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Abstract

Background Mildew damage is a quality defect that has an adverse effect on the
quality of flour. Aims The objective of this study was to develop a rapid and
consistent imaging method to quantify the extent of mildew damage in wheat
samples. Materials and methods A hyperspectral imaging system with a wavelength
range of 400-1000nm was used to detect and quantify mildew in 65 Canada
Eastern Soft Red Winter (CESRW) wheat samples. Partial least square (PLS)
regression calibrations were developed to predict mildew levels based on the
spectral characteristics of the bulk samples. Results and discussion Predictions from
a model with 4 PLS factors based on image standard deviation spectra matched
well with the visual assessment of the samples with an R* approaching 0.87 and an
RMSE of 0.76 on the validation set. Accuracy of the PLS classification for 9 mildew
levels was 90.6% (%1 level) and 84.4% for 3 inspector grades. Conclusion This
study confirms that potential use of hyperspectral imaging for mildew detection in
commercial operations is possible.
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Introduction

Mildew damage is a serious quality defect that has a negative
impact on processing quality and commercial value of wheat
(Dexter & Edwards, 1998). Mildew is a fungal contamina-
tion caused by adverse growing conditions that imparts a
grey discoloration initially on the brush end of the kernel,
which begins to encompass the entire kernel as damage
increases. It is caused by various fungi such as Cladosporium
and Alternaria alternata that thrive under wet humid con-
ditions. The mildew damage is more noticeable when har-
vest is delayed under wet conditions (http://www.omafra.
gov.on.ca/english/crops/field/news/croppest/2008/12cpo08a6.
htm). Review of the scientific literature indicated that research
has been primarily focused on wheat breeding programs to
impart resistance to mildew as resistance is believed to be
derived by the 1AL.IRS wheat-rye chromosome translocation
(Graybosch et al., 1999; Yoshida et al., 2001; Li et al., 2007) as
observed in Triticale (Svoboda et al., 1991). Wheat milling
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performance decreases with increasing levels of mildewed
kernels of common wheat (Everts et al., 2001) but no impact
on semolina yield was reported (Dexter & Matsuo, 1982). The
Canadian Grain Commission (CGC) is the Canadian federal
agency responsible for establishing tolerances for the various
grades of wheat classes grown in Canada and has carried out
extensive research to ensure that the level of mildewed kernels
within each grade are appropriate and reflect the intrinsic
value of the grain. Internal reports (unpublished) indicate
that Canada Eastern White wheat displayed a significant shift
in the resulting flour colour, decreased flour yield straight
grade flour from — 1.6 Kent Jones (KJ) units for a No. 1 grade
to — 0.3 KJ units for a No. 3 grade. The impact of mildew on
durum wheat products is primarily a significant increase
(2-3-fold) in the speckiness of the resulting spaghetti (Dexter
& Matsuo, 1982). Current grading systems are based on a
relatively slow and subjective human visual inspection
by trained inspectors, whereby the degree of damage to
kernels is assessed by comparison with standard samples or
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mildew-guides to give an overall subjective visual assessment of
severity of damage. However, it remains difficult to quantify the
amount of mildew damage through visual inspection, especially
for samples with light to moderate degrees of damage. It is
important to determine the extent of damage as the severity of
damage is inversely related to the quality of flour and bread
produced from mildewed wheat. Fast and accurate objective
methods are required to facilitate segregation and cope with
high volume inspection demanded by the grain industry to
meet the needs of national as well as international trade.

Luo et al. (1999) used conventional image analysis to detect
mildew and five other types of damage factors (broken, grass-
green/green-frosted, black-point/smudge, heated, and bin/
fire-burnt) on CWRS wheat kernels. They were able to detect
visually obvious severely damaged mildewed kernels highly
accurately (97%), however, detection of visually challenging
slight or moderate levels of mildew damage was not at-
tempted. The identification of damaged regions of individual
kernels by imaging appears to be a logical solution; however,
variations in the discoloration of the damaged regions and the
colour of underlying kernels make this impossible to achieve
using a traditional imaging platform. Hyperspectral imaging
(HSI) can provide a workable solution in this situation. HSI is
a combination of conventional imaging and spectroscopy that
can provide information with high spatial and spectral resolu-
tion. Hyperspectral images commonly known as hypercubes
are three-dimensional data structures containing both the
spatial and spectral information. Each pixel in a hypercube
contains the entire spectrum that can be used as a fingerprint
to characterize the composition of that particular pixel.

HSI systems have been used in a wide variety of fields
including remote sensing, pharmaceutical, medical, and agri-
cultural industries. Recently, this technology has emerged as a
research tool for food quality and safety control (Gowen et al.,
2007). In the agro-food industry, HSI applications have been
reported for quality assessment of fruits (Kim et al., 2002; Lu,
2003), vegetables (Cheng et al, 2004; Gowen et al., 2008),
poultry (Park et al.,, 2002), beef steaks (Naganathan et al.,
2008), and cereal grains (Cogdill et al., 2004; Goretta et al.,
2006; Lin et al., 2006; Shahin & Symons, 2008). Recent studies
have shown that HSI could distinguish sprout damaged
(Singh et al., 2009; Xing et al, 2009) as well as stained and
fungal infected (Berman et al., 2007; Singh et al., 2007) wheat
kernels from sound kernels. Spectral characteristics of mil-
dewed wheat kernels have been reported to be significantly
different from those of sound undamaged kernels (Shahin &
Symons, 2007). These spectral differences can be utilized to
determine the extent of mildew damage in wheat samples. The
objective of this study was to develop, using real world
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commercial samples, a rapid and consistent HSI method to
quantify the extent of mildew damage in wheat samples which
is highly correlated to existing inspector visual assessments.
This is the first step in the development of a systematic
approach to creating objective measurements for grain quality
assurance. Quantification of the effect of other grading factors
on grain quality can be determined by separate studies as we
can only approach this work in discrete and manageable steps.

Materials and methods
Samples

Sixty-five samples of Canada Eastern Soft Red Winter
(CESRW) class of wheat from the 2008-crop year were
collected from a diverse series of sites throughout southern
Ontario. In the Canadian grading system, a class of wheat
refers to a collection of varieties with common visual and
functional characteristics. The sample set comprised of
25R47, Becher, Emmitt, Huntley, and Vienna varieties
registered under the CESRW class of wheat (http://
www.grainscanada.gc.ca/legislation-legislation/orders-arretes/
2009/2009-19-eng.htm). These totally independent samples
represented significant variations in growing conditions and
soil types. Each sample was in excess of 1 kg and was graded
by trained inspectors from the Industry Services division of
the CGC. The commercial samples chosen for this study
characterized the maximum range of mildew damage ker-
nels found in eastern Canada and were representative of the
normally assigned three CGC grades (1-3). Based on the
severity of mildew damage, as determined by the inspectors
examining damaged kernels with a 10 magnification Lupe,
the samples were further assigned to one of nine levels (three
levels within each grade) namely highl (H1), mediuml
(M1), lowl (L1), ..
grade 1, the middle of grade 1, bottom of grade 1, ..., and

., and low3 (L3) representing the top of

bottom of grade 3, respectively (Table 1). For data analyses

Table 1 Inspector visual grades and grade level scores of samples
based on mildew damage
Grade Numerical
Grades level scale Description
1CESRW  H1 1 Top of grade 1
M1 2 Middle of grade 1
L1 3 Bottom of grade 1
2CESRW  H2 4 Top of grade 2
M2 5 Middle of grade 2
L2 6 Bottom of grade 2
3CESRW  H3 7 Top of grade 3
M3 8 Middle of grade 3
L3 9 Bottom of grade 3
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and model building, the inspector scores were converted to a
numerical scale from 1 to 9 where a score of 1 corresponded
to high quality No. 1, 2 corresponded to moderate mildew
level within the No. 1 grade, while 3 corresponded to the
lowest acceptable No. 1 grade. Assignment of 4 through 6
corresponded to the different levels within the No. 2 grade,
while 7 through 9 represented the variations found within
the No. 3 grade. The samples were scanned and analysed for
mildew damage with a push-broom type HSI system in the
400-1000 nm wavelength range (VNIR 100E Lextel Intelli-
gence Systems, Jackson, MS, USA) as described next.

HSI system

The imaging system consisted of a prism-grating-prism
spectrograph, a high-resolution 14-bit CCD camera (PCO
Imaging, Germany), a C-mount focusing lens, a motor for
lens motion control, and a personal computer. The motor-
ized lens assembly moved in front of the camera allowing for
imaging stationary targets. The system came equipped with
the image capture software HyperVisual that could scan up
to 800 lines of 1600 pixels per line with 1200 spectra per
pixel between 260 and 1084 nm. This translates to a spectral
resolution of 0.69 nm. The nominal spectral range of the
spectrograph (ImSpector V10E, Specim, Oulu, Finland)
used was 400-1000nm - spectra outside this range is
nothing but noise, hence it must be discarded. The Hyper-
Visual software allowed for a spatial binning of two and a
spectral binning of two, four and eight. Wavelength calibra-
tion of the system was performed using Mercury-Argon
(M-6035; Newport Oriel, Stratford, CT, USA) and Krypton
(M-6031; Newport Oriel) pencil lights. The system was
enclosed in a light-tight cabin to reduce the effect of stray
ambient light as shown in Figure 1. Two 250 W quartz—
tungsten—halogen lamps were used for sample illumination.
Power to each lamp was regulated through a radiometric
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Figure1 Schematic of the hyperspectral imaging camera system and
lighting arrangement.
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power supply (M-69931; Newport Oriel). The lamps were
enclosed in two lamp housings with cooling fans (M-66881;
Newport Oriel). The lamp housings were kept outside the
cabin to minimize heat load inside the cabin. Collimated
light beams from lamp housings were deflected with two
10 x 10 cm aluminium coated mirrors (NT45-343; Edmund
Optics, Barrington, NJ, USA) to illuminate the sample from
two sides. This lighting arrangement minimized the sha-
dowing effect of three-dimensional objects (wheat grains, in
this case).

Image acquisition and calibration

For image capture, a 16 X 8 X 1 cm wooden tray filled with
approximately 200 g of wheat representative of a 1 kg sample
was placed directly under the camera and an 800 x 400
spatial X 300 spectral hypercube was collected for each
sample. The 200g of wheat grains per sample adequately
covered the wooden tray with little visibility of the backing
as shown in Figure 2a. Spatial binning of two and spectral
binning of four were used while the exposure time was set at
60 ms.

Dark current and white light reference responses were
collected before imaging each sample to calibrate spectra at
each pixel in terms of percent reflectance value. A polytetre-
fluoroethylene panel with 99% reflectance (Spectralon, Lab-
sphere, USA) was used to collect white light reference
images. Dark current response images were collected with

Figure2 (A) True colour (RGB) representation of hyperspectral image
of a CESRW wheat sample; (B) region of interest or mask image.
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the lamp off and a cap covering the focusing lens. Calibrated
reflectance images (R) were calculated using:

Iraw — 1 arl
R = - e (1)
Iwhite - Idark
where I,,,, is the non-calibrated original image of a sample,
Iyhite 1s the image of the white reference and I,y is the dark
current image. Calibrated hypercubes were subset to keep
218 bands between 400 and 1000 nm for further analyses.

Spectral data extraction and analyses

It would be ideal to classify each pixel in the hyperspectral
image based on spectral signatures, however, true classifica-
tion of each pixel were not known for validation. In fact, only
one inspector score for the entire image (sample) was
available for comparison. In order to mimic the current
human visual inspection, the image mean intensity and
spatial variability in the image plane were investigated for
their ability to segregate samples according to the extent of
mildew damage as assessed through visual inspection. To
achieve this, image mean and standard deviation values were
computed at each wavelength in the hypercube of a sample to
generate what was called as the image mean spectrum and
image standard deviation spectrum, respectively. Darker areas
in the image (voids) were excluded from calculations to
minimize the effect of shadows or ‘holes’ in the image plane.
The entire image (800 x 400 pixel) minus the voids was used
as the region of interest (ROI) for calculating image mean and
standard deviation spectra. A mask or the ROI image was
created from an image band at 850 nm using a dynamic
threshold value based on image statistics to accomplish this as
shown in Figure 2b. It might appear that most of the power of
the imaging has been thrown away with the spatial averaging
procedure, the two spectra from a sample were expected to
contain information on proportions of mildewed and non-
mildewed (sound) kernels in that particular sample as the
spectral response of mildewed and sound kernels have been
shown earlier to differ significantly (Shahin & Symons, 2007).
The standard deviation spectrum particularly was thought to
reflect spatial variability in a sample as a measure of mildew
damage. A macro written in IDL software (Version 7.0.2; ITT
Visual Information Solutions, Denver, CO, USA) was used to
extract image mean and standard deviation spectra for all the
samples in a batch mode.

Mildew level predictions

The image mean spectra were peak normalized by dividing
each spectrum with its value at 950 nm, which corresponds
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to a water band, in order to minimize the effects of moisture
variations among samples and lighting inconsistency within
the image plane. Normalized image mean spectra and the
standard deviation spectra, separately as well as in combina-
tion, were used as input variables to develop partial least
squares (PLS) regression models to predict visually assessed
mildew levels using the Unscrambler software (version 9.8,
CAMO Software, Oslo, Norway). For regression models
development, the sample set was randomly split into two
subsets. The calibration subset consisting of 33 samples was
used to develop PLS models while validation subset consist-
ing of 32 samples was used for performance evaluation of
the models. The same samples were kept in the two sample
sets to compare different models. Performance of PLS
models was evaluated based on coefficient of determination
(R* and root mean squared error (RMSE) as the perfor-
mance criteria. In addition, the model performance was
validated on mildew guides or reference samples (4) pre-
pared by the Inspection Division (CGC) for 2008 and 2009
crop years. For mildew level classification, output of the best
PLS model was partitioned into nine equally spaced discrete
classes using the following rule base:

if (output < 1.5) then class = highl

if (1.5>output < 2.5) then class = mediuml1
if (2.5>output < 3.5) then class =lowl

if (3.5>output < 4.5) then class = high2

if (4.5>output < 5.5) then class = medium2
if (5.5=>output < 6.5) then class =low2

if (6.5>output < 7.5) then class = high3

if (7.5>output < 8.5) then class = medium3
if (output >8.5) then class =low3

80
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Figure3 Image mean spectra for samples with different levels of

mildew damage.
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Results and discussion
Spectral characteristics of bulk grains

Figure 3 shows the image mean spectra for a number of
CESRW samples with low and high levels of mildew damage.
The mean spectra tended to separate the samples into two
groups between 600 and 800nm range. However, the
separation was not ideal. The image standard deviation
spectra for the same set of samples, on the other hand,
separated the two groups quite nicely (Figure 4). The
separation was obvious at wavelengths around 450 nm and
higher than 700 nm. These observations suggested that the
image standard deviation spectra could potentially distin-
guish among samples with different levels of mildew better
than the image mean spectra. The image mean spectra
within 600-850 nm might provide some additional infor-
mation that could improve the overall segregation.

PLS regression

A number of PLS regression models were investigated for
predicting mildew levels in CESRW wheat based on different
spectra as input to the models. Performance of these models
on the calibration as well as validation sets is summarized in
Table 2. A model with 6 PLS factors based on image mean
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Figure4 Image standard deviation spectra for samples with different
levels of mildew damage.

Table 2 Partial least square (PLS) regression results
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spectra predicted the inspectors scores for 9 mildew levels
with an R* of 0.81 and RMSE of 0.89 on the validation set.
The entire spectrum (450-950 nm) contributed significantly
in this model, however, wavelengths in the blue
(450-500 nm) and the NIR (870-930 nm) regions showed
more predominant effect as shown by the regression coeffi-
cients plot (Figure 5a). The model based on image standard
deviation spectra performed better than the one based on
image mean spectra as the model input in terms of fewer
PLS factors, higher R* and lower RMSE, especially for the
validation set. A model with four factors predicted the nine
mildew levels with an R* of 0.86 and RMSE of 0.77. The
regression coefficients (Figure 5b) showed fewer peaks and
valleys in this case indicating predominant wavelengths
linked to colour changes in the blue—green region
(450-560 nm) and some structural changes detected in the
higher end of the spectrum (800-950 nm). Combining the
image mean and image standard deviation spectra slightly
improved the model performance with an R* of 0.865 and
RMSE of 0.76 on the validation set. R* and RMSE on the
calibration set were of 0.869 and 0.75, respectively. The
regression coefficients for this model were dominated by the
image standard deviation spectra with little contribution
from the image mean spectra (Figure 5c). Based on these
results, either of the last two models could be used to predict
and quantify the extent of mildew damage on a scale from 1
to 9 where a smaller value meant a lower mildew damage
and vice a versa. However, the model based on the standard
deviation spectra alone seemed a better option because of its
comparable performance with less computational require-
ments.

Mildew level classification

To be consistent with the current grading system, the output
from the best PLS model was partitioned into nine classes
corresponding to nine mildew levels assessed by the grain
inspectors. Classification results for the validation set are
presented in Table 3. The mildew levels in 20 of the 32
CESRW samples the validation set were correctly predicted
achieving an accuracy of 62.5% within the nine levels of

Calibration Validation
Number of
PLS model input data PLS factors R? RMSE R? RMSE
Image mean spectra 6 0.860 0.77 0.815 0.89
Image standard deviation spectra 4 0.866 0.75 0.861 0.77
Combined image mean and standard deviation spectra 4 0.869 0.75 0.865 0.76
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classification. Accuracy for the calibration set was 66.67%
(22 out of 33). Most of the misclassifications, however, were
to the adjacent mildew levels, e.g., a sample with an
inspector assessed mildew level of high3 (H3) was misclassi-
fied as either low2 (L2) or medium3 (M3). Accuracy of
classification within £ 1 mildew level approached 90.62%
(29/32) for the validation set and 96.97% (32/33) for the
calibration set. Accuracy of classification for the same grade
as the inspector’s grade was 84.37% (27/32) on the valida-
tion set and 84.85% (28/33) on the calibration set.

When tested on the four mildew guides or reference
samples for two consecutive crop years, the model correctly
predicted the mildew damage within =+ 1 level. This demon-
strated the robustness of the model to certain extent. While
numerically this may not seem significant, the simple fact
that the standard samples are used as the reference to grade
millions of tonnes of wheat exported from Canada validates
our approach and modelling of mildew damage in a
commercial inspection environment.

The proposed method offers a number of advantages over
the previous studies. Firstly, it deals with a range of mildew
levels (light to moderate to severe) over three grades as
opposed to the conventional imaging method reported by
Luo et al, (1999), which handled only visually obvious
severely mildewed kernels. Secondly, the current method
evaluates bulk samples requiring no sample preparations
making sample presentation and image acquisition much
easier and faster than for single-kernel evaluations done
previously (Berman et al., 2007; Singh et al., 2007). Thirdly,
the proposed method is based on the measurements in the
visible-NIR spectral range (400-1000 nm), which offers a far

Table 3 Partial least square (PLS) classification of CE SRW samples in the validation set into nine mildew levels

Predicted into mildew grade level

Grade
Grades level H1' M1 L1 H2 M2 L2 H3 M3 L3 Total actual
1 CE SRW H1 - - — - - - - -
M1 0 2 0 0 0 0 0 0 0 2
L1 0 0 1 0 0 0 0 0 0 1
2 CE SRW H2 0 0 0 3 2 0 0 0 0 5
M2 0 0 0 0 4 1 0 0 0 5
L2 0 0 0 0 0 3 2 0 0 5
3 CESRW H3 0 0 0 0 0 2 2 1 0 5
M3 0 0 0 0 0 1 0 3 0 4
L3 0 0 0 0 0 0 2 1 2 5
Total predicted 0 2 1 3 6 7 6 5 2 32

Grade 1CE SRW

Grade 2CE SRW

Grade 3CE SRW

Numbers in bold indicate correctly classified number of samples. Shaded rows indicate classification within + 1 mildew level (validation set).

"H, M and L stand for high, medium and low, respectively.
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less expensive solution compared with the SWIR systems
(1000-2500 nm) used in previous studies (Berman et al.,
2007; Singh et al., 2007).

Conclusions

The results of this study have shown that HSI in the visible-
NIR wavelength range offers the ability to detect and discern
varying degrees of severity of mildew damage in commercial
CESRW wheat samples. Using PLS regressions, mildew
levels (1-9) can be predicted with an accuracy approaching
91% (%1 level). Comparison with the existing subjective
visual assessment with trained inspectors, predicted wheat
grade (1-3) based on mildew alone achieved an accuracy
exceeding 84%. This confirms that potential use of HSI for
mildew detection in commercial operations is possible.
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