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Abstract

Crude protein and amylose constitute two main representative components of rice quality. The non-destructive,
quick assessment of grain crude protein content (GCPC), grain amylose content (GAC), and actual yield (AC) are
necessary for quality and yield diagnosis in rice production. The objectives of this study were to determine the
effects of high temperature stress on rice GCPC, GAC and AC, to define the relationships of GCPC, GAC, and AC
to ground-based canopy hyper-spectral reflectance and derivative parameters, and to establish quantitative models
for real-time monitoring of rice GCPC, GAC, and AC using sensitive spectral parameters under high temperature
stress. Two field warming experiments were performed in Nanjing in Jiangsu Province, China, to investigate the
effects of high temperature ((treated for continuous 3 days from 9:00 am to 14:00 pm, average temperature was set at
35,38 and 41 °C) and a control (CK)) at flowering stage in Liangyoupeijiu rice cultivar, using a free air temperature
increase apparatus. Canopy hyper-spectral reflectance, GCPC, GAC, and AC were measured under high temperature
treatments during different growth stages (flowering stage, grain-filling and ripening stages). The results showed
that GCPC, AC (GAC) in Liangyoupeijiu were clearly reduced (increased) under high temperature stress in this
study compared with the values of CK, and the reducing extent of GCPC and AC (the increasing extent of GAC)
was increased with the increase of high temperature level. The hyper-spectral reflectance in different wavelength
regions under high temperature stress was different. They increased in visible light region with the elevation of
temperature, but reduced in near-infrared region. Among some selected spectral indices at three different growth
stages used to estimate GCPC, GAC and AC, the optimum indices were difference vegetation index(810,450) and
perpendicular vegetation index- Landsat multispectral scanner with high R? when regressed against GCPC, GAC
and AC. Furthermore, GCPC, GAC and AC prediction based on flowering stages were preferred than that on
grain-filling and ripening stage by much bigger correlation coefficients. The six regression models developed in
this study showed the agreement between the predicted and observed values when testing independent data under
high temperature stress. Thus, the selected key hyper-spectral parameters can be reliably used to estimate GCPC,
GAC and AC in rice under different high temperature treatments.
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1. Introduction

Rice is the major grain produced in China, accounting for
approximately 40% of the total grain output. As the most
important rice planting zone in China, the Yangtze River
Basin is a zone that suffers from serious high-temperature
damage, which adversely affects worldwide rice crop

production. With increasing changes in the global climate,
extreme and sustained high temperatures are consistently
experienced during the summer in the Yangtze River Basin,
and the frequency and degree of rice damage caused by
these high temperatures are increasing accordingly, which
further caused increasingly damage severity for rice quality
and yield. Therefore, safe rice production has commanded
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an extraordinary degree of attention from the Chinese
government and researchers (Dong et al.,, 2011a,b; Xie et
al., 2017., Yuan et al., 2018).

Many previous studies had found that high temperature
stress obviously affects rice pollen vitality, pollen
germination, leaf physiological and biochemical
characteristics, and finally reduces grain yield (Endo et
al., 2009; Xie et al., 2016). For example, Matsui et al. (2001)
showed the percent fertility of the typical three varieties
was different under various day-temperature conditions.
The temperature at which the percent fertility decreased to
50% was about 37.0 °C for ‘Hinohikari’ (the most susceptible
of nine experimental varieties) and about 40.0 °C for
‘Akitakomachi’ (the most tolerant of nine experimental
varieties). lizumi et al. (2007) predicted that climate changes
enhanced the damage to crop yield caused by heat stress in
central to southwestern Japan using the general circulation
model. Laza et al. (2015) observed rice cultivars at the
early reproductive stage had the lowest number of spikelet
per panicle under high night temperature treatment,
presenting a 35.90% of degenerated spikelet. Shi et al. (2017)
concluded grain number per panicle decreased with the
rising temperature and prolonging duration exposed to high
temperature, and the relationship between grain number
per panicle and temperature could be expressed with a
quadratic equation. Similarly, some researches were focused
on rice quality in the past under high temperature stress.
For instance, Dong et al. (2011a,b) found three warming
treatments had no significant impact on the starch content
of rice grain but tended to reduce the amylose content and
increase the ratio of amylopection to amylose. Lu et al.
(2014) concluded that the amounts of amylopection and
starch accumulation in rice grains declined significantly
under 37 °C heat stress after anthesis. Although there
are many meaningful conclusions recently, some field
experimental data still should be provided for determining
the effects of high temperature on rice quality and yield in
efforts to cope with potential climate warming.

Hyper-spectral remote sensing can acquire images in
narrow and continuous spectral bands and provide a
continuous spectrum for each pixel. Thus, their data are
considered to be more sensitive to specific crop variables.
Hyper-spectral remote sensing has developed strong
advantages over agricultural remote sensing. At present,
some crop quality and yield monitoring studies based on
hyper-spectral remote sensing were reported (Nicola et
al., 2018; Xie et al., 2012; Yang et al., 2009). For instance,
Hansen (2002) reported that protein content in winter
wheat and spring barley could be predicted accurately
using canopy hyper-spectral reflectance and partial least
squares regression. Li et al. (2005) observed there was
a significant correlation between ratio vegetation index
(1,220, 710) (RVI (1,220, 710)) and protein content in
different wheat cultivars. Xie et al. (2012) found that the

correlation coefficients between difference vegetation index
(810,450) (DVI (810,450)), DVI (810,680) and amylose
content with values were greater than 0.78. Zhang et
al. (2012) concluded there was a significant correlation
between grain crude protein content (GCPC) and some
key spectral bands with correlation values of over 0.90.
Fox and Manley (2014) suggested that it would be better
to analyse cereal quality using application of single kernel
conventional and hyper-spectral imaging near infrared
spectroscopy. Foster et al. (2017) reported narrowband
normalise nitrogen vegetation index was more robust and
useful in predicting crop N concentration. Above researches
are mainly focused on crop quality and yield monitoring
based on hyper-spectral remote sensing under N or other
environmental stress treatments, while few rice quality
monitoring results under high temperature treatments have
been mentioned. Crude protein and amylose constitute
two main components of rice grain. Therefore, it is a very
important subject of study for the quantitative inversion
of GCPC, grain amylose content (GAC), and actual yield
(AC) in rice under climate warming in the future.

Two field experiments were performed in this study in
Nanjing, China, to investigate the effects of high temperature
stress on rice quality for the hybrid rice Liangyoupeijiu,
using a free air temperature increase (FATI) apparatus.
Canopy hyper-spectral reflectance during the main growth
stages, GCPC, GAC, and AC based on various experiments
under different high temperature stress were measured,
and the relationship between canopy spectral parameters
and grain quality were further discussed by the correlation
analysis. Our principal objectives were: (1) to determine
the effects of high temperature stress on rice quality and
yield; and (2) to select sensitive spectral parameters to
predict GCPC, GAC and AC in Liangyoupeijiu under high
temperature stress.

2. Experimental details
Experimental set-up

Experiments were conducted in 2015 and 2016, at the
agro-metrological experimental station (32.0°07'N,
118°50'E) of Nanjing University of Information Science
and Technology in Jiangsu Province, China, during the rice
growing seasons from May to November. This region has
a warm temperature and semi-humid monsoon climate.
The average yearly precipitation is 1,100 mm. The average
air temperature from 2000 to 2016 was 16.7 °C, which
is 1.5 °C and 0.8 °C warmer compared to the 1980s and
1990s, respectively. Average annual sunshine is over 1,900
h, with 237 frost-free days. The soil at the experimental plot
is Hapli-Stagnic Gleysol, with a total organic carbon (C)
content of 9.28 g/kg, total N content of 1.06 g/kg, available
phosphorus (P) content of 6.89 mg/kg, and exchangeable
potassium content of 125 mg/kg.
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The rice cultivar used in this study was Liangyoupeijiu,
which is widely cultivated in Nanjing, China. Planting was
carried out on 20 May in two study years. Transplanting was
carried out on 20 June using plastic buckets with a diameter
of 30 cm, with one seedling being planted in each bucket. A
total of 138 kg N/ha was broadcast and split-applied: 50%
at seeding, 25% applied at jointing and 25% at booting. P
and potassium were applied pre-planting as calcium (Ca)
superphosphate and potassium chloride at a rate of 30 kg
P/ha, respectively. Hand weeding before sowing was used
to control weeds. Pesticides (imidacloprid) and fungicides
(tebuconazole) were sprayed to control pests and diseases
as needed.

Experimental design and high temperature treatments

Following the FATI apparatus design developed by Nijs et al.
(1996) and Tian et al. (2010), we designed an experimental
warming apparatus with far-infrared heating tubes (length,
1.5 m; power, 1000 W power; two tubes, (Technology Co.
Ltd., Hangzhou, China), which were placed 1.5-1.7 m (the
set temperature is different when the height of heating
tubes is different.) high on steel column pipe supports,
surrounded by a resin film allowing 98% light transmittance
and open at the top. The experiments in 2015 (E,) and in
2016 (E,) involved three treatments (treated for continuous
3 days from 9:00 am to 14:00 pm, average temperature was
setat 35, 38 and 41 °C, and a control (CK)) during flowering
stage in FATI. Then the plants were placed back to a natural
condition after high temperature stress. Each treatment
included three replicate plots, which were placed in a
randomised block design. The apparatus had a heating area
of 4 m? and was capable of inducing remarkable increases in
temperature. The Canopy temperature data were obtained
with a temperature recorder instrument (Technology Co.
Ltd.) that automatically recorded instantaneous values
every 30 min. Data of E, was used for testing the prediction
model.

Experiment measurements

All canopy spectral measurements were taken with an
ASD FieldSpec Pro spectrometer (Analytical Spectral
Devices, Boulder, CO, USA). This spectrometer is fitted
with 25° field of view fibre optics, which operate in the
350-2,500 nm spectral region with a sampling interval
of 1.4 nm between 350 and 1,050 nm, and 2 nm between
1,050 and 2,500 nm, and with a spectral resolution of 3
nm at 700 nm, 10 nm at 1,400 nm. The measurements
were carried out from a height of 1.0 m above the rice
canopy with a field of view diameter 0.44 m under clear sky
conditions between 10:00 and 14:00 h. Vegetation radiance
measurements were performed at 3 sample sites from each
plot. A panel radiance measurement was taken before and
after vegetation measurements by performing two scans on
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each occasion. In each experiment, data were obtained at
the flowering, grain-filling and ripening stages.

All grain samples were harvested at maturity, then dried and
pulverised before being measured, part of dried samples
were kept for determining actual yield. Actual yield was
determined by weighing all grains in one bucket (one
seedling planted inside), there were nine replications for
each treatment. Crude protein is a conventional expression
of the total content of N compounds of the analysed
product, calculated by multiplying the corresponding N
content by a conversion factor. N content was measured
according to micro-Kjeldahl method provided by Xie et
al. (2018), and the conversion factor for rice grain is 5.95.
Amylose content was measured according to the method
provided by Hong et al. (2004).

Data analysis

Grain crude protein, amylose and yield statistical analyses
were performed with SPSS 12.0 (SPSS Inc., Chicago, IL,
USA). Statistically significant differences were identified
from LSD calculations at P=0.05. The standard errors (SEs)
of the means were also calculated and were presented in
the graphs as error bars.

Correlation analyses were conducted between the hyper-
spectral parameters, GCPC, GAC and yield under high
temperature stress so that the reported sensitive spectral
ranges and spectral indices related to GCPC, GAC and
AC could be identified by using a self-developed computer
program based on MATLAB 7.0 software (The Mathworks,
Inc., Natick, MA, USA). Seven selected spectral parameters
were calculated according to the equation in Table 1. The
data were fitted to different linear models to determine
the best crude protein, amylose and yield coefficients of
determination (R?) values for the spectral parameters.

Relationships with best-fit R? values were tested with data
gathered from E; under high temperature stress. During
testing, the predicted results were compared with field
measurements (E,) to evaluate the reliability and accuracy of
the equation output under practical conditions. Root mean
square error (RMSE), which is an indicator of the average
error in the analysis, was expressed in original measurement
units; relative error (RE) indicated the relative difference
between predicted and observed data, and RMSE and RE
were used to calculate the fit between the estimated results
and observed data (Onoyama et al., 2015). The prediction
was considered excellent at RE<10%, good at 10-20%, fair at
20-30%, and poor at >30% (Feng et al., 2008; Xie et al., 2013).
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Table 1. Algorithm and references for different parameters.'2

Spectral parameter Algorithm
DVI (A.Ay) Ry Ry
PVI(AyAy) Ryr—=3* Rggp—b
V1 + a2
Ri
FDi
PVI-MSS (Band4 — a x Band2 - b) / (1 + a2)05
DVI-MSS Band4 — a x Band2
GM-1 Rys0/ Rsso

References

Richardson and Wiegang, 1977
Richardson and Wiegang, 1977

Cropscan, 2003

Johnson et al., 1994

Lyon et al., 1998

Lyon et al., 1998

Gitelson and Merzlyak, 1997

1 DVI = difference vegetation index; FD = first derivative; MSS = Landsat multispectral scanner; PVI = perpendicular vegetation index; R = reflectance.

2\, Ay, i = wavelength; a, b, = 0.96916, 0.084726.

3. Results and discussion
Diurnal mean temperature variation

Trends in E, for diurnal mean temperature variation (18
August, 2015) under different temperature treatments
were similar to that for CK (Figure 1), which showed that
warming systems did not change the diurnal variation
feature of field temperature. The order of canopy
temperature under different temperature treatments was
41°C>38°C>35°C>CK.

GCPC, GAC and AC

High temperature stress reduced GCPC and AC, but
increased GAC in Liangyoupeijiu (Figure 2). In the 35, 38

and 41 °C treatments, GCPC were reduced by 8.86,10.91
and 16.67%, AC were reduced by 11.62, 19.16 and 43.62%
respectively, while GAC were increased by 3.16, 8.27 and
16.78%. GCPC (or GAC) in Liangyoupeijiu reduced (or
increased) with the increase of high temperature level,
but there were no significant differences for different high
temperature treatments (P>0.05). However, there were
significant differences for AC among 38 and 41 °C and CK
treatments. Above results were similar to Xie et al. (2011,
2012) who observed in other rice cultivars (Yangdao 6 and
Nanjing 43) under high temperature stress. However, Fan et
al. (2005) found drought increased amylose accumulating
rate and protein content, while waterlogging reduced
them. Additionally, they reported N reduced amylose
and amylopectin accumulating rate under drought and
waterlogging, while increased protein content in wheat grain.
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Figure 1. The trends in E1 for diurnal mean temperature variation (18 August, 2015) under different temperature treatments.
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Figure 2. Change of (A) grain crude protein content (GCPC),
(B) grain amylose content (GAC) and (C) actual yield (AC), of
Liangyoupeijiu under different high temperature stress.

Changes in canopy hyper-spectral reflectance under high
temperature stress

Taking canopy hyper-spectral reflectance characteristics of
Liangyoupeijiu measured at grain-filling stage under high
temperature stress as an example in 2014. Canopy hyper-
spectral reflectance characteristics of Liangyoupeijiu under
different high temperature stress were almost similar with
those of green plants (Figure 3). Green peak of 550 nm
and red light low valley of 680 nm in visible light region of
400-700 nm as well as plateau area of 780-1,100 nm in near-
infrared region were observed (Liu et al., 2014). Further,
there are mainly water absorbing regions in 1 300-2,500
nm, wherein there are strong absorbing regions in 1,450 and
1,930 nm. But the hyper-spectral reflectance in different

Prediction model, rice quality, high temperature
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Figure 3. Change of hyper-spectra reflectance of Liangyoupeijiu
at grain-filling stage under different high temperature stress.

regions under high temperature stress was slightly different,
which mainly presented the increased reflectance in visible
light region with the elevation of temperature. This situation
may be caused by reduced leaf area and chlorophyll content
resulting from high temperature stress. And reflectance in
near-infrared region was reversed and reduced with the
elevation of temperature (Xie et al., 2011).

Relationship of GCPC, GAC and AC to canopy spectral
reflectance under high temperature stress

The correlation coefficient among GCPC, GAC, AC
and spectral reflectance based on different temperature
treatments changed dramatically over different wavebands
(Figure 4). In general, GCPC and AC had a positive
correlation with reflectance at flowering and grain-filling
stages over the entire wavelength range, but they had a
negative correlation at the range of 350-532 nm, 575-
695 nm and over 1,760 nm at ripening stage. GAC had
a negative correlation with reflectance over the entire
wavelength range at grain-filling stage, while they were a
positive correlation at the range of 642-691 nm at flowering
stage and at the range of 350-706 nm at ripening stage.
Moreover, GCPC, GAC and AC had a significant or
remarkably significant difference with spectral reflectance,
first derivative and second derivative at some specific
wavebands at three growth stages (P<0.05 or P<0.01) like
700-1,347 nm, which were shown in this study that GCPC,
GAC and AC may be estimated by original canopy hyper-
spectral reflectance and derivative parameters under high
temperature stress. Some figures were not listed here like
the correlation coefficients among GCPC, GAC, AC and
first derivative and second derivative.
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Figure 4. Correlation coefficients among grain crude protein
content (GCPC), grain amylose content (GAC) and actual yield
(AC) and canopy spectral reflectance during different growth
stages under high temperature stress. (A) flowering stage; (B)
grain-filling stage; (C) ripening stage.

Relationship between GCPC, GAC and AC and hyper-
spectral parameters under high temperature stress

Rice hyper-spectral reflectance was extremely different
under short-time high temperature treatments at different
growth stages (Xie et al,, 2010). So hyper-spectral data in the
study were measured after high temperature treatments for
continuous 3 days at flowering, grain-filling and ripening

stages individually. Comprehensive analyses were conducted
to determine the relationships among GCPC, GAC, AC,
hyper-spectral reflectance and derived vegetation indices
under different high temperature treatments at three
growth stages. Key hyper-spectral parameters based on
higher correlation coefficients were selected and evaluated
for the quantitative estimation of GCPC, GAC and AC
under different high temperature treatments. Table 2
lists some selected spectral parameters, with the highest
correlations from the data collected from the E; under high
temperature stress. All spectral parameters and vegetation
indices, including those gathered from several bands such
as DVI (810,450), perpendicular vegetation index- Landsat
multispectral scanner (PVI-MSS), PVI (810, 680), DVI-
MSS, and reflectance 743(R743) at flowering stage, DVI
(810,450), DVI (810,680) and first derivative 723 (FD723)
at grain-filling stage, and DVI(810,450), PVI-MSS and
FD715 at ripening stage exhibited greater correlations with
GCPC (the correlation coefficients are over 0.47). Among
all selected spectral indices at three different growth stages
under high temperature stress used to estimate GCPC, the
optimum indices were DVI (810,450) and PVI-MSS, both
of which exhibited high R? when regressed against GCPC.

DVI(810,450), PVI(810,680), PVI-MSS and R800 at
flowering stage, DVI(810,450), PVI(810,680) and PVI-
MSS at grain-filling stage, and DV1(810,450), R1077, and
PVI-MSS at ripening stage under different high temperature
treatments exhibited greater correlations with GAC (the
correlation coefficients are over 0.67). Among all selected
spectral indices at three different growth stages under high
temperature stress used to estimate GAC, the optimum
indices were DVI (810,450) and PVI-MSS with high R?
when regressed against GAC.

DVI(810,450), PVI-MSS, DVI-MSS and R745 at flowering
stag, DVI(810,450) PVI-MSS, DVI-MSS and R759 at grain-
filling stage, DVI(810,450) and PVI(810,680) at ripening
stage under different high temperature treatments exhibited
better correlations with AC (the correlation coefficients
are over 0.36). Among all selected spectral indices at three
different growth stages under high temperature stress used
to estimate AC, the optimum indices were DVI (810,450)
and PVI-MSS with high R? when regressed against AC.
Figures 5 showed the linear relationship of DVI (810,450)
and PVI-MSS at flowering stage to GCPC, GAC and AC.

Two spectral indices like DVI (810,450) and PVI-MSS at
three growth stages under high temperature stress could
be used for estimating GCPC, GAC and AC, with high
R2. Additionally, GCPC, GAC and AC prediction based
on flowering stage and was preferred than that on grain-
filling and ripening stage by much bigger correlation
coefficients (the correlation coefficients on flowering
stage are over 0.79). It meant it was better to choose the
time before grain-filling stage when predicting GCPC,
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Table 2. Correlation between grain crude protein content (GCPC) and grain amylose content (GAC) and actual yield (AC) and
canopy spectral parameters at different growth stages under different high temperature treatments (n=40).

Flowering stage Grain-filling stage Ripening stage
Spectral Correlation Spectral Correlation Spectral Correlation
parameter’ coefficients? parameter coefficients parameter coefficients
GCPC DVI(810,450) 0.81** DVI(810,450) 0.75* DVI(810,450) 0.57*
PVI-MSS 0.83** PVI-MSS 0.82** PVI-MSS 0.69*
PVI1(810,680) 0.80** DVI(810,680) 0.73* DVI(810,560) 0.46*
DVI-MSS 0.78** DVI(810,560) 0.66™* GM-1 0.56™*
R743 0.84** DVI(560,680) 0.47* PVI1(810,680) 0.38*
FD722 0.72** FD723 0.62** FD715 0.47*
GAC DVI(810,450) -0.85** DVI(810,450) -0.77* DVI(810,450) -0.60**
PVI-MSS -0.88** PVI-MSS -0.81** PVI-MSS -0.67**
PVI1(810,680) -0.82** DVI(810,560) -0.66** GM-1 -0.55**
DVI-MSS -0.85** PVI1(810,680) -0.69** DVI(810,680) -0.46**
R800 -0.85** DVI(560,680) -0.49** R1077 -0.67**
FD722 -0.80** FD723 -0.66** FD715 -0.52**
AC DVI(810,450) 0.79** DVI(810,450) 0.77* DVI(810,450) 0.64*
PVI-MSS 0.81** PVI-MSS 0.80* PVI-MSS 0.61*
PVI1(810,680) 0.76** PVI1(810,680) 0.72* PVI1(810,680) 0.36*
DVI-MSS 0.79** DVI-MSS 0.81* DVI-MSS 0.54*
R745 0.85** R759 0.79* R760 0.60*
FD716 0.75* FD719 0.67* FD724 0.40*

1 DVI = difference vegetation index; FD = first derivative; MSS = Landsat multispectral scanner; PVI = perpendicular vegetation index; R = reflectance.

2+p=0,05, **P=0.01, r(0.05,40)=0.30, r(0.01,40)=0.39.

GAC and AC. The main reason may be most of rice grain
nutrients came from the transference of leaves, stems and
even roots before flowering stage. But some of rice leaves
and fringes became yellow, and leaf area and chlorophyll
content became obviously reduced, which caused relatively
reduced contribution of whole canopy spectra from leaf
chlorophyll with positive correlation of grain quality and
weight (Xie et al., 2011). Therefore, the prediction precision
of GCPC, GAC and AC depended on grain-filling and
ripening stage were worse than that on flowering stage.

It is known that GCPC, GAC and AC can be estimated
with the canopy spectral parameters collected at different
development stages of cereals. For instance, Zhang et al.
(2012) found rice GCPC can be predicted with canopy
spectral reflectance under five nitrogen rates. Liu et al.
(2014) concluded that the hyperspectral reflectance of grain
crude protein was different from that of crude starch and
amylose. Furthermore, the contents (%) of crude protein,
crude starch, and amylose in rice flour were significantly
correlated to the absorbing area from 2,020 to 2,235 nm.
The canopy temperature (CT) and normalised difference
vegetation index (NDVI) indices have been applied to
estimate yield, taking advantage of the correlation between

yield and these two Vis (Bahar et al., 2008; Labus et al.,
2002). Mason and Singh (2014) also concluded that the
NDVI has also been used successfully to estimate wheat
yield before harvest at the regional and farm scale.

Validation of the developed models

To test whether the above regression models were reliable
and applicable to the estimation of GCPC, GAC and AC
under high temperature stress, the independent data set
from E, was used to test the performance of the proposed
model. RMSE and RE were employed to compare reliability
and accuracy between estimated and observed values.
By comparing RMSE and RE calculated from the above
models with key spectral parameters, the best indices
and regression equations for estimating GCPC, GAC and
AC were selected to invert rice grain quality under high
temperature stress, as shown in Figure 6.

For the two monitoring models with DVI (810,450) and
PVI-MSS as predictors (Figure 6A, B), the R? between
the observed and predicted GCPC were 0.73 and 0.76,
the RMSE values were 4.03 and 5.62, and the RE values
were 9.00 and 18.00%, respectively. The model with DVI

Quality Assurance and Safety of Crops & Foods 11 (6)

523



X.J. Xie et al.

v}

A 18
y =5.33In(x) — 11.42
R?=10.68
. 14 1 n=40
g 10 M
(&) L4 ®
(O] °
6 %%
2 T T T T
30 40 50 60 70 80
DVI (810,450)
C 26
y= -6.6?In(x) +46.39
R?2=0.75
2 B n=40
% 18 - P
<
0)
14 -
10 T T T :
30 40 50 60 70 80
DVI (810,450)
E 140
y =-0.05% + 7.09x — 153.69
120 R2=0.71
n=40
% 100
S
L 80
)
2 60
40
20

AC (g/bucket)
S

D
o
f

DVI (810,450)

30 40 50 60 70 80

18
y =5.751In(x) - 12.81
R2=0.71
14 4 n=40
S
O i
& 10 . 8 ”
O °
6 i '
2 T T T T
30 40 50 60 70 80
PVI-MSS
D 26
y = 28,5700
R2=0.78
22 “°. s =40
g ° °® g
o 18 ®
P4
(0}
14 -
10 . . . .
30 40 50 60 70 80
PVI-MSS
F 140
y =-0.06x2 + 7.827x - 166.22
120 - R2=0.75

n=40

100 -

~
S
!

N
o

30 40 50 60 70 80
PVI-MSS

Figure 5. Linear relationships of (A) grain crude protein content (GCPC) to DVI (810,450), (B) PVI-MSS, (C) grain amylose content
(GAC) to DVI (810,450), (D) PVI-MSS, (E) actual yield (AC) to DVI (810,450), and (F) PVI-MSS in Liangyoupeijiu in E1.

(810,450) as a spectral parameter exhibited a higher R?
and lower RMSE and RE than the model with PVI-MSS
as a predictor. For the two monitoring models with DVI
(810,450) and PVI-MSS as predictors (Figure 6C and D),
the R? between the observed and predicted GAC were 0.69
and 0.83, the RMSE values were 5.22 and 3.71, and the
RE values were 14.00 and 6.00%, respectively. For the two
monitoring models with DVI (810,450) and PVI-MSS as
predictors (Figure 6E and F), the R? between the observed
and predicted AC were 0.68 and 0.82, the RMSE values
were 7.81and 6.43, and the RE values were 18.00% and
19.00%, respectively

Overall, the validation results with the monitoring models
indicated a good agreement between estimated and
observed values in rice under high temperature stress.
Thus, the selected key hyper-spectral parameters could be

reliably used for accurate estimation of rice GCPC, GAC
and AC under high temperature treatments.

Although above results were obtained from field bucket
experiments, impact factors were still few. The fertility
condition, mature time and management technology in
different regions in the world were also different in actual
large-scale field production, which would further affect
hyper-spectral characteristics on rice GCPC, GAC and
AC. Therefore, it is necessary to use many experiments
with different biological points, productivity levels
and cultivation conditions for comprehensive test and
improvement in order to realise the available unification
between estimated-model accuracy and universality. These
can promote direct application on rice GCPC, GAC and
AC, and supply theoretical and technical references for
high-temperature damage monitoring on rice, as well as
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Figure 6. Comparison between observed and predicted grain crude protein content (GCPC), grain amylose content (GAC), and
actual yield (AC) with linear equations based on DVI (810,450) (A,C,E), PVI-MSS (B,D,F) and in rice from E2 (n=40).

make an extensive application expectation for improving
development of information agriculture in the future.

Further, compared with general estimation methods, such
as statistical, agronomical and meteorological methods, the
remote sensing estimation method with instantaneous and
universal properties was attached to widely attention from
agriculturalists around the world. However when there
had a lot of changes for certain climate conditions in the
experiments, such as light illumination, soil nitrogen level
and soil moisture, the estimated rice GCPC, GAC and AC
by remote sensing may have a big deviation, and the crop

growth model with continuity and dynamic properties just
offset this drawback (Li et al, 2008). If the rice quality, yield-
estimated model was performed for coupling computation
using remote sensing inversion in practice, the accuracy can
be highly improved, which will just be the next objective
and target in this research.

4. Conclusions

GCPC and AC (GAC) in Liangyoupeijiu were clearly
reduced (increased) under high temperature stress in this
study compared with the values of CK, and the reducing
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extent of GCPC and AC (the increasing extent of GAC)
was increased with the increase of high temperature level.
However, there were no significant differences for GCPC
and GAC under different high temperature treatments
(P>0.05), but there were significant differences for AC
among high temperature treatments (P<0.05). In order
to accurately assess the response of rice GCPC, GAC and
AC to potential climate change, a more complex study is
currently under way.

The hyper-spectral reflectance in different wavelength
regions under high temperature stress was different.
They increased in visible light region with the elevation
of temperature, but reduced in near-infrared region. In
general, the correlation coefficient among GCPC, GAC, AC
and spectral reflectance changed dramatically over different
wavebands under high temperature stress, which showed
that GCPC, GAC and AC could be estimated by original
canopy hyper-spectral reflectance and their derivative
parameters under high temperature treatments.

Among some selected spectral indices at three different
growth stages under high temperature stress used to
estimate GCPC, GAC and AC, the optimum indices were
DVI (810,450) and PVI-MSS with high R? when regressed
against GCPC, GAC and AC. Moreover, GCPC, GAC and
AC prediction based on flowering stages were preferred
than that on grain-filling and ripening stage by much
bigger correlation coefficients. The six regression models
developed in this study based on different temperature
treatments showed the agreements between the predicted
and observed values when testing independent data. Thus,
the selected key hyper-spectral parameters can be reliably
used to estimate GCPC, GAC and AC in rice under high
temperature stress.
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