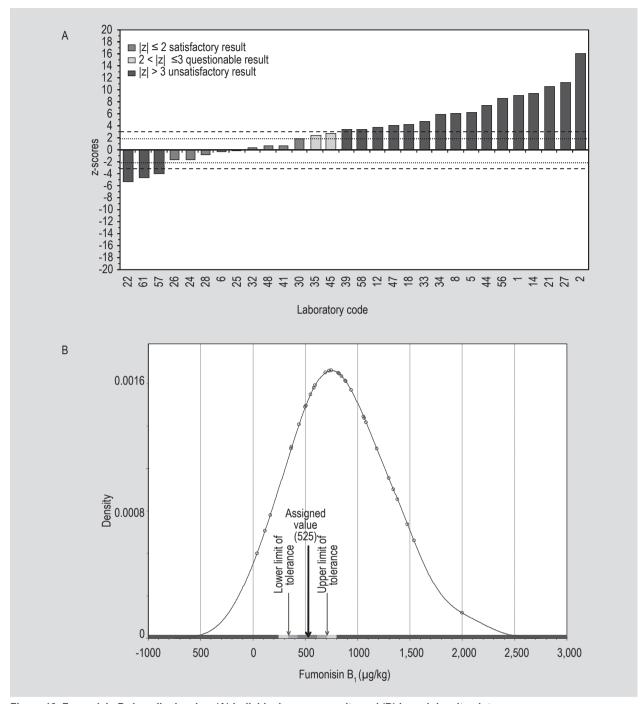


Figure 12. Fumonisin B₁ in spiked maize: (A) individual z-score results and (B) kernel density plot.

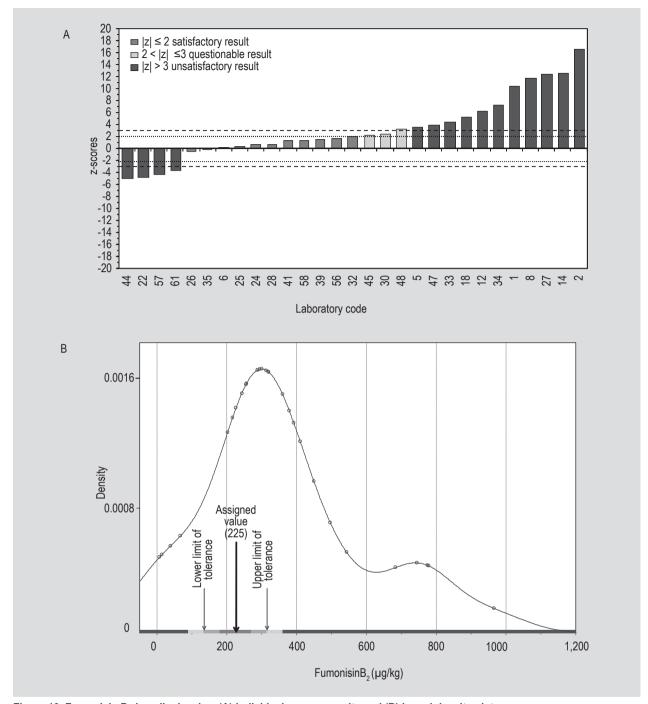


Figure 13. Fumonisin B₂ in spiked maize: (A) individual z-score results and (B) kernel density plot.

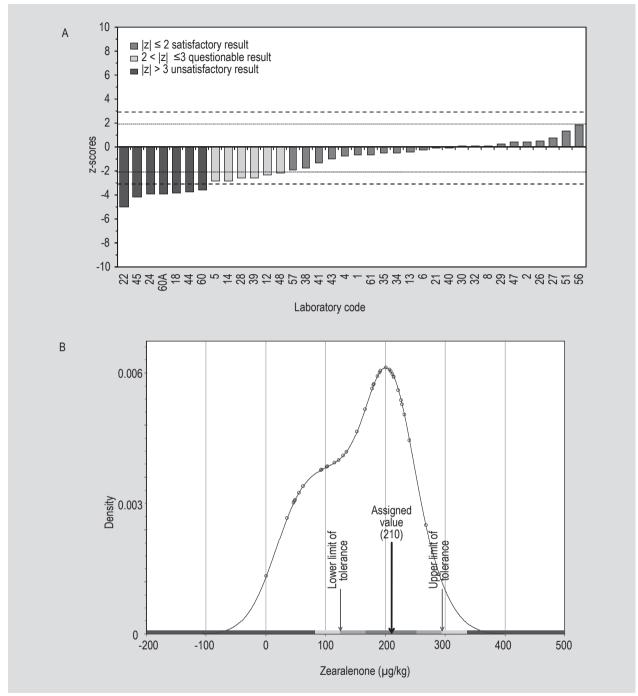


Figure 14. Zearalenone in spiked maize: (A) individual z-score results and (B) kernel density plot.

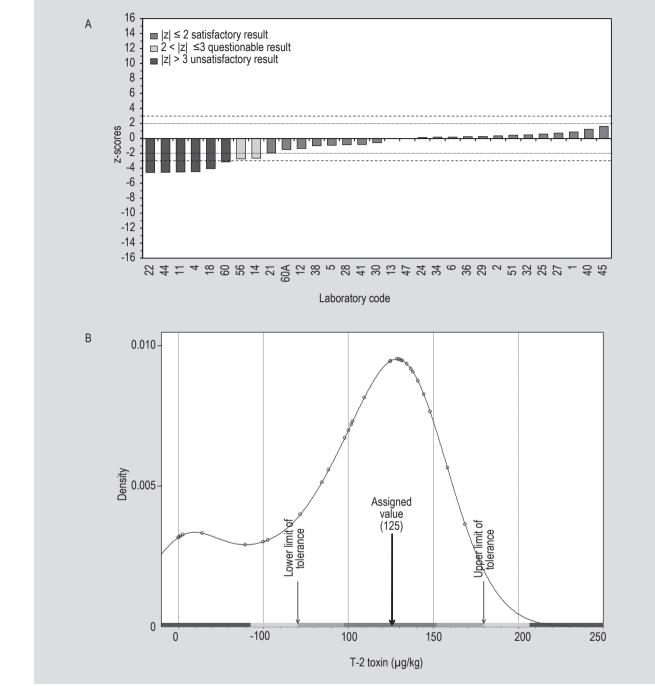


Figure 15. T-2 toxin in spiked maize: (A) individual z-score results and (B) kernel density plot.

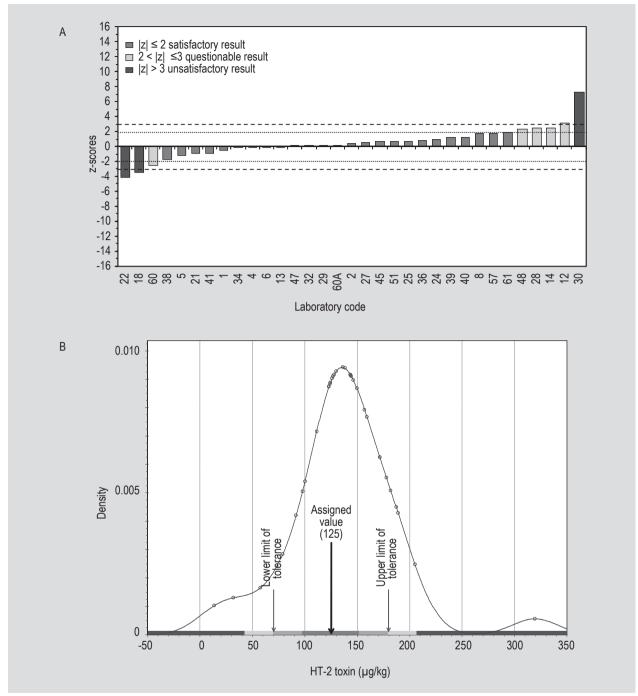


Figure 16. HT-2 toxin in spiked maize: (A) individual z-score results and (B) kernel density plot.

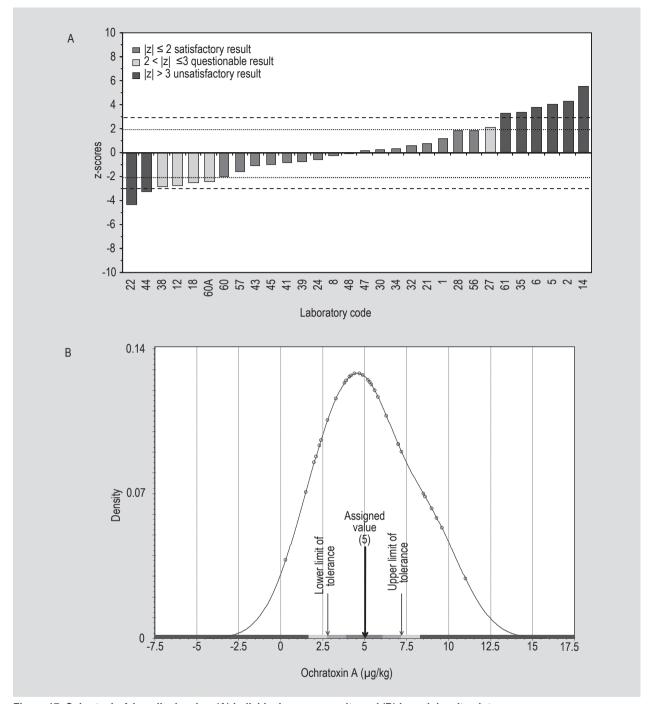


Figure 17. Ochratoxin A in spiked maize: (A) individual z-score results and (B) kernel density plot.

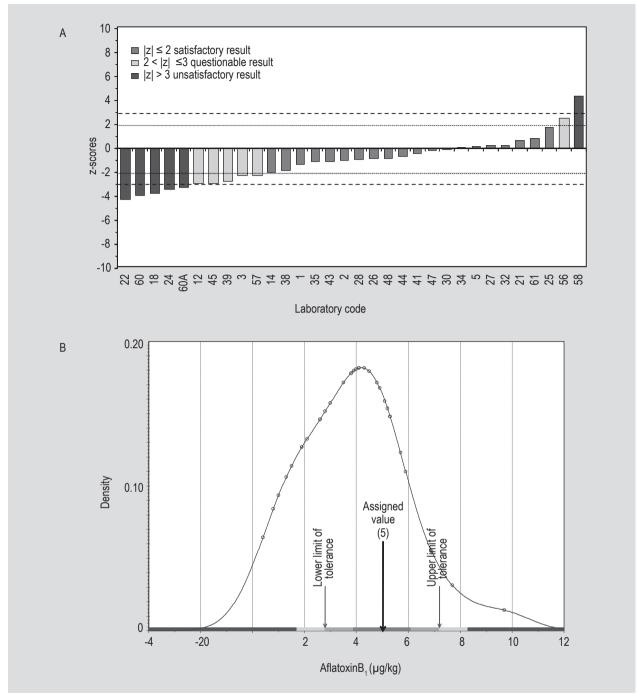


Figure 18 Aflatoxin B₁ in spiked maize: (A) individual z-score results and (B) kernel density plot.

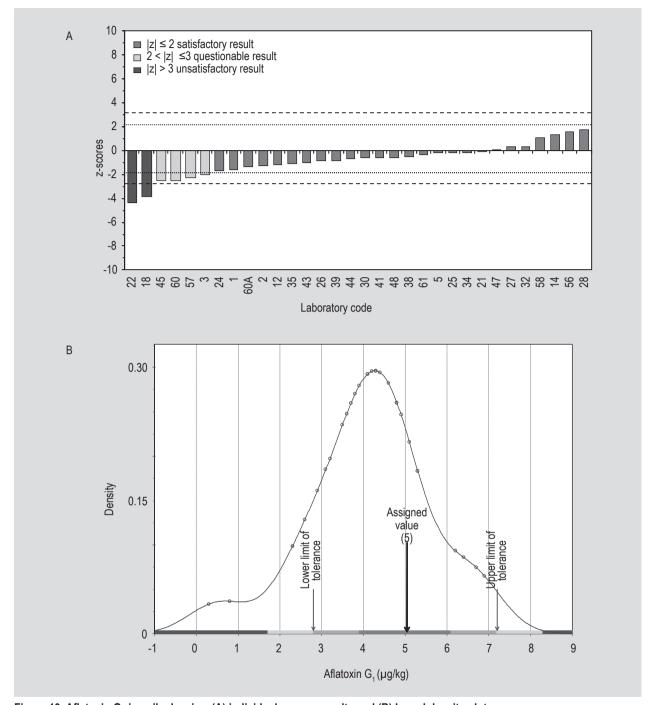


Figure 19. Aflatoxin G₁ in spiked maize: (A) individual z-score results and (B) kernel density plot.

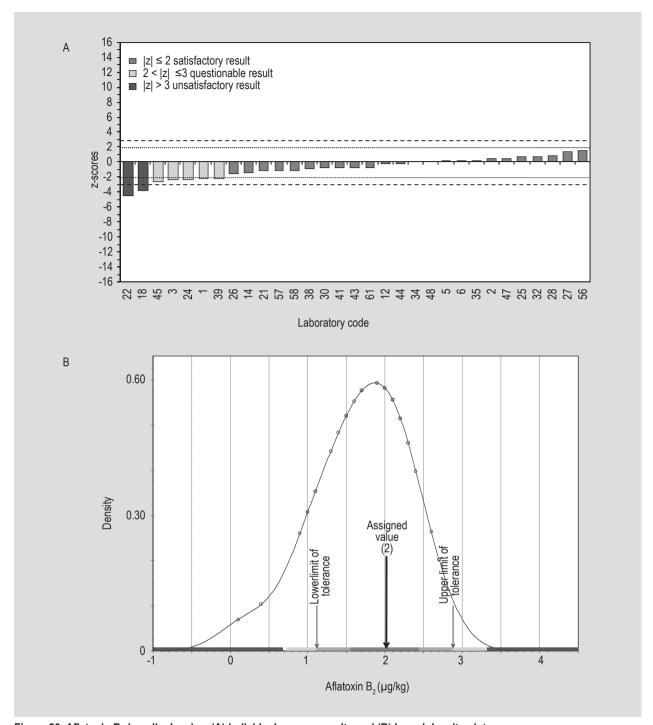


Figure 20. Aflatoxin ${\bf B_2}$ in spiked maize: (A) individual z-score results and (B) kernel density plot.

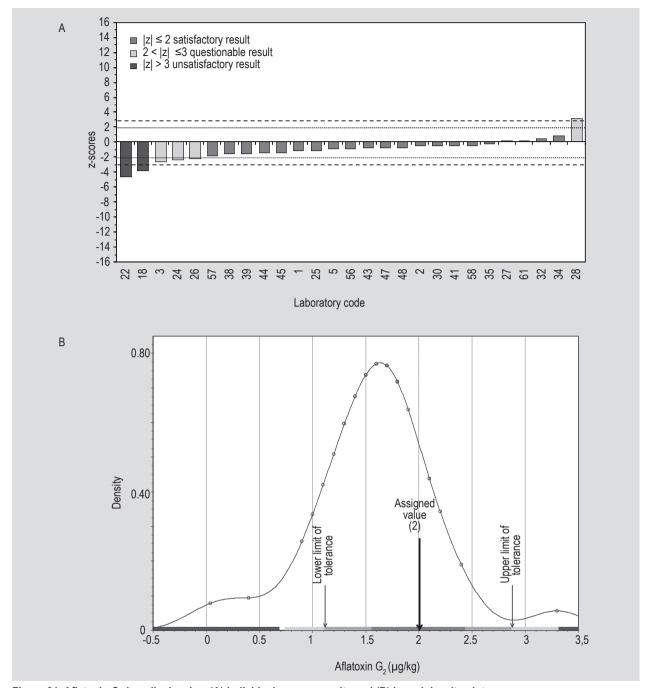


Figure 21. Aflatoxin G₂ in spiked maize: (A) individual z-score results and (B) kernel density plot.

Conclusion

In conclusion, a robust and reliable method for simultaneous determination of 11 mycotoxins in maize could not be identified from the results of this proficiency test. A more detailed evaluation of methods and conditions used by participant laboratories in relation to the results obtained as well as further conclusions concerning the exclusion of certain methods used by some laboratories will be reported in a separate manuscript (A. De Girolamo, unpublished data). The results of this PT and the relevant method's

details will be used to identify methodology strengths and weaknesses. Additional experimental work is necessary to set up a method suitable for inter-laboratory validation.

Acknowledgements

We are grateful to the European Commission for financial support provided through the 'MoniQA' Network of Excellence (food-CT-2006-036337) to enable this proficiency test. We thank the laboratories listed in Table 11 for participation in this proficiency test, Zoltan Kunsagi

Table 11. Participating laboratories.

Laboratory	Country
Landesuntersuchungsamt Rheinland-Pfalz, Institut für Lebensmittelchemie Trier	Germany
Barilla G.R. F.Ili Spa	Italy
Canadian Grain Commission, Grain Research Laboratory	Canada
Chelab s.r.l.	Italy
Chemisches und Veterinäruntersuchungsamt Sigmaringen	Germany
Chemisches und Veterinäruntersuchungsamt Stuttgart	Germany
Central Institute for Supervising and Testing in Agriculture (UKZUZ)	Czech Republic
Centre d'Economie Rurale, C.E.R. Groupe	Belgium
CNTA - Centro Nacional de Tecnología y Seguridad Alimentaria	Spain
Coop Italia	Italy
Covance Laboratories Inc.	USA
EC - Joint Research Centre - IRMM	Belgium
EMSL Analytical, Inc.	USA
ERSA - Regione Autonoma Friuli - Venezia Giulia	Italy
Eurofins Central Analytical Laboratories	USA
Food & Environment Research Agency	UK
Ghent University	Belgium
Hacettepe University	Turkey
Health Canada, Bureau of Chemical Safety	Canada
Institute of Environmental Science and Research Limited (ESR)	New Zealand
INZO Analytical development	France
Italian National Institute of Health (ISS)	Italy
Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna 'Bruno Ubertini'	Italy
Istituto Zooprofilattico Sperimentale Umbria e Marche (IZSUM)	Italy
LGC Limited	UK
Midwest Laboratories	USA
National Institute of Public Health, Brno	Czech Republic
National Reference Laboratory (NRL) Pesticides in Foods	the Netherlands
National Research Council, Institute of Sciences of Food Production (CNR-ISPA)	Italy
NofaLab Laboratories	the Netherlands
RIKILT - Institute of Food Safety	the Netherlands
Spanish Food Safety and Nutrition Agency	Spain
Swiss Quality Testing Services (SQTS)	Switzerland
Staatlichen Veterinäruntersuchungsamtes Arnsberg	Germany
Texas A&M University, Office of the Texas State Chemist Veterinary Pathobiology	USA
TNO Quality of Life	the Netherlands
Università Cattolica del Sacro Cuore	Italy
University of Bari Aldo Moro	Italy
Università di Napoli Federico II	Italy
University of Natural Resources and Applied Life Sciences (IFA-Tulln)	Austria
Veterinary and Agrochemical Research Centre, CODA-CERVA	Belgium
	•

of the Institute for Reference Materials and Measurements for statistical evaluation of the results, the secretariat of CEN/TC 275/WG 5 for circulating the invitation letter within the members of WG 5, Matteo Luppi of Safe Food/Eurolab (Collecchio, Parma, Italy) and Stephen Powers of

Vicam (Milford, MA, USA) for the help in distributing the parcels. The valuable technical assistance of Roberto Schena (CNR-ISPA) for the preparation of maize materials and the analyses for the homogeneity study is also acknowledged.

References

- Council for Agricultural Science and Technology (CAST), 2003. Mycotoxins: risks in plant, animal, and human systems. Task Force Report No. 139. CAST, Ames, IA, USA, 199 pp.
- Commission of the European Communities, 2006. Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union L364: 5-24.
- European Committee for Standardization (CEN), 2010. Foodstuffs determination of aflatoxin $\rm B_1$ in cereal based foods for infants and young children HPLC method with immunoaffinity column cleanup and fluorescence detection. EN 15851:2009. BSI, London, UK, 18 pp.
- Entwisle, A.C., Williams, A.C., Mann, P.J., Slack, P.T. and Gilbert, J., 2000. Liquid chromatographic method with immunoaffinity column cleanup for determination of ochratoxin A in barley: collaborative study. Journal of AOAC International 83: 1377-1383.
- Kunsagi, Z., Ambrosio, M., Breidbach, A. and Stroka, J., 2010. Determination of ochratoxin A in cereals, green coffee, paprika and test solution. Report on the 2010 proficiency test of the European union reference laboratory for mycotoxins, for the network of national reference laboratories. JRC Scientific and Technical Reports, Brussels, Belgium, 57 pp.
- Lattanzio, V.M.T., Solfrizzo, M. and Visconti, A., 2009. Enzymatic hydrolysis of T-2 toxin for the quantitative determination of total T-2 and HT-2 toxins in cereals. Analytical and Bioanalytical Chemistry 395: 1325-1334.
- MacDonald, S.J., Anderson, S., Brereton, P., Wood, R. and Damant, A., 2005a. Determination of zearalenone in barley, maize and wheat flour, polenta, and maize-based baby food by immunoaffinity column cleanup with liquid chromatography: interlaboratory study. Journal of AOAC International 88: 1733-1740.

- MacDonald, S.J., Chan, D., Brereton, P., Damant, A. and Wood, R., 2005b. Determination of deoxynivalenol in cereals and cereal products by immunoaffinity column cleanup with liquid chromatography: interlaboratory study. Journal of AOAC International 88: 1197-204.
- Miller, J.D., 2008. Mycotoxins in small grains and maize: old problems, new challenges. Food Additives and Contaminants: Part A 25: 219-230.
- Shephard, G.S., Berthiller, F., Burdaspal ,P.A., Crews, C, Jonker, M.A., Krska, R., MacDonald, S., Malone, R.J., Maragos, C., Sabino, M., Solfrizzo, M., Van Egmond, H.P. and Whitaker, T.B., 2012. Developments in mycotoxin analysis: an update for 2010-2011. World Mycotoxin Journal 5: 3-30.
- Shephard, G.S., Berthiller, F., Burdaspal, P.A., Crews, C., Jonker, M.A., Krska, R., Lattanzio, V.M.T., MacDonald, S., Malone, R.J., Maragos, C., Sabino, M. Solfrizzo, M., Van Egmond, H.P. and Whitaker, T.B., 2013. Developments in mycotoxin analysis: an update for 2011-2012. World Mycotoxin Journal 6: 3-30.
- Solfrizzo, M., Alldrick, A.J. and Van Egmond, H.P., 2009. The use of mycotoxin methodology in practice: a need for harmonization. Quality Assurance and Safety of Crops & Foods 1: 121-132.
- Solfrizzo, M., De Girolamo, A., Gambacorta, L., Visconti, A., Van Egmond, H.P. and Stroka, J., 2011. Determination of fumonisins B_1 and B_2 in corn based foods for infants and young children by LC with immunoaffinity column cleanup: interlaboratory validation study. Journal of AOAC International 94: 900-908.
- Thompson, M., 2000. Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing. Analyst 125: 385-386.
- Thompson, M., Ellison, S.L.R. and Wood, R., 2006. The international harmonized protocol for the proficiency testing of analytical chemistry laboratories. Pure and Applied Chemistry 78: 145-196.
- Visconti, A., Lattanzio, V.M.T., Pascale, M. and Haidukowski, M., 2005. Analysis of T-2 and HT-2 toxins in cereal grains by immunoaffinity clean-up and liquid chromatography with fluorescence detection. Journal of Chromatography A 1075: 151-158.