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Abstract

This study was to investigate the physicochemical and biological activities of sea cucumber polysaccharides 
extracted from waste residue of peptide production (SCRP). The monosaccharide composition of SCRP was 
20.03% mannose, 19.56% glucose, 18.63% galactose, 25.94% arabinose and 15.82% fucose with the Mw and Mn of 
SCRP of 57.5 and 51.3 kDa. The intrinsic viscosity of SCRP was 8.9 mL/mg with a liquid-like rheological behaviour. 
Two main endothermic peak temperatures of the SCRP sample were 85.03 and 231.80°C. SCRP rendered the early 
apoptosis of cells, as well as induced the loss of mitochondrial transmembrane potential and increase the reactive 
oxygen species (ROS) level with a concentration-dependence manner. The results implied that a by-product SCRP 
could be extracted from the waste residue during peptide production, and exhibited inhibitory effects against 
MDA-MB-231 cells.
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Introduction

Sea cucumber is one of the most preferred marine foods 
with high economic and medicinal values. Due to its 
various biological components, such as polysaccha-
rides, glycerophospholipids, saponins, collagens and 
so on, sea cucumber has become a nutritious product 
with essential physiological functions to human beings 
(Zhao et  al., 2018). For example, sea cucumber poly-
saccharides showed activities of blood lipid-lowering, 
anti-tumour, anti-coagulation and enhance the immune 
functions (Janakiram et al., 2015). Collagen proteins and 
peptides from sea cucumber proven to be a potential 
bioactive substance, owning to their anti-hypertensive,
blood pressure-lowering and anti-oxidative effects (Cui 
et al., 2007; Zhao et al., 2007; Zhou et al., 2012). A review

of the literature summarised the health benefits of DHA/
EPA-enriched glycerophospholipids derived from dietary 
marine, showing that the glycerophospholipids from sea 
cucumber possess vital physiological activities of allevi-
ating neurodegenerative disorders, anti-tumour, regu-
lating lipid and glucose metabolism (Zhang et al., 2019). 
The marine cerebrosides also displayed strong bioactiv-
ity due to the special ocean circulation, although fewer 
classes and lower contents of cerebrosides are found in 
marine than living in the ground (Zhang et al., 2012). Sea 
cucumber-derived cerebrosides were reported to possess 
neuroprotective effects against Aβ1–42-triggered cognitive 
deficits (Li et al., 2019), and alleviate orotic acid-induced 
excess hepatic adipopexis in rats (Zhang et al., 2012), as 
well as own the protective effects of the oxidative dam-
age in PC12 cells (Wu et al., 2013). The dietary saponins 
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MDA-MB-231 cells (Thinh et al., 2018). However, the 
related mechanisms underneath were not elucidated. Till 
now, there are few researchers on the anticancer effects 
of sea cucumber polysaccharides on breast cancer, which 
needs to be further explored.

Apoptosis is a critical cell death mechanism regulated 
by a variety of complex signalling pathways (Sinha et al., 
2013; Zhu et al., 2014). It is currently considered that oxi-
dative stress, an excessive generation of reactive oxygen 
species (ROS), could induce cellular apoptosis via both 
intrinsic and extrinsic apoptotic pathways; both in the 
final stage resulted in the activation of caspases in mito-
chondria (Zhang et al., 2015a). Mitochondria dysfunc-
tion is an important indication in the apoptosis of cancer 
cells. The dysfunctional mitochondria converted into a 
diffused pattern and evenly distributed throughout the 
entire cytoplasm, thus could be indicated from changes 
of mitochondrial membrane potential using a fluorescent 
probe like JC-1 (Zhang et al., 2015b).

For the utilisation of the waste residue from sea cucum-
ber peptide production, therefore, it was of interest to 
isolate the SCRP sample from the residue and to deter-
mine its physicochemical properties, as well as to investi-
gate the effects of SCRP sample on human breast cancer 
cells MDA-MB-231. The determinations of physicochem-
ical properties included molecular weight, monosaccha-
ride composition, flow properties, and thermal stability. 
The cell viability was characterised by cell morphology, 
CCK-8 assay, flow cytometry and Hoechst33258 cell 
staining assay. The inhibitory effect of the SCRP sample 
on MDA-MB-31 cells was evaluated by the Rhodamine 
123 cell staining assay, and the determination of ROS 
level and mitochondrial membrane potential.

Materials and Methods

Materials

The wet residue of sea cucumber (Apostichopus japoni-
cus), obtained after proteolysis and separation of pep-
tides, was provided by Bestlife Biological Technology Co., 
Ltd. (Hebei Province, China). Briefly, the sea cucumber 
wall was washed by water two times and ground in the 
beater at a speed of 100 r/min for 3 min. After drain-
ing for 3 min and soaking for 60 min, the broken sea 
cucumber wall was mixed with five-fold volume of the 
water and beaten at 300 r/min for 20 min. The ground 
sea cucumber was hydrolysed by a compound enzyme 
(papain and trypsin at a ratio of 3:1, 800 U) at 35°C 
for 3  h. Therefore, the wet sea cucumber residue was 
obtained, removing the peptide supernatant. Methanol 
and acetonitrile were purchased from Sigma Aldrich 
Chemical Co. (St. Louis, MO). Human metastatic breast 

extracted from sea cucumber can improve specific obe-
sity-related metabolic parameters and alleviate hepatic 
steatosis in rats (Hu et al., 2012).

Sea cucumber peptides produced by enzymatic hydro-
lysis have shown various potential biological activities, 
such as an angiotensin-converting enzyme, antioxidant 
and anti-proliferative activities (Lin et al., 2018; Pérez-
Vega et al., 2013). Nevertheless, the remaining residues 
containing polysaccharides and saponins became waste 
after extraction, enzymatic hydrolysis, and filtration of 
proteins and peptides. Sea cucumber polysaccharides 
are essential constituents of the sea cucumber wall, and 
have abundant biological activities including antioxi-
dant, anti-tumour, anti-coagulant, anti-inflammatory, 
antithrombotic and anti-hyperlipidemic activities (Liu 
et al., 2012; Yang et al., 2019). Two novel sulphated 
polysaccharides have been isolated from sea cucumber 
body: fucosylated chondroitin sulphate and sulphated 
fucan (Albano and Mourão, 1986). In recent years, some 
researchers have isolated and purified polysaccharides 
from the sea cucumber by-products (Liu et al., 2016a; 
Yang et al., 2019). A homogeneous polysaccharide 
was purified from sea cucumber viscera and exhibited 
immune-enhancing activity (Yang et al., 2019). Besides, 
Apostichopus japonicus spawn polysaccharides were 
found to be able to inhibit tumour proliferation (Liu et 
al., 2016a). However, there is no report on the extraction 
and related active mechanisms of polysaccharides from 
the waste residues of sea cucumber peptide production 
(polysaccharides from sea cucumber waste residues, 
SCRP). Cancer is one of the whole world’s leading causes 
of human loss (Vaikundamoorthy et al., 2018). Some 
studies showed that polysaccharides from sea cucum-
bers possess anti-tumour activity in vivo and in vitro (Lu 
and Wang, 2009; Ye et al., 2012). The acidic mucopoly-
saccharide from Holothuria leucospilota has shown anti-
tumour effect by inhibiting angiogenesis and B16F10 
tumour cell invasion in vivo and in vitro (Zhang et al., 
2009). Stichopus japonicus acid mucopolysaccharide was 
reported to have a strong tumour-inhibiting effect on 
K563 leukaemia cells in vitro. However, it was also found 
that the crude extract of Stichopus japonicus, mainly con-
taining polysaccharide, glycopeptide and glycoprotein, 
could render the proliferation of Bel-7402 liver cancer 
cells and C6 neuroglioma cells. The proliferation func-
tion might be attributed to the glycopeptide or glycopro-
tein if the anti-tumour effect of polysaccharide is certain 
(Zhang et al., 2009). Among all types of cancer, breast 
cancer is one of the most commonly diagnosed female 
cancers and is also a leading cause of cancer deaths in 
women aged 20 to 59 years (Siegel et al., 2016). The sul-
phated fucan from Vietnamese sea cucumber Stichopus 
variegatus was found to inhibit colony formation of 
human breast cancer cells T-47D and MDA-MB-231 
and possess slight activity against the migration of 
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molecular weights of 10, 20, 50, 100, 200, 400 and 600 
kDa were used to calibrate the molecular weight curve.

Determination of  uronic acid and sulphate group content
Uronic acid content was determined by the sulphamate/ 
3-phenylphenol colourimetric method (Filisetticozzi and 
Carpita, 1991), using galacturonic acid (10–60 μg/mL) as 
standard. Sulphate group content was estimated by the 
barium chloride-gelatin method, as reported (Dodgson 
and Price, 1962).

Monosaccharide composition
The monosaccharide composition of the SCRP sample was 
determined by following the method of Yang et al. (2018) 
with some modifications. Briefly, 200 mg SCRP powder 
was mixed with 10 mL of 2 M trifluoroacetic acid (TFA) at 
120°C for 2 h. The mixture is centrifuged at 4000 rpm for 
20 min at 4°C, and then the supernatant was evaporated 
to remove extra TFA at 60°C under vacuum pressure. The 
dried SCRP sample was dissolved with deionised water. 
One hundred microlitres of the SCRP sample solution 
was mixed with 100 μL of 0.3 M sodium hydroxide and 
100 μL of 0.5 M 3-Methyl-1-phenyl-2-pyrazolin-5-one 
(PMP), incubating at 70°C for 60 min. Then 100 μL of 0.3 
M hydrochloric acid was added to adjust the pH to 7. One 
millilitre of dichloromethane was used to extract PMP 
three times. The monosaccharide standards (mannose, 
glucosamine hydrochloride, rhamnose, glucose, xylose, 
galactose, and arabinose) and the hydrolysed SCRP sam-
ple were dissolved in 1.5 mL deionised water for HPLC 
analysis. The HPLC determination was performed on an 
LC-20AT system (Shimadzu, Tokyo, Japan) equipped with 
an SPD-20A UV visible detector with UV absorbance of 
230 nm and Thermo Fisher Acclaim 120 C18 column (250 
mm × 4.6 mm). The flow rate was 1 mL/min and the injec-
tion volume was 20 μL. Mobile phases A and B (v/v, 85:15) 
were ultrapure water and acetonitrile, respectively.

Fourier transform infrared spectroscopy
According to Liu et al. (2016b), Fourier transform infra-
red (FTIR) spectra were conducted on a Nicolet 6700 
FTIR spectrometer (Thermo Fisher Scientific, Waltham, 
MA, USA). One milligram of the SCRP sample was 
mixed with 150 mg potassium bromide powder and 
pressed into the disc for 30 s at 8 kN. Spectra were col-
lected in the wavelength range of 400‒4000 cm‒1 over 32 
scans at room temperature with a resolution of 1 cm‒1.

Flow properties

Intrinsic viscosity
The viscosity of SCRP solutions (0.3, 0.5, 0.8, 1.0, 1.2 and 
1.4 mg/mL) was determined on a 0.57 Ukrainian-type 
capillary viscometer under the temperature of 30°C. 
Using an accurate 15 mL of SCRP solution, the system 

cancer cell line MDA-MB-231 cells were obtained from 
Shanghai Jiao Tong University (China). All other reagents 
were purchased locally and were of analytical grade.

Extraction of sea cucumber polysaccharides

The wet sea cucumber residue was dried and ground 
in a conventional pulveriser to pass through a 90-mesh 
screen. Fifty grams of the residue powder was refluxed 
with 80% (v/v) ethanol at 80°C three times, and then the 
precipitate was filtered and dried at 60°C. Five grams 
of dried extracts were dissolved and refluxed in 40 mL 
sodium hydroxide solution (2%, w/v) at 95°C for 70 min, 
and repeated five times, followed by condensation to 10% 
of the original volume in a RE-52AA type rotary evap-
oration instrument (Yarong Biochemical Instrument 
Factory, Shanghai, China). The concentrates were pre-
cipitated by adding four-fold the volume of 80% (v/v) 
ethanol and kept overnight at 4°C. The mixture was cen-
trifuged at 4000 rpm for 20 min at 4° and vacuum freeze-
dried for 8 h. The crude SCRP powder was obtained and 
further purified according to the method of Xiong et al. 
(2018). Five grams of crude SCRP powder was solubilised 
in 500 mL ultrapure water and filtered by a 0.45 μm filter 
membrane. Then, an 8 mL crude sea cucumber polysac-
charide sample was loaded on the DEAE-52 gel column 
(20 mm × 500 mm, Sigma Corp., San Francisco, USA) for 
purification. The injection volume was 8 mL each time. 
Gradient elution was carried out with ultrapure water, 
0.2 M, 0.5 M, 0.8 M, 1.2 M and 1.5 M NaCl solutions, 
and collected in a total of 20 tubes, 10 mL per tube. 
The total carbohydrate content was determined using 
the phenol-sulphuric acid method (Lin and Pomeranz, 
1968). The elution curve of the crude SCRP sample was 
obtained by plotting the number of tubes as the abscissa, 
and the absorbance measured at 495 nm as the ordinate 
(Figure S1). As shown in Figure S1, the fraction of crude 
SCRP sample with the highest mass ratio of 53.8% was 
collected and named as SCRP.

Physicochemical properties of SCRP

Molecular weight determination
The molecular weight distribution of the SCRP sample 
was determined on a Shimadzu LC-20AT HPLC system 
(Shimadzu Corp., Tokyo, Japan) equipped with a RID-
10A refractive index detector (Shimadzu Corp., Tokyo, 
Japan) and a Shodex Ohpak SB-804HQ column (8.0 mm 
× 300 mm, 10 μm, Showa Denko, Tokyo, Japan) placed 
in a 30°C column oven (Sun et al., 2018). The injection 
sample was 20 μL of the SCRP solution (10 mg/mL). 
The elution phase was ultrapure water at a flow rate of 
0.8 mL/min. Seven dextran standards (Nanjing Dichun 
Biotechnology Co., Ltd., Nanjing, China) with different 
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mL and incubated at 37°C in 95% air and 5% CO2 for 
24 h. Then, 10 μL of SCRP solutions with different con-
centrations of 0 (Control), 50 (low concentration SCRP, 
LSCRP), 100 (middle concentration SCRP, MSCRP) and 
200 µg/mL (high concentration SCRP, HSCRP) were 
added into 96-well plates and incubated for another 24 
h. Cell morphology was observed on an inverted micro-
scope (×200).

CCK-8 assay
Hundred microlitres of cells in the logarithmic growth 
phase were plated at a density of 5 × 104 cells/mL in 
96-well plates and incubated for 24 h. After the prein-
cubation, cells were incubated with 10 μL of SCRP solu-
tions with various concentrations of 0, 50, 100 and 200 
μg/mL for 24 h, separately. Then, 10 μL of CCK-8 reagent 
was added to 96-well plates and incubated at 37°C in 95% 
air and 5% CO2 for 2 h. The cell viability was calculated 
according to the following equation:

−
= ×

−
treatment blank

control blank

OD ODCell viability rate 100%
OD OD

Flow cytometry
Four microlitres of cell suspension at a density of 1 × 
105 cells/mL was inoculated into two culture flasks, 
followed by incubation at 37°C in 95% air and 5% CO2 
for 24 h. Then, the cells were treated with 400 μL of 
SCRP solutions with different concentrations of 0, 
50, 100 and 200 μg/mL for 24 h. After trypsinisation, 
cells were washed twice with 1 mL of ice-cold PBS and 
suspended in 400 μL of 1 × Annexin V binding buffer. 
Five microlitres of Annexin V-FITC were added to the 
cell suspensions and incubated for 15 min in the dark, 
followed by the addition of 10 μL of propidium iodide 
(PI) solution staining for 5 min in the dark (Huang et 
al., 2019). The samples were subjected to Millipore 
Guava easyCyte 8HT flow cytometer (Millipore, San 
Francisco, USA).

Hoechst33258 cell staining assay
MDA-MB-231 cells in the logarithmic growth phase 
were seeded into 6-well plates at 5 × 105 cells/well and 
incubated at 37°C in 95% air and 5% CO2 for 24 h. Then, 
cells were treated with SCRP solutions with different 
concentrations of 0, 50, 100 and 200 μg/mL for 24 h. The 
cells were washed twice with fresh PBS and fixed with 
pre-cooled 75% ethanol for 2 min before staining with 
200 μL of Hoechst33258 staining solution (1 mg/mL) at 
37°C for 25 min. The nuclear staining was observed on 
an Olympus CKX41 fluorescence microscope (Olympus, 
Tokyo, Japan) with the excitation wavelength of 488 nm, 
according to the method of Doynikova and Vekshin 
(2019).

was manually diluted after generating at least three efflux 
time readings at each concentration. The SCRP sam-
ple viscosity (η) was converted to specific viscosity (ηsp) 
according to the following equation:

	

η ηη
η
−

= s
sp

s

where, ηs represents the viscosity of the solvent (deion-
ised water).

The intrinsic viscosity [η] was usually obtained from 
extrapolation of ηsp/c to infinite dilution according to the 
Huggins empirical expression (Huggins, 1942) according 
to the following equation:

	

η
η η= +sp 2

1[ ] [ ]k c
c

where, the Huggins coefficient k1 represents a measure 
of polymer/polymer interaction in dilute conditions and 
also depends upon the extent of coil expansion of the 
polymer coil; c represents the concentration of SCRP 
solution.

Micro-rheology
Three millilitres of SCRP solution with different con-
centrations of 3, 3.75 and 4.5 mg/mL was added to 
4 mL sample cells and maintained at 30°C. Micro-
rheological curves were measured by Rheolaser Master 
(Formulaction, l’Union, France).

Thermal stability

The thermal stability was analysed by differential scan-
ning calorimetry (DSC) on a DSC-60A plus calorimeter 
(Shimadzu Scientific Instruments Inc., Maryland, USA). 
Two milligrams SCRP sample was placed in an alumin-
ium capsule and sealed. DSC thermogram was scanned 
from 30 to 300°C under the nitrogen atmosphere at a 
heating rate of 10°C/min.

Cell viability on MDA-MB-231

Cell culture
MDA-MB-231 cells were incubated in Leibovitz’s L-15 
medium containing 10% fetal bovine serum and 1% pen-
icillin-streptomycin at 37°C in 95% air and 5% CO2. The 
cells in the logarithmic growth phase were then collected 
and used for the following experiments.

Cell morphology observation
One hundred microlitres of MDA-MB-231 cells were 
seeded onto 96-well plates at a density of 5 × 104 cells/
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Results and Discussion

Physicochemical properties of SCRP

Molecular weight distribution and chemical composition  
of  SCRP
The extraction yield of crude polysaccharides from the 
dried and ground sea cucumber was 4.29% ± 0.14%, and 
the yield of the SCRP sample after isolation by DEAE-52 
column was 2.31% ± 0.08%. The molecular weight and 
chemical composition of the SCRP sample are shown 
in Table 1, Figures S2 and S3. The average Mw and Mn 
of SCRP were 57.5 and 51.3 kDa, respectively, and the 
polydispersity index was 1.1. Furthermore, SCRP was 
composed of Man, Glc, Gal, Arab and Fuc with a molar 
ratio of 1.00:0.98:0.95:1.39:0.61, respectively. The uronic 
acid and sulphate group contents of the SCRP sam-
ple were 13.74 and 6.14%, respectively. Liu et al. (2018) 
determined the monosaccharides of polysaccharides 
from fresh, dried, salty-dried, frozen-dried and dried sea 
cucumber samples, indicating sea cucumber polysaccha-
rides contained different ratios of neutral sugars (Fuc, 
Arab, Gal and Man), amino sugars (GalN and GlcN) and 
uronic acid. Yang et al. (2019) isolated a homogeneous 
polysaccharide from the by-product sea cucumber vis-
cera, mainly consisting of Man, GlcN, GlcUA, GalNAc, 
Glc, Gal and Fuc with a molar ratio of 1.00:1.41:0.88:2.14:
1.90:1.12:1.24, respectively. The result was similar to that 
of a previous study in which polysaccharides were iso-
lated from the body wall of sea cucumber Apostichopus 
japonicus (Liu et al., 2012). Nevertheless, our results of 
monosaccharide composition of the SCRP sample were 
different, probably because the sulphated fucan and fuco-
sylated chondroitin sulphate were released to the pro-
teolytic solution during the production of sea cucumber 
peptide.

FTIR spectrum of  SCRP
The composition of the SCRP sample was further analysed 
by FTIR, as shown in Figure 1. The bands at 3400 and 2939 
cm‒1 were assigned to O–H and C–H stretching vibrations 
(Myron et al., 2017). The band at around 1653 cm‒1 was 
due to the absorption of carboxylate anion of uronic acids, 
according to the report of Song et al. (2018). The absorp-
tion band at 1250 cm‒1 was assigned to the stretching 
vibration of S=O of sulphate (Yu et al., 2015). An additional 
unsymmetrical absorption band at 860 cm‒1 represented 
C–O–S vibration, indicating that sulphate might occupy 
the positions in sugar residues (Ustyuzhanina et al., 2017). 

Determination of mitochondrial transmembrane  
potential

Rhodamine 123 cell staining assay
MDA-MB-231 cells were incubated with SCRP solutions 
with different concentrations of 0, 50, 100 and 200 μg/
mL for 24 h. The cells were washed once with fresh PBS 
and fixed with pre-cooled 75% ethanol for 2 min. Then, 
200 μL of Rhodamine staining solution (1 μg/mL) was 
added into each well and incubated at 37°C for 25 min. 
The images were captured using an Olympus CKX41 
fluorescence microscope with an excitation wavelength 
of 495 nm, according to the method of Pollard et al. 
(2019).

JC-1 cell staining assay
MDA-MB-231 cells in the logarithmic growth phase 
were seeded into 6-well plates at 5 × 106 cells/well and 
incubated at 37°C in 95% air and 5% CO2 for 24 h. Then, 
cells were treated with SCRP solutions with different 
concentrations of 0, 50, 100 and 200 μg/mL for 24 h. 
After trypsinisation, cells were washed twice with 1 mL 
of ice-cold PBS and mixed with 1 mL of the medium and 
1 mL of JC-1 (lipophilic cationic dye) working solution. 
The JC-1 working solution was prepared by adding 4 mL 
of distilled water into 1 mL of JC-1 staining buffer (5×) 
and kept in an ice bath. The cells were incubated at 37° 
for 30 min and then washed twice with the JC-1 work-
ing solution. Flow cytometry was carried out on a Guava 
EasyCyte flow cytometer (Millipore, USA).

Reactive oxygen species experiment
MDA-MB-231 cells were prepared according to that 
described in the JC-1 cell staining assay. Then, cells were 
incubated with 10 µM DCFH-DA (diluted 1000-fold by 
serum-free medium) at 37°С in 95% air and 5% CO2 incu-
bator for 0.5 h and then washed three times with PBS 
solution without serum to remove the extra DCFH-DA. 
Cellular ROS levels were quantified on a Guava EasyCyte 
flow cytometer (Millipore, USA) with the excitation 
wavelength and emission wavelength of 488 nm and 525 
nm, respectively.

Statistical analysis

Results were analysed by one-way ANOVA and Student’s 
t-test. Differences were considered to be statistically sig-
nificant at P < 0.05 for all tests.

Table 1.  Molecular weight, chemical composition and viscosity of the SCRP sample.

Molecular weight Chemical composition (%) Viscosity  
(mL/mg)

Mw (kDa) Mn (kDa) Mw/Mn Man Glc Gal Arab Fuc Uronic acid Sulphate

57.5 ± 1.1 51.3 ± 1.0 1.10 ± 0.08 20.03 ± 0.19 19.56 ± 0.46 18.63 ± 0.25 25.94 ± 0.32 15.82 ± 0.43 13.74 ± 0.89 6.14 ± 0.13 8.9 ± 0.5
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The FTIR results corresponded to the presence of uronic 
acid and sulphate group.

Flow properties of SCRP

Intrinsic viscosity
The intrinsic viscosity of SCRP, [η], was determined using 
the Huggins empirical expression. The fitting plot was 
ηsp/c = ‒28.1c + 8.9 (R2 = 0.9616). The intrinsic viscosity 
of SCRP was 8.9 mL/mg, as shown in Table 1. The mod-
erate viscosity of the SCRP sample is beneficial to the 
application of SCRP in food processing.

Flow behaviour
The micro-rheological analysis was conducted to inves-
tigate the changes in the viscoelastic properties of SCRP 
along with time. Mean-square displacement (MSD) 
curves (Figure S4) of SCRP at different concentrations 
of 3, 3.75 and 4.5 mg/mL were analysed as a function 
of time. Figure 2A shows the elasticity index (EI) value, 
which indicates the elasticity strength of the SCRP 
solution. The EI value of SCRP samples increased with 
increase in concentration, and each EI curve tended to 
be stable with increase in time. The decreasing trend of 
the EI curve as a function of time might be attributed 
to precipitation and flocculation at a relatively high con-
centration of the SCRP sample. The solid-liquid balance 
(SLB) value represents the MSD slope at short decor-
relation time, which indicates the liquid or solid dom-
inated rheological properties of SCRP samples with a 
key SLB value of 0.5. The 0 < SLB < 0.5 indicates solid 
behaviour dominates, whereas 0.5 < SLB < 1 means 
liquid behaviour dominates. When the SLB = 0.5, the 
liquid and solid parts are equally dominant (Yun et al., 
2018). Figure 2B shows that SLB values of SCRP sam-
ples at concentrations of 3, 3.75 and 4.5 mg/mL were 
larger than 0.5, indicating that liquid dominated the 
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solutions. The macroscopic viscosity index (MVI) value 
corresponds to the inverse slope of the MSD curve on a 
linear scale (Figure 2C) and represents the macroscopic 
viscosity without shear (Xu et al., 2016). SCRP samples 
at different concentrations had a similar slope, suggest-
ing a liquid rheological behaviour of SCRP samples at 
concentrations of 3, 3.75 and 4.5 mg/mL, and no signif-
icant influence of concentrations on the macroscopic 
viscosity.
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of adherence cells decreased with the treatment of 50, 
100 and 200 μg/mL SCRP samples. Cells were stripped 
away from walls and gathered into clusters, floating in the 
culture medium. The results indicated that SCRP could 
affect cell growth and lead to cell morphological change.

Cell inhibition rate
Table 2 showed the inhibition effect of SCRP extracted 
from waste residue of sea cucumber peptide production 
on MDA-MB-231 cells. SCRP samples at the concentra-
tions of 50 and 100 μg/mL had slight inhibition effect 
on the cells by 3.88 and 15.12%, respectively. While the 
SCRP sample at a concentration of 200 μg/mL exhibited 
a higher inhibition rate by 21.32%. The antitumour activ-
ity of SCRP samples on breast cancer cells increased with 
the concentration increasing, indicating that SCRP sup-
presses cancer cell growth in a concentration-dependent 
manner (Tang et al., 2019).

Thermal properties of  SCRP
The melting of the SCRP sample was conducted with the 
temperature rising from 35°C to 300°C (Figure 3). Two 
main endothermic peaks appeared at 85.03 and 231.80°C, 
which probably corresponded to the loss of water 
(Atabani et al., 2019) and decomposition of polysaccha-
rides (Szeleszczuk et al., 2019), respectively.

Cell viability on MDA-MB-231

Cell morphology
The optical microscopic images of MDA-MB-231 cells are 
shown in Figure 4. In the control group, MDA-MB-231 
cells appeared regular and shuttle-shaped with a smooth 
surface. A large number of MDA-MB-231 cells became 
rounded, shrunken or irregular shaped, and the number 
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Figure 3.  The differential scanning calorimetry (DSC) curve 
of sea cucumber polysaccharides (SCRP).

Figure 4.  Inverted fluorescence microscopy results of MDA-MB-231 cells treated with different concentrations (0, 50, 100 and 
200 μg/mL) of sea cucumber polysaccharides (SCRP), designated as Control, LSCRP, MSCRP and HSCRP groups.

Table 2.  Effects of different concentrations of sea cucumber  
polysaccharides (SCRP) on growth inhibition activity in 
MDA-MB-231 cells.

Group OD value Inhibition rate (%)

Control 0.258 ± 0.027a 0.00

LSCRP 0.248 ± 0.002a 3.88

MSCRP 0.219 ± 0.009a,b 15.12

HSCRP 0.203 ± 0.009b 21.32

OD values are expressed as mean ± standard deviation. 
Different letters indicated significant differences at P < 0.05 in 
the same column.
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group. Especially in the HSCRP group, MDA-MB-231 
cells were severely damaged, with nuclear condensation 
and chromosomal defects.

Determination of mitochondrial  
transmembrane potential

Rhodamine 123 cell staining assay
The loss of mitochondrial transmembrane poten-
tial is an early sign of the apoptotic process. In order 
to determine if there is an early loss of mitochondrial 
transmembrane potential when different concentra-
tions of SCRP samples were added, we conducted 
Rhodamine123 (Rh123) staining, JC-1 cell staining and 
ROS assays with the addition of SCRP on MDA-MB-231 
cells. When external factors stimulate cells, it will cause 
a series of changes in mitochondria: the disappearance 
of mitochondrial membrane potential, the reduction of 
mitochondrial ATP production, the reduction of trans-
lation and transcription activities in mitochondria, thus, 
causing apoptosis and death of cells. Rh123 is a lipo-
philic cationic fluorescent dye, which has a permeabil-
ity to the cell membrane and can be selectively enriched 

Cell apoptosis induction
The apoptosis effect of SCRP was detected with the 
Annexin V-FITC/PI assay to determine whether SCRP 
exerted cytotoxicity effects on the MDA-MB-231 cells 
(Figure 5A). It could be seen that SCRP could signifi-
cantly induce early apoptosis to the MDA cells. 4.25, 5.58 
and 13.81% of cells were apoptotic by treating with 50, 
100 and 200 μg/mL of SCRP, respectively. HSCRP group 
exhibited the highest apoptosis effect on breast cancer 
cells with a notable difference in early and late apoptotic 
and necrosis rate, compared to the control group.

Hoechst33258 cell staining assay
Hoechst3358 is a dye that can stain the nucleus to iden-
tify apoptosis-related changes in the nucleus, such as 
chromatin concentration and fragmentation (Doynikova 
and Vekshin, 2019). When cells apoptosis, chromatin will 
shrink. Therefore, after Hoechst 33258 staining, it was 
observed under the fluorescence microscope that the 
cells in the control group were spindle-shaped, the nuclei 
with complete structure (Figure 5B) were normal blue. 
In contrast, the nuclei of apoptotic cells were dense and 
concentrated bright blue, or fragmented with some white 
colour, for example, in the MSCRP group and HSCRP 
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Figure 5.  (A) Apoptotic flow diagram, (B) Hoechst33258 staining experiment and (C) Rhodamine 123 staining experiment 
results of MDA-MB-231 cells treated with different concentrations (0, 50, 100 and 200 μg/mL) of sea cucumber polysaccharides 
(SCRP), designated as Control, LSCRP, MSCRP and HSCRP groups.
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JC-1 cell staining assay
The uptake of JC-1 by mitochondria is dependent on 
transmembrane potential. JC-1 can easily enter cells 
through the plasma membrane and accumulates in the 
mitochondria (Mathur et al., 2000; Zhang et al., 2015b). 
The healthy MDA-MB-231 cells have a high mitochon-
drial membrane potential and show red fluorescence 
after staining (“active” mitochondria). If the mitochon-
drial membrane potential decreased, it would show a 
fluorescence transition from red to green after staining 
(“inactive” mitochondria). Figure 6A shows that with the 
increase in concentration, green fluorescence increases 
significantly, indicating the reduction of the mito-
chondrial membrane potential. The result agrees with 
rhodamine staining fluorescence. Therefore, by destroy-
ing the membrane potential, the internal and external 

in mitochondria. Figure 5C shows that most of the cells 
in the control group and LSCRP group are bright yel-
low-green; many of the cells in the MSCRP group and 
HSCRP group are obviously light green and dark green, 
and the fluorescence intensity decreased. The overall 
brightness of cells in the LSCRP group was higher than 
that in the MSCRP group and HSCRP group. When the 
cell is in the survival state, Rh123 accumulates in the 
mitochondria and emits green fluorescence through the 
cell membrane. During apoptosis, the mitochondrial 
membrane transport ability decreases, the electronega-
tivity decreases, the ability of the mitochondria to accu-
mulate Rh123 is also lost, and the fluorescence intensity 
decreases (Rajpurohit et al., 1999). The JC-1 experiment 
further demonstrated the decrease of mitochondrial 
transmembrane potential.
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Figure 6.  (A) FL1-FL2 scatter diagram of MDA-MB-231 cells stained by JC-1, (B) cell mitochondrial membrane potential 
changes of the MDA-MB-231 cells, (C) the ROS changes of the MDA-MB-231 cells after treatment with different concentrations 
(0, 50, 100 and 200 μg/mL) of sea cucumber polysaccharides (SCRP), designated as Control, LSCRP, MSCRP and HSCRP groups.
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thermal properties. SCRP rendered the early apopto-
sis of cells, as well as induced the loss of mitochondrial 
transmembrane potential and increase the ROS level. 
The polysaccharides extracted from waste residue of sea 
cucumber peptide production showed inhibitory effects 
against MDA-MB-231 cells.
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Figure S1.  Elution profile of sea cucumber polysaccharides (SCP) in DEAE-52 column using distilled NaCl solution as eluent.
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Figure S2.  MSD curve of 3 mg/mL SCP solution.
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Figure S4.  MSD curve of 4.5 mg/mL SCP solution.
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Figure S3.  MSD curve of 3.75 mg/mL SCP solution.
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