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Abstract

Background Mildew damage is a quality defect that has an adverse effect on the

quality of flour. Aims The objective of this study was to develop a rapid and

consistent imaging method to quantify the extent of mildew damage in wheat

samples. Materials and methods A hyperspectral imaging system with a wavelength

range of 400–1000 nm was used to detect and quantify mildew in 65 Canada

Eastern Soft Red Winter (CESRW) wheat samples. Partial least square (PLS)

regression calibrations were developed to predict mildew levels based on the

spectral characteristics of the bulk samples. Results and discussion Predictions from

a model with 4 PLS factors based on image standard deviation spectra matched

well with the visual assessment of the samples with an R2 approaching 0.87 and an

RMSE of 0.76 on the validation set. Accuracy of the PLS classification for 9 mildew

levels was 90.6% (� 1 level) and 84.4% for 3 inspector grades. Conclusion This

study confirms that potential use of hyperspectral imaging for mildew detection in

commercial operations is possible.

SHAHIN MA, HATCHER, DW, SYMONS JS (2010). Assessment of mildew levels in wheat samples based on spectral

characteristics of bulk grains. Quality Assurance and Safety of Crops & Foods, 2, 133–140.

Introduction

Mildew damage is a serious quality defect that has a negative

impact on processing quality and commercial value of wheat

(Dexter & Edwards, 1998). Mildew is a fungal contamina-

tion caused by adverse growing conditions that imparts a

grey discoloration initially on the brush end of the kernel,

which begins to encompass the entire kernel as damage

increases. It is caused by various fungi such as Cladosporium

and Alternaria alternata that thrive under wet humid con-

ditions. The mildew damage is more noticeable when har-

vest is delayed under wet conditions (http://www.omafra.

gov.on.ca/english/crops/field/news/croppest/2008/12cpo08a6.

htm). Review of the scientific literature indicated that research

has been primarily focused on wheat breeding programs to

impart resistance to mildew as resistance is believed to be

derived by the 1AL.1RS wheat-rye chromosome translocation

(Graybosch et al., 1999; Yoshida et al., 2001; Li et al., 2007) as

observed in Triticale (Svoboda et al., 1991). Wheat milling

performance decreases with increasing levels of mildewed

kernels of common wheat (Everts et al., 2001) but no impact

on semolina yield was reported (Dexter & Matsuo, 1982). The

Canadian Grain Commission (CGC) is the Canadian federal

agency responsible for establishing tolerances for the various

grades of wheat classes grown in Canada and has carried out

extensive research to ensure that the level of mildewed kernels

within each grade are appropriate and reflect the intrinsic

value of the grain. Internal reports (unpublished) indicate

that Canada Eastern White wheat displayed a significant shift

in the resulting flour colour, decreased flour yield straight

grade flour from � 1.6 Kent Jones (KJ) units for a No. 1 grade

to � 0.3 KJ units for a No. 3 grade. The impact of mildew on

durum wheat products is primarily a significant increase

(2–3-fold) in the speckiness of the resulting spaghetti (Dexter

& Matsuo, 1982). Current grading systems are based on a

relatively slow and subjective human visual inspection

by trained inspectors, whereby the degree of damage to

kernels is assessed by comparison with standard samples or
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mildew-guides to give an overall subjective visual assessment of

severity of damage. However, it remains difficult to quantify the

amount of mildew damage through visual inspection, especially

for samples with light to moderate degrees of damage. It is

important to determine the extent of damage as the severity of

damage is inversely related to the quality of flour and bread

produced from mildewed wheat. Fast and accurate objective

methods are required to facilitate segregation and cope with

high volume inspection demanded by the grain industry to

meet the needs of national as well as international trade.

Luo et al. (1999) used conventional image analysis to detect

mildew and five other types of damage factors (broken, grass-

green/green-frosted, black-point/smudge, heated, and bin/

fire-burnt) on CWRS wheat kernels. They were able to detect

visually obvious severely damaged mildewed kernels highly

accurately (97%), however, detection of visually challenging

slight or moderate levels of mildew damage was not at-

tempted. The identification of damaged regions of individual

kernels by imaging appears to be a logical solution; however,

variations in the discoloration of the damaged regions and the

colour of underlying kernels make this impossible to achieve

using a traditional imaging platform. Hyperspectral imaging

(HSI) can provide a workable solution in this situation. HSI is

a combination of conventional imaging and spectroscopy that

can provide information with high spatial and spectral resolu-

tion. Hyperspectral images commonly known as hypercubes

are three-dimensional data structures containing both the

spatial and spectral information. Each pixel in a hypercube

contains the entire spectrum that can be used as a fingerprint

to characterize the composition of that particular pixel.

HSI systems have been used in a wide variety of fields

including remote sensing, pharmaceutical, medical, and agri-

cultural industries. Recently, this technology has emerged as a

research tool for food quality and safety control (Gowen et al.,

2007). In the agro-food industry, HSI applications have been

reported for quality assessment of fruits (Kim et al., 2002; Lu,

2003), vegetables (Cheng et al., 2004; Gowen et al., 2008),

poultry (Park et al., 2002), beef steaks (Naganathan et al.,

2008), and cereal grains (Cogdill et al., 2004; Goretta et al.,

2006; Lin et al., 2006; Shahin & Symons, 2008). Recent studies

have shown that HSI could distinguish sprout damaged

(Singh et al., 2009; Xing et al., 2009) as well as stained and

fungal infected (Berman et al., 2007; Singh et al., 2007) wheat

kernels from sound kernels. Spectral characteristics of mil-

dewed wheat kernels have been reported to be significantly

different from those of sound undamaged kernels (Shahin &

Symons, 2007). These spectral differences can be utilized to

determine the extent of mildew damage in wheat samples. The

objective of this study was to develop, using real world

commercial samples, a rapid and consistent HSI method to

quantify the extent of mildew damage in wheat samples which

is highly correlated to existing inspector visual assessments.

This is the first step in the development of a systematic

approach to creating objective measurements for grain quality

assurance. Quantification of the effect of other grading factors

on grain quality can be determined by separate studies as we

can only approach this work in discrete and manageable steps.

Materials and methods

Samples

Sixty-five samples of Canada Eastern Soft Red Winter

(CESRW) class of wheat from the 2008-crop year were

collected from a diverse series of sites throughout southern

Ontario. In the Canadian grading system, a class of wheat

refers to a collection of varieties with common visual and

functional characteristics. The sample set comprised of

25R47, Becher, Emmitt, Huntley, and Vienna varieties

registered under the CESRW class of wheat (http://

www.grainscanada.gc.ca/legislation-legislation/orders-arretes/

2009/2009-19-eng.htm). These totally independent samples

represented significant variations in growing conditions and

soil types. Each sample was in excess of 1 kg and was graded

by trained inspectors from the Industry Services division of

the CGC. The commercial samples chosen for this study

characterized the maximum range of mildew damage ker-

nels found in eastern Canada and were representative of the

normally assigned three CGC grades (1–3). Based on the

severity of mildew damage, as determined by the inspectors

examining damaged kernels with a 10 magnification Lupe,

the samples were further assigned to one of nine levels (three

levels within each grade) namely high1 (H1), medium1

(M1), low1 (L1), . . . , and low3 (L3) representing the top of

grade 1, the middle of grade 1, bottom of grade 1, . . ., and

bottom of grade 3, respectively (Table 1). For data analyses

Table 1 Inspector visual grades and grade level scores of samples

based on mildew damage

Grades

Grade

level

Numerical

scale Description

1 CE SRW H1 1 Top of grade 1

M1 2 Middle of grade 1

L1 3 Bottom of grade 1

2 CE SRW H2 4 Top of grade 2

M2 5 Middle of grade 2

L2 6 Bottom of grade 2

3 CE SRW H3 7 Top of grade 3

M3 8 Middle of grade 3

L3 9 Bottom of grade 3
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and model building, the inspector scores were converted to a

numerical scale from 1 to 9 where a score of 1 corresponded

to high quality No. 1, 2 corresponded to moderate mildew

level within the No. 1 grade, while 3 corresponded to the

lowest acceptable No. 1 grade. Assignment of 4 through 6

corresponded to the different levels within the No. 2 grade,

while 7 through 9 represented the variations found within

the No. 3 grade. The samples were scanned and analysed for

mildew damage with a push-broom type HSI system in the

400–1000 nm wavelength range (VNIR 100E Lextel Intelli-

gence Systems, Jackson, MS, USA) as described next.

HSI system

The imaging system consisted of a prism-grating-prism

spectrograph, a high-resolution 14-bit CCD camera (PCO

Imaging, Germany), a C-mount focusing lens, a motor for

lens motion control, and a personal computer. The motor-

ized lens assembly moved in front of the camera allowing for

imaging stationary targets. The system came equipped with

the image capture software HyperVisual that could scan up

to 800 lines of 1600 pixels per line with 1200 spectra per

pixel between 260 and 1084 nm. This translates to a spectral

resolution of 0.69 nm. The nominal spectral range of the

spectrograph (ImSpector V10E, Specim, Oulu, Finland)

used was 400–1000 nm – spectra outside this range is

nothing but noise, hence it must be discarded. The Hyper-

Visual software allowed for a spatial binning of two and a

spectral binning of two, four and eight. Wavelength calibra-

tion of the system was performed using Mercury-Argon

(M-6035; Newport Oriel, Stratford, CT, USA) and Krypton

(M-6031; Newport Oriel) pencil lights. The system was

enclosed in a light-tight cabin to reduce the effect of stray

ambient light as shown in Figure 1. Two 250 W quartz–

tungsten–halogen lamps were used for sample illumination.

Power to each lamp was regulated through a radiometric

power supply (M-69931; Newport Oriel). The lamps were

enclosed in two lamp housings with cooling fans (M-66881;

Newport Oriel). The lamp housings were kept outside the

cabin to minimize heat load inside the cabin. Collimated

light beams from lamp housings were deflected with two

10� 10 cm aluminium coated mirrors (NT45-343; Edmund

Optics, Barrington, NJ, USA) to illuminate the sample from

two sides. This lighting arrangement minimized the sha-

dowing effect of three-dimensional objects (wheat grains, in

this case).

Image acquisition and calibration

For image capture, a 16� 8� 1 cm wooden tray filled with

approximately 200 g of wheat representative of a 1 kg sample

was placed directly under the camera and an 800� 400

spatial� 300 spectral hypercube was collected for each

sample. The 200 g of wheat grains per sample adequately

covered the wooden tray with little visibility of the backing

as shown in Figure 2a. Spatial binning of two and spectral

binning of four were used while the exposure time was set at

60 ms.

Dark current and white light reference responses were

collected before imaging each sample to calibrate spectra at

each pixel in terms of percent reflectance value. A polytetre-

fluoroethylene panel with 99% reflectance (Spectralon, Lab-

sphere, USA) was used to collect white light reference

images. Dark current response images were collected with

Figure 1 Schematic of the hyperspectral imaging camera system and

lighting arrangement.

A

B

Figure 2 (A) True colour (RGB) representation of hyperspectral image

of a CESRW wheat sample; (B) region of interest or mask image.
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the lamp off and a cap covering the focusing lens. Calibrated

reflectance images (R) were calculated using:

R ¼ Iraw � Idark

Iwhite � Idark
ð1Þ

where Iraw is the non-calibrated original image of a sample,

Iwhite is the image of the white reference and Idark is the dark

current image. Calibrated hypercubes were subset to keep

218 bands between 400 and 1000 nm for further analyses.

Spectral data extraction and analyses

It would be ideal to classify each pixel in the hyperspectral

image based on spectral signatures, however, true classifica-

tion of each pixel were not known for validation. In fact, only

one inspector score for the entire image (sample) was

available for comparison. In order to mimic the current

human visual inspection, the image mean intensity and

spatial variability in the image plane were investigated for

their ability to segregate samples according to the extent of

mildew damage as assessed through visual inspection. To

achieve this, image mean and standard deviation values were

computed at each wavelength in the hypercube of a sample to

generate what was called as the image mean spectrum and

image standard deviation spectrum, respectively. Darker areas

in the image (voids) were excluded from calculations to

minimize the effect of shadows or ‘holes’ in the image plane.

The entire image (800� 400 pixel) minus the voids was used

as the region of interest (ROI) for calculating image mean and

standard deviation spectra. A mask or the ROI image was

created from an image band at 850 nm using a dynamic

threshold value based on image statistics to accomplish this as

shown in Figure 2b. It might appear that most of the power of

the imaging has been thrown away with the spatial averaging

procedure, the two spectra from a sample were expected to

contain information on proportions of mildewed and non-

mildewed (sound) kernels in that particular sample as the

spectral response of mildewed and sound kernels have been

shown earlier to differ significantly (Shahin & Symons, 2007).

The standard deviation spectrum particularly was thought to

reflect spatial variability in a sample as a measure of mildew

damage. A macro written in IDL software (Version 7.0.2; ITT

Visual Information Solutions, Denver, CO, USA) was used to

extract image mean and standard deviation spectra for all the

samples in a batch mode.

Mildew level predictions

The image mean spectra were peak normalized by dividing

each spectrum with its value at 950 nm, which corresponds

to a water band, in order to minimize the effects of moisture

variations among samples and lighting inconsistency within

the image plane. Normalized image mean spectra and the

standard deviation spectra, separately as well as in combina-

tion, were used as input variables to develop partial least

squares (PLS) regression models to predict visually assessed

mildew levels using the Unscrambler software (version 9.8,

CAMO Software, Oslo, Norway). For regression models

development, the sample set was randomly split into two

subsets. The calibration subset consisting of 33 samples was

used to develop PLS models while validation subset consist-

ing of 32 samples was used for performance evaluation of

the models. The same samples were kept in the two sample

sets to compare different models. Performance of PLS

models was evaluated based on coefficient of determination

(R2) and root mean squared error (RMSE) as the perfor-

mance criteria. In addition, the model performance was

validated on mildew guides or reference samples (4) pre-

pared by the Inspection Division (CGC) for 2008 and 2009

crop years. For mildew level classification, output of the best

PLS model was partitioned into nine equally spaced discrete

classes using the following rule base:

if (outputo 1.5) then class = high1

if (1.5Zoutputo 2.5) then class = medium1

if (2.5Zoutputo 3.5) then class = low1

if (3.5Zoutputo 4.5) then class = high2

if (4.5Zoutputo 5.5) then class = medium2

if (5.5Zoutputo 6.5) then class = low2

if (6.5Zoutputo 7.5) then class = high3

if (7.5Zoutputo 8.5) then class = medium3

if (outputZ8.5) then class = low3
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Figure 3 Image mean spectra for samples with different levels of

mildew damage.
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Results and discussion

Spectral characteristics of bulk grains

Figure 3 shows the image mean spectra for a number of

CESRW samples with low and high levels of mildew damage.

The mean spectra tended to separate the samples into two

groups between 600 and 800 nm range. However, the

separation was not ideal. The image standard deviation

spectra for the same set of samples, on the other hand,

separated the two groups quite nicely (Figure 4). The

separation was obvious at wavelengths around 450 nm and

higher than 700 nm. These observations suggested that the

image standard deviation spectra could potentially distin-

guish among samples with different levels of mildew better

than the image mean spectra. The image mean spectra

within 600–850 nm might provide some additional infor-

mation that could improve the overall segregation.

PLS regression

A number of PLS regression models were investigated for

predicting mildew levels in CESRW wheat based on different

spectra as input to the models. Performance of these models

on the calibration as well as validation sets is summarized in

Table 2. A model with 6 PLS factors based on image mean

spectra predicted the inspectors scores for 9 mildew levels

with an R2 of 0.81 and RMSE of 0.89 on the validation set.

The entire spectrum (450–950 nm) contributed significantly

in this model, however, wavelengths in the blue

(450–500 nm) and the NIR (870–930 nm) regions showed

more predominant effect as shown by the regression coeffi-

cients plot (Figure 5a). The model based on image standard

deviation spectra performed better than the one based on

image mean spectra as the model input in terms of fewer

PLS factors, higher R2 and lower RMSE, especially for the

validation set. A model with four factors predicted the nine

mildew levels with an R2 of 0.86 and RMSE of 0.77. The

regression coefficients (Figure 5b) showed fewer peaks and

valleys in this case indicating predominant wavelengths

linked to colour changes in the blue–green region

(450–560 nm) and some structural changes detected in the

higher end of the spectrum (800–950 nm). Combining the

image mean and image standard deviation spectra slightly

improved the model performance with an R2 of 0.865 and

RMSE of 0.76 on the validation set. R2 and RMSE on the

calibration set were of 0.869 and 0.75, respectively. The

regression coefficients for this model were dominated by the

image standard deviation spectra with little contribution

from the image mean spectra (Figure 5c). Based on these

results, either of the last two models could be used to predict

and quantify the extent of mildew damage on a scale from 1

to 9 where a smaller value meant a lower mildew damage

and vice a versa. However, the model based on the standard

deviation spectra alone seemed a better option because of its

comparable performance with less computational require-

ments.

Mildew level classification

To be consistent with the current grading system, the output

from the best PLS model was partitioned into nine classes

corresponding to nine mildew levels assessed by the grain

inspectors. Classification results for the validation set are

presented in Table 3. The mildew levels in 20 of the 32

CESRW samples the validation set were correctly predicted

achieving an accuracy of 62.5% within the nine levels of
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Figure 4 Image standard deviation spectra for samples with different

levels of mildew damage.

Table 2 Partial least square (PLS) regression results

PLS model input data

Number of

PLS factors

Calibration Validation

R2 RMSE R2 RMSE

Image mean spectra 6 0.860 0.77 0.815 0.89

Image standard deviation spectra 4 0.866 0.75 0.861 0.77

Combined image mean and standard deviation spectra 4 0.869 0.75 0.865 0.76
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classification. Accuracy for the calibration set was 66.67%

(22 out of 33). Most of the misclassifications, however, were

to the adjacent mildew levels, e.g., a sample with an

inspector assessed mildew level of high3 (H3) was misclassi-

fied as either low2 (L2) or medium3 (M3). Accuracy of

classification within � 1 mildew level approached 90.62%

(29/32) for the validation set and 96.97% (32/33) for the

calibration set. Accuracy of classification for the same grade

as the inspector’s grade was 84.37% (27/32) on the valida-

tion set and 84.85% (28/33) on the calibration set.

When tested on the four mildew guides or reference

samples for two consecutive crop years, the model correctly

predicted the mildew damage within � 1 level. This demon-

strated the robustness of the model to certain extent. While

numerically this may not seem significant, the simple fact

that the standard samples are used as the reference to grade

millions of tonnes of wheat exported from Canada validates

our approach and modelling of mildew damage in a

commercial inspection environment.

The proposed method offers a number of advantages over

the previous studies. Firstly, it deals with a range of mildew

levels (light to moderate to severe) over three grades as

opposed to the conventional imaging method reported by

Luo et al., (1999), which handled only visually obvious

severely mildewed kernels. Secondly, the current method

evaluates bulk samples requiring no sample preparations

making sample presentation and image acquisition much

easier and faster than for single-kernel evaluations done

previously (Berman et al., 2007; Singh et al., 2007). Thirdly,

the proposed method is based on the measurements in the

visible-NIR spectral range (400–1000 nm), which offers a far

–40

–20

0

20

40

Wavelength, nm

R
eg

 c
oe

ff
 (

nm
ea

n)

–0.30

0.00

0.30

400 600 800 1000

400 600 800 1000

Wavelength, nm

R
eg

 c
oe

ff
 (

st
de

v)

–0.30

0.00

0.30

400 600 800 1000
Wavelength, nm

R
eg

 c
oe

ff
 (

st
de

v)

–0.03

0.00

0.03

R
eg

 c
oe

ff
 (

nm
ea

n)

stdev
nmean

A

B

C

Figure 5 Regression coefficients (Reg coeff) for PLS models developed

with (A) normalized image mean spectra, (B) image standard deviation

spectra, and (C) normalized image mean (nmean) and standard deviation

(stdev) spectra combined.

Table 3 Partial least square (PLS) classification of CE SRW samples in the validation set into nine mildew levels

Grades

Grade

level

Predicted into mildew grade level

Total actualH11 M1 L1 H2 M2 L2 H3 M3 L3

1 CE SRW H1 – – – – – – – – – –

M1 0 2 0 0 0 0 0 0 0 2

L1 0 0 1 0 0 0 0 0 0 1

2 CE SRW H2 0 0 0 3 2 0 0 0 0 5

M2 0 0 0 0 4 1 0 0 0 5

L2 0 0 0 0 0 3 2 0 0 5

3 CE SRW H3 0 0 0 0 0 2 2 1 0 5

M3 0 0 0 0 0 1 0 3 0 4

L3 0 0 0 0 0 0 2 1 2 5

Total predicted 0 2 1 3 6 7 6 5 2 32

Grade 1CE SRW Grade 2CE SRW Grade 3CE SRW

Numbers in bold indicate correctly classified number of samples. Shaded rows indicate classification within � 1 mildew level (validation set).
1H, M and L stand for high, medium and low, respectively.
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less expensive solution compared with the SWIR systems

(1000–2500 nm) used in previous studies (Berman et al.,

2007; Singh et al., 2007).

Conclusions

The results of this study have shown that HSI in the visible-

NIR wavelength range offers the ability to detect and discern

varying degrees of severity of mildew damage in commercial

CESRW wheat samples. Using PLS regressions, mildew

levels (1–9) can be predicted with an accuracy approaching

91% (� 1 level). Comparison with the existing subjective

visual assessment with trained inspectors, predicted wheat

grade (1–3) based on mildew alone achieved an accuracy

exceeding 84%. This confirms that potential use of HSI for

mildew detection in commercial operations is possible.
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