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1. Introduction

Rice is the major grain produced in China, accounting for 
approximately 40% of the total grain output. As the most 
important rice planting zone in China, the Yangtze River 
Basin is a zone that suffers from serious high-temperature 
damage, which adversely affects worldwide rice crop 

production. With increasing changes in the global climate, 
extreme and sustained high temperatures are consistently 
experienced during the summer in the Yangtze River Basin, 
and the frequency and degree of rice damage caused by 
these high temperatures are increasing accordingly, which 
further caused increasingly damage severity for rice quality 
and yield. Therefore, safe rice production has commanded 
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Crude protein and amylose constitute two main representative components of rice quality. The non-destructive, 
quick assessment of grain crude protein content (GCPC), grain amylose content (GAC), and actual yield (AC) are 
necessary for quality and yield diagnosis in rice production. The objectives of this study were to determine the 
effects of high temperature stress on rice GCPC, GAC and AC, to define the relationships of GCPC, GAC, and AC 
to ground-based canopy hyper-spectral reflectance and derivative parameters, and to establish quantitative models 
for real-time monitoring of rice GCPC, GAC, and AC using sensitive spectral parameters under high temperature 
stress. Two field warming experiments were performed in Nanjing in Jiangsu Province, China, to investigate the 
effects of high temperature ((treated for continuous 3 days from 9:00 am to 14:00 pm, average temperature was set at 
35, 38 and 41 °C) and a control (CK)) at flowering stage in Liangyoupeijiu rice cultivar, using a free air temperature 
increase apparatus. Canopy hyper-spectral reflectance, GCPC, GAC, and AC were measured under high temperature 
treatments during different growth stages (flowering stage, grain-filling and ripening stages). The results showed 
that GCPC, AC (GAC) in Liangyoupeijiu were clearly reduced (increased) under high temperature stress in this 
study compared with the values of CK, and the reducing extent of GCPC and AC (the increasing extent of GAC) 
was increased with the increase of high temperature level. The hyper-spectral reflectance in different wavelength 
regions under high temperature stress was different. They increased in visible light region with the elevation of 
temperature, but reduced in near-infrared region. Among some selected spectral indices at three different growth 
stages used to estimate GCPC, GAC and AC, the optimum indices were difference vegetation index(810,450) and 
perpendicular vegetation index- Landsat multispectral scanner with high R2 when regressed against GCPC, GAC 
and AC. Furthermore, GCPC, GAC and AC prediction based on flowering stages were preferred than that on 
grain-filling and ripening stage by much bigger correlation coefficients. The six regression models developed in 
this study showed the agreement between the predicted and observed values when testing independent data under 
high temperature stress. Thus, the selected key hyper-spectral parameters can be reliably used to estimate GCPC, 
GAC and AC in rice under different high temperature treatments.
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an extraordinary degree of attention from the Chinese 
government and researchers (Dong et al., 2011a,b; Xie et 
al., 2017., Yuan et al., 2018).

Many previous studies had found that high temperature 
stress obviously affects rice pollen vitality, pollen 
germination, leaf physiological and biochemical 
characteristics, and finally reduces grain yield (Endo et 
al., 2009; Xie et al., 2016). For example, Matsui et al. (2001) 
showed the percent fertility of the typical three varieties 
was different under various day-temperature conditions. 
The temperature at which the percent fertility decreased to 
50% was about 37.0 °C for ‘Hinohikari’ (the most susceptible 
of nine experimental varieties) and about 40.0 °C for 
‘Akitakomachi’ (the most tolerant of nine experimental 
varieties). Iizumi et al. (2007) predicted that climate changes 
enhanced the damage to crop yield caused by heat stress in 
central to southwestern Japan using the general circulation 
model. Laza et al. (2015) observed rice cultivars at the 
early reproductive stage had the lowest number of spikelet 
per panicle under high night temperature treatment, 
presenting a 35.90% of degenerated spikelet. Shi et al. (2017) 
concluded grain number per panicle decreased with the 
rising temperature and prolonging duration exposed to high 
temperature, and the relationship between grain number 
per panicle and temperature could be expressed with a 
quadratic equation. Similarly, some researches were focused 
on rice quality in the past under high temperature stress. 
For instance, Dong et al. (2011a,b) found three warming 
treatments had no significant impact on the starch content 
of rice grain but tended to reduce the amylose content and 
increase the ratio of amylopection to amylose. Lu et al. 
(2014) concluded that the amounts of amylopection and 
starch accumulation in rice grains declined significantly 
under 37 °C heat stress after anthesis. Although there 
are many meaningful conclusions recently, some field 
experimental data still should be provided for determining 
the effects of high temperature on rice quality and yield in 
efforts to cope with potential climate warming.

Hyper-spectral remote sensing can acquire images in 
narrow and continuous spectral bands and provide a 
continuous spectrum for each pixel. Thus, their data are 
considered to be more sensitive to specific crop variables. 
Hyper-spectral remote sensing has developed strong 
advantages over agricultural remote sensing. At present, 
some crop quality and yield monitoring studies based on 
hyper-spectral remote sensing were reported (Nicola et 
al., 2018; Xie et al., 2012; Yang et al., 2009). For instance, 
Hansen (2002) reported that protein content in winter 
wheat and spring barley could be predicted accurately 
using canopy hyper-spectral reflectance and partial least 
squares regression. Li et al. (2005) observed there was 
a significant correlation between ratio vegetation index 
(1,220, 710) (RVI (1,220, 710)) and protein content in 
different wheat cultivars. Xie et al. (2012) found that the 

correlation coefficients between difference vegetation index 
(810,450) (DVI (810,450)), DVI (810,680) and amylose 
content with values were greater than 0.78. Zhang et 
al. (2012) concluded there was a significant correlation 
between grain crude protein content (GCPC) and some 
key spectral bands with correlation values of over 0.90. 
Fox and Manley (2014) suggested that it would be better 
to analyse cereal quality using application of single kernel 
conventional and hyper-spectral imaging near infrared 
spectroscopy. Foster et al. (2017) reported narrowband 
normalise nitrogen vegetation index was more robust and 
useful in predicting crop N concentration. Above researches 
are mainly focused on crop quality and yield monitoring 
based on hyper-spectral remote sensing under N or other 
environmental stress treatments, while few rice quality 
monitoring results under high temperature treatments have 
been mentioned. Crude protein and amylose constitute 
two main components of rice grain. Therefore, it is a very 
important subject of study for the quantitative inversion 
of GCPC, grain amylose content (GAC), and actual yield 
(AC) in rice under climate warming in the future.

Two field experiments were performed in this study in 
Nanjing, China, to investigate the effects of high temperature 
stress on rice quality for the hybrid rice Liangyoupeijiu, 
using a free air temperature increase (FATI) apparatus. 
Canopy hyper-spectral reflectance during the main growth 
stages, GCPC, GAC, and AC based on various experiments 
under different high temperature stress were measured, 
and the relationship between canopy spectral parameters 
and grain quality were further discussed by the correlation 
analysis. Our principal objectives were: (1) to determine 
the effects of high temperature stress on rice quality and 
yield; and (2) to select sensitive spectral parameters to 
predict GCPC, GAC and AC in Liangyoupeijiu under high 
temperature stress.

2. Experimental details

Experimental set-up

Experiments were conducted in 2015 and 2016, at the 
agro-metrological experimental station (32.0°07'N, 
118°50'E) of Nanjing University of Information Science 
and Technology in Jiangsu Province, China, during the rice 
growing seasons from May to November. This region has 
a warm temperature and semi-humid monsoon climate. 
The average yearly precipitation is 1,100 mm. The average 
air temperature from 2000 to 2016 was 16.7 °C, which 
is 1.5 °C and 0.8 °C warmer compared to the 1980s and 
1990s, respectively. Average annual sunshine is over 1,900 
h, with 237 frost-free days. The soil at the experimental plot 
is Hapli-Stagnic Gleysol, with a total organic carbon (C) 
content of 9.28 g/kg, total N content of 1.06 g/kg, available 
phosphorus (P) content of 6.89 mg/kg, and exchangeable 
potassium content of 125 mg/kg.
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The rice cultivar used in this study was Liangyoupeijiu, 
which is widely cultivated in Nanjing, China. Planting was 
carried out on 20 May in two study years. Transplanting was 
carried out on 20 June using plastic buckets with a diameter 
of 30 cm, with one seedling being planted in each bucket. A 
total of 138 kg N/ha was broadcast and split-applied: 50% 
at seeding, 25% applied at jointing and 25% at booting. P 
and potassium were applied pre-planting as calcium (Ca) 
superphosphate and potassium chloride at a rate of 30 kg 
P/ha, respectively. Hand weeding before sowing was used 
to control weeds. Pesticides (imidacloprid) and fungicides 
(tebuconazole) were sprayed to control pests and diseases 
as needed.

Experimental design and high temperature treatments

Following the FATI apparatus design developed by Nijs et al. 
(1996) and Tian et al. (2010), we designed an experimental 
warming apparatus with far-infrared heating tubes (length, 
1.5 m; power, 1000 W power; two tubes, (Technology Co. 
Ltd., Hangzhou, China), which were placed 1.5-1.7 m (the 
set temperature is different when the height of heating 
tubes is different.) high on steel column pipe supports, 
surrounded by a resin film allowing 98% light transmittance 
and open at the top. The experiments in 2015 (E1) and in 
2016 (E2) involved three treatments (treated for continuous 
3 days from 9:00 am to 14:00 pm, average temperature was 
set at 35, 38 and 41 °C, and a control (CK)) during flowering 
stage in FATI. Then the plants were placed back to a natural 
condition after high temperature stress. Each treatment 
included three replicate plots, which were placed in a 
randomised block design. The apparatus had a heating area 
of 4 m2 and was capable of inducing remarkable increases in 
temperature. The Canopy temperature data were obtained 
with a temperature recorder instrument (Technology Co. 
Ltd.) that automatically recorded instantaneous values 
every 30 min. Data of E2 was used for testing the prediction 
model.

Experiment measurements

All canopy spectral measurements were taken with an 
ASD FieldSpec Pro spectrometer (Analytical Spectral 
Devices, Boulder, CO, USA). This spectrometer is fitted 
with 25° field of view fibre optics, which operate in the 
350-2,500 nm spectral region with a sampling interval 
of 1.4 nm between 350 and 1,050 nm, and 2 nm between 
1,050 and 2,500 nm, and with a spectral resolution of 3 
nm at 700 nm, 10 nm at 1,400 nm. The measurements 
were carried out from a height of 1.0 m above the rice 
canopy with a field of view diameter 0.44 m under clear sky 
conditions between 10:00 and 14:00 h. Vegetation radiance 
measurements were performed at 3 sample sites from each 
plot. A panel radiance measurement was taken before and 
after vegetation measurements by performing two scans on 

each occasion. In each experiment, data were obtained at 
the flowering, grain-filling and ripening stages.

All grain samples were harvested at maturity, then dried and 
pulverised before being measured, part of dried samples 
were kept for determining actual yield. Actual yield was 
determined by weighing all grains in one bucket (one 
seedling planted inside), there were nine replications for 
each treatment. Crude protein is a conventional expression 
of the total content of N compounds of the analysed 
product, calculated by multiplying the corresponding N 
content by a conversion factor. N content was measured 
according to micro-Kjeldahl method provided by Xie et 
al. (2018), and the conversion factor for rice grain is 5.95. 
Amylose content was measured according to the method 
provided by Hong et al. (2004).

Data analysis

Grain crude protein, amylose and yield statistical analyses 
were performed with SPSS 12.0 (SPSS Inc., Chicago, IL, 
USA). Statistically significant differences were identified 
from LSD calculations at P=0.05. The standard errors (SEs) 
of the means were also calculated and were presented in 
the graphs as error bars.

Correlation analyses were conducted between the hyper-
spectral parameters, GCPC, GAC and yield under high 
temperature stress so that the reported sensitive spectral 
ranges and spectral indices related to GCPC, GAC and 
AC could be identified by using a self-developed computer 
program based on MATLAB 7.0 software (The Mathworks, 
Inc., Natick, MA, USA). Seven selected spectral parameters 
were calculated according to the equation in Table 1. The 
data were fitted to different linear models to determine 
the best crude protein, amylose and yield coefficients of 
determination (R2) values for the spectral parameters.

Relationships with best-fit R2 values were tested with data 
gathered from E1 under high temperature stress. During 
testing, the predicted results were compared with field 
measurements (E2) to evaluate the reliability and accuracy of 
the equation output under practical conditions. Root mean 
square error (RMSE), which is an indicator of the average 
error in the analysis, was expressed in original measurement 
units; relative error (RE) indicated the relative difference 
between predicted and observed data, and RMSE and RE 
were used to calculate the fit between the estimated results 
and observed data (Onoyama et al., 2015). The prediction 
was considered excellent at RE<10%, good at 10-20%, fair at 
20-30%, and poor at >30% (Feng et al., 2008; Xie et al., 2013).
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3. Results and discussion

Diurnal mean temperature variation

Trends in E1 for diurnal mean temperature variation (18 
August, 2015) under different temperature treatments 
were similar to that for CK (Figure 1), which showed that 
warming systems did not change the diurnal variation 
feature of field temperature. The order of canopy 
temperature under different temperature treatments was 
41 °C > 38 °C > 35 °C > CK.

GCPC, GAC and AC

High temperature stress reduced GCPC and AC, but 
increased GAC in Liangyoupeijiu (Figure 2). In the 35, 38 

and 41 °C treatments, GCPC were reduced by 8.86,10.91 
and 16.67%, AC were reduced by 11.62, 19.16 and 43.62% 
respectively, while GAC were increased by 3.16, 8.27 and 
16.78%. GCPC (or GAC) in Liangyoupeijiu reduced (or 
increased) with the increase of high temperature level, 
but there were no significant differences for different high 
temperature treatments (P>0.05). However, there were 
significant differences for AC among 38 and 41 °C and CK 
treatments. Above results were similar to Xie et al. (2011, 
2012) who observed in other rice cultivars (Yangdao 6 and 
Nanjing 43) under high temperature stress. However, Fan et 
al. (2005) found drought increased amylose accumulating 
rate and protein content, while waterlogging reduced 
them. Additionally, they reported N reduced amylose 
and amylopectin accumulating rate under drought and 
waterlogging, while increased protein content in wheat grain.

Table 1. Algorithm and references for different parameters.1,2

Spectral parameter Algorithm References

DVI (λ1,λ2) Rλ1 – Rλ2 Richardson and Wiegang, 1977
PVI (λ1,λ2) RNIR – a × RRED – b                                                      

          √1 + a2

Richardson and Wiegang, 1977

Ri Cropscan, 2003
FDi Johnson et al., 1994
PVI-MSS (Band4 – a × Band2 – b) / (1 + a2)0.5 Lyon et al., 1998
DVI-MSS Band4 – a × Band2 Lyon et al., 1998
GM-1 R750 / R550 Gitelson and Merzlyak, 1997

1 DVI = difference vegetation index; FD = first derivative; MSS = Landsat multispectral scanner; PVI = perpendicular vegetation index; R = reflectance.
2 λ1, λ2, i = wavelength; a, b, = 0.96916, 0.084726.
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Figure 1. The trends in E1 for diurnal mean temperature variation (18 August, 2015) under different temperature treatments.



� Prediction model, rice quality, high temperature

Quality Assurance and Safety of Crops & Foods 11 (6)� 521

Changes in canopy hyper-spectral reflectance under high 
temperature stress

Taking canopy hyper-spectral reflectance characteristics of 
Liangyoupeijiu measured at grain-filling stage under high 
temperature stress as an example in 2014. Canopy hyper-
spectral reflectance characteristics of Liangyoupeijiu under 
different high temperature stress were almost similar with 
those of green plants (Figure 3). Green peak of 550 nm 
and red light low valley of 680 nm in visible light region of 
400-700 nm as well as plateau area of 780-1,100 nm in near-
infrared region were observed (Liu et al., 2014). Further, 
there are mainly water absorbing regions in 1 300-2,500 
nm, wherein there are strong absorbing regions in 1,450 and 
1,930 nm. But the hyper-spectral reflectance in different 

regions under high temperature stress was slightly different, 
which mainly presented the increased reflectance in visible 
light region with the elevation of temperature. This situation 
may be caused by reduced leaf area and chlorophyll content 
resulting from high temperature stress. And reflectance in 
near-infrared region was reversed and reduced with the 
elevation of temperature (Xie et al., 2011).

Relationship of GCPC, GAC and AC to canopy spectral 
reflectance under high temperature stress

The correlation coefficient among GCPC, GAC, AC 
and spectral reflectance based on different temperature 
treatments changed dramatically over different wavebands 
(Figure 4). In general, GCPC and AC had a positive 
correlation with reflectance at flowering and grain-filling 
stages over the entire wavelength range, but they had a 
negative correlation at the range of 350-532 nm, 575-
695 nm and over 1,760 nm at ripening stage. GAC had 
a negative correlation with reflectance over the entire 
wavelength range at grain-filling stage, while they were a 
positive correlation at the range of 642-691 nm at flowering 
stage and at the range of 350-706 nm at ripening stage. 
Moreover, GCPC, GAC and AC had a significant or 
remarkably significant difference with spectral reflectance, 
first derivative and second derivative at some specific 
wavebands at three growth stages (P<0.05 or P<0.01) like 
700-1,347 nm, which were shown in this study that GCPC, 
GAC and AC may be estimated by original canopy hyper-
spectral reflectance and derivative parameters under high 
temperature stress. Some figures were not listed here like 
the correlation coefficients among GCPC, GAC, AC and 
first derivative and second derivative.
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Relationship between GCPC, GAC and AC and hyper-
spectral parameters under high temperature stress

Rice hyper-spectral reflectance was extremely different 
under short-time high temperature treatments at different 
growth stages (Xie et al., 2010). So hyper-spectral data in the 
study were measured after high temperature treatments for 
continuous 3 days at flowering, grain-filling and ripening 

stages individually. Comprehensive analyses were conducted 
to determine the relationships among GCPC, GAC, AC, 
hyper-spectral reflectance and derived vegetation indices 
under different high temperature treatments at three 
growth stages. Key hyper-spectral parameters based on 
higher correlation coefficients were selected and evaluated 
for the quantitative estimation of GCPC, GAC and AC 
under different high temperature treatments. Table 2 
lists some selected spectral parameters, with the highest 
correlations from the data collected from the E1 under high 
temperature stress. All spectral parameters and vegetation 
indices, including those gathered from several bands such 
as DVI (810,450), perpendicular vegetation index- Landsat 
multispectral scanner (PVI-MSS), PVI (810, 680), DVI-
MSS, and reflectance 743(R743) at flowering stage, DVI 
(810,450), DVI (810,680) and first derivative 723 (FD723) 
at grain-filling stage, and DVI(810,450), PVI-MSS and 
FD715 at ripening stage exhibited greater correlations with 
GCPC (the correlation coefficients are over 0.47). Among 
all selected spectral indices at three different growth stages 
under high temperature stress used to estimate GCPC, the 
optimum indices were DVI (810,450) and PVI-MSS, both 
of which exhibited high R2 when regressed against GCPC.

DVI(810,450), PVI(810,680), PVI-MSS and R800 at 
flowering stage, DVI(810,450), PVI(810,680) and PVI-
MSS at grain-filling stage, and DVI(810,450), R1077, and 
PVI-MSS at ripening stage under different high temperature 
treatments exhibited greater correlations with GAC (the 
correlation coefficients are over 0.67). Among all selected 
spectral indices at three different growth stages under high 
temperature stress used to estimate GAC, the optimum 
indices were DVI (810,450) and PVI-MSS with high R2 
when regressed against GAC.

DVI(810,450), PVI-MSS, DVI-MSS and R745 at flowering 
stag, DVI(810,450) PVI-MSS, DVI-MSS and R759 at grain-
filling stage, DVI(810,450) and PVI(810,680) at ripening 
stage under different high temperature treatments exhibited 
better correlations with AC (the correlation coefficients 
are over 0.36). Among all selected spectral indices at three 
different growth stages under high temperature stress used 
to estimate AC, the optimum indices were DVI (810,450) 
and PVI-MSS with high R2 when regressed against AC. 
Figures 5 showed the linear relationship of DVI (810,450) 
and PVI-MSS at flowering stage to GCPC, GAC and AC.

Two spectral indices like DVI (810,450) and PVI-MSS at 
three growth stages under high temperature stress could 
be used for estimating GCPC, GAC and AC, with high 
R2. Additionally, GCPC, GAC and AC prediction based 
on flowering stage and was preferred than that on grain-
filling and ripening stage by much bigger correlation 
coefficients (the correlation coefficients on flowering 
stage are over 0.79). It meant it was better to choose the 
time before grain-filling stage when predicting GCPC, 
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GAC and AC. The main reason may be most of rice grain 
nutrients came from the transference of leaves, stems and 
even roots before flowering stage. But some of rice leaves 
and fringes became yellow, and leaf area and chlorophyll 
content became obviously reduced, which caused relatively 
reduced contribution of whole canopy spectra from leaf 
chlorophyll with positive correlation of grain quality and 
weight (Xie et al., 2011). Therefore, the prediction precision 
of GCPC, GAC and AC depended on grain-filling and 
ripening stage were worse than that on flowering stage.

It is known that GCPC, GAC and AC can be estimated 
with the canopy spectral parameters collected at different 
development stages of cereals. For instance, Zhang et al. 
(2012) found rice GCPC can be predicted with canopy 
spectral reflectance under five nitrogen rates. Liu et al. 
(2014) concluded that the hyperspectral reflectance of grain 
crude protein was different from that of crude starch and 
amylose. Furthermore, the contents (%) of crude protein, 
crude starch, and amylose in rice flour were significantly 
correlated to the absorbing area from 2,020 to 2,235 nm. 
The canopy temperature (CT) and normalised difference 
vegetation index (NDVI) indices have been applied to 
estimate yield, taking advantage of the correlation between 

yield and these two Vis (Bahar et al., 2008; Labus et al., 
2002). Mason and Singh (2014) also concluded that the 
NDVI has also been used successfully to estimate wheat 
yield before harvest at the regional and farm scale.

Validation of the developed models

To test whether the above regression models were reliable 
and applicable to the estimation of GCPC, GAC and AC 
under high temperature stress, the independent data set 
from E2 was used to test the performance of the proposed 
model. RMSE and RE were employed to compare reliability 
and accuracy between estimated and observed values. 
By comparing RMSE and RE calculated from the above 
models with key spectral parameters, the best indices 
and regression equations for estimating GCPC, GAC and 
AC were selected to invert rice grain quality under high 
temperature stress, as shown in Figure 6.

For the two monitoring models with DVI (810,450) and 
PVI-MSS as predictors (Figure 6A, B), the R2 between 
the observed and predicted GCPC were 0.73 and 0.76, 
the RMSE values were 4.03 and 5.62, and the RE values 
were 9.00 and 18.00%, respectively. The model with DVI 

Table 2. Correlation between grain crude protein content (GCPC) and grain amylose content (GAC) and actual yield (AC) and 
canopy spectral parameters at different growth stages under different high temperature treatments (n=40).

Flowering stage Grain-filling stage Ripening stage

Spectral 
parameter1

Correlation 
coefficients2

Spectral 
parameter

Correlation 
coefficients

Spectral 
parameter

Correlation 
coefficients

GCPC DVI(810,450) 0.81** DVI(810,450) 0.75** DVI(810,450) 0.57**
PVI-MSS 0.83** PVI-MSS 0.82** PVI-MSS 0.69**
PVI(810,680) 0.80** DVI(810,680) 0.73** DVI(810,560) 0.46**
DVI-MSS 0.78** DVI(810,560) 0.66** GM-1 0.56**
R743 0.84** DVI(560,680) 0.47** PVI(810,680) 0.38*
FD722 0.72** FD723 0.62** FD715 0.47**

GAC DVI(810,450) -0.85** DVI(810,450) -0.77** DVI(810,450) -0.60**
PVI-MSS -0.88** PVI-MSS -0.81** PVI-MSS -0.67**
PVI(810,680) -0.82** DVI(810,560) -0.66** GM-1 -0.55**
DVI-MSS -0.85** PVI(810,680) -0.69** DVI(810,680) -0.46**
R800 -0.85** DVI(560,680) -0.49** R1077 -0.67**
FD722 -0.80** FD723 -0.66** FD715 -0.52**

AC DVI(810,450) 0.79** DVI(810,450) 0.77** DVI(810,450) 0.64**
PVI-MSS 0.81** PVI-MSS 0.80** PVI-MSS 0.61**
PVI(810,680) 0.76** PVI(810,680) 0.72** PVI(810,680) 0.36*
DVI-MSS 0.79** DVI-MSS 0.81** DVI-MSS 0.54**
R745 0.85** R759 0.79** R760 0.60**
FD716 0.75** FD719 0.67** FD724 0.40**

1 DVI = difference vegetation index; FD = first derivative; MSS = Landsat multispectral scanner; PVI = perpendicular vegetation index; R = reflectance.
2 *P=0.05, **P=0.01, r(0.05,40)=0.30, r(0.01,40)=0.39.
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(810,450) as a spectral parameter exhibited a higher R2 
and lower RMSE and RE than the model with PVI-MSS 
as a predictor. For the two monitoring models with DVI 
(810,450) and PVI-MSS as predictors (Figure 6C and D), 
the R2 between the observed and predicted GAC were 0.69 
and 0.83, the RMSE values were 5.22 and 3.71, and the 
RE values were 14.00 and 6.00%, respectively. For the two 
monitoring models with DVI (810,450) and PVI-MSS as 
predictors (Figure 6E and F), the R2 between the observed 
and predicted AC were 0.68 and 0.82, the RMSE values 
were 7.81and 6.43, and the RE values were 18.00% and 
19.00%, respectively

Overall, the validation results with the monitoring models 
indicated a good agreement between estimated and 
observed values in rice under high temperature stress. 
Thus, the selected key hyper-spectral parameters could be 

reliably used for accurate estimation of rice GCPC, GAC 
and AC under high temperature treatments.

Although above results were obtained from field bucket 
experiments, impact factors were still few. The fertility 
condition, mature time and management technology in 
different regions in the world were also different in actual 
large-scale field production, which would further affect 
hyper-spectral characteristics on rice GCPC, GAC and 
AC. Therefore, it is necessary to use many experiments 
with different biological points, productivity levels 
and cultivation conditions for comprehensive test and 
improvement in order to realise the available unification 
between estimated-model accuracy and universality. These 
can promote direct application on rice GCPC, GAC and 
AC, and supply theoretical and technical references for 
high-temperature damage monitoring on rice, as well as 
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Figure 5. Linear relationships of (A) grain crude protein content (GCPC) to DVI (810,450), (B) PVI-MSS, (C) grain amylose content 
(GAC) to DVI (810,450), (D) PVI-MSS, (E) actual yield (AC) to DVI (810,450), and (F) PVI-MSS in Liangyoupeijiu in E1.
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make an extensive application expectation for improving 
development of information agriculture in the future.

Further, compared with general estimation methods, such 
as statistical, agronomical and meteorological methods, the 
remote sensing estimation method with instantaneous and 
universal properties was attached to widely attention from 
agriculturalists around the world. However when there 
had a lot of changes for certain climate conditions in the 
experiments, such as light illumination, soil nitrogen level 
and soil moisture, the estimated rice GCPC, GAC and AC 
by remote sensing may have a big deviation, and the crop 

growth model with continuity and dynamic properties just 
offset this drawback (Li et al., 2008). If the rice quality, yield-
estimated model was performed for coupling computation 
using remote sensing inversion in practice, the accuracy can 
be highly improved, which will just be the next objective 
and target in this research.

4. Conclusions

GCPC and AC (GAC) in Liangyoupeijiu were clearly 
reduced (increased) under high temperature stress in this 
study compared with the values of CK, and the reducing 
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Figure 6. Comparison between observed and predicted grain crude protein content (GCPC), grain amylose content (GAC), and 
actual yield (AC) with linear equations based on DVI (810,450) (A,C,E), PVI-MSS (B,D,F) and in rice from E2 (n=40).
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extent of GCPC and AC (the increasing extent of GAC) 
was increased with the increase of high temperature level. 
However, there were no significant differences for GCPC 
and GAC under different high temperature treatments 
(P>0.05), but there were significant differences for AC 
among high temperature treatments (P<0.05). In order 
to accurately assess the response of rice GCPC, GAC and 
AC to potential climate change, a more complex study is 
currently under way.

The hyper-spectral reflectance in different wavelength 
regions under high temperature stress was different. 
They increased in visible light region with the elevation 
of temperature, but reduced in near-infrared region. In 
general, the correlation coefficient among GCPC, GAC, AC 
and spectral reflectance changed dramatically over different 
wavebands under high temperature stress, which showed 
that GCPC, GAC and AC could be estimated by original 
canopy hyper-spectral reflectance and their derivative 
parameters under high temperature treatments.

Among some selected spectral indices at three different 
growth stages under high temperature stress used to 
estimate GCPC, GAC and AC, the optimum indices were 
DVI (810,450) and PVI-MSS with high R2 when regressed 
against GCPC, GAC and AC. Moreover, GCPC, GAC and 
AC prediction based on flowering stages were preferred 
than that on grain-filling and ripening stage by much 
bigger correlation coefficients. The six regression models 
developed in this study based on different temperature 
treatments showed the agreements between the predicted 
and observed values when testing independent data. Thus, 
the selected key hyper-spectral parameters can be reliably 
used to estimate GCPC, GAC and AC in rice under high 
temperature stress.
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