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Abstract

A new aspect covering interactions between cells and their surroundings via electromagnetic waves was intro-
duced by applying ultra-weak photon emission (UPE). The UPE originates from the relaxation of electronically 
excited species resulting from oxidative metabolic processes and oxidative stress associated with reactive oxygen 
species (ROS). The ROS plays a critical role in the quality of foods, and their determination is of extreme impor-
tance. The ROS and the intensity of the UPE have significantly correlated. The UPE can be effectively monitored 
by specific instruments such as photomultiplier tube and charged-coupled devices. The current review is devoted 
to providing an overview of the quality of food products by the aid of UPE via evaluating the correlations between 
UPE and food quality indices. In this regard, the UPE can be utilized in food quality as a real-time, noninvasive, 
and nondestructive technique without complex instruments. However, the implementation of the UPE method 
for evaluation of food quality needs further investigations.

Keywords: defense mechanisms; food quality assessment; oxidative stress; reactive oxygen species; ultra-weak photon 
emission

Introduction

All known biological systems possess an active oxidative 
metabolism or stress that involves oxidation reactions 
in which reactive oxygen species (ROS) play a critical 
role. These ROS can efficiently react with biomolecules 
in organisms, resulting in the synthesis of unstable inter-
mediates. The decomposition of these intermediates 
mostly leads to the formation of unstable excited electron 
species. During this formation, a tiny amount of light is 
generated, and monitoring of this light can give essential 
information about the organism’s oxidative state (Cifra 
and Pospíšil, 2014; Pospíšil et al., 2014).

Investigations regarding cellular communication through 
ultra-weak photon emission (UPE) started in the 1910s. 
At that time, a scientist named Alexander Gurwitsch, 
after conducting various experiments revealed that two 
separate series of onion root cell cultures, adjacent to 
each other, could pose some influences on each other 
regarding cell division and multiplication rate (Bischof, 
2003; Prasad et al., 2014; Scholkmann et al., 2013).

The emission of light by various living organisms was 
demonstrated by several previous investigations (Burgos 
et al., 2017; Cifra and Pospíšil, 2014; de Mello Gallep and 
Robert 2020; Esmaeilpour et al., 2020; Jia et al., 2020; 
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structure and quality. Therefore, the use of nondestruc-
tive methods has attracted many researchers (El-Mesery 
et  al., 2019; Magwaza et al., 2013). Traditional non-
destructive techniques, such as machine vision, 
hyper-spectral imaging, near-infrared (IR) spectros-
copy, electronic nose, electronic eye, electronic tongue, 
ultrasound measurements, and acoustic emission mea-
surements, have been employed to assess the quality of 
food and agricultural products (El-Mesery et al., 2019; 
Giovenzana et al., 2017; Kheiralipour et al., 2016; Omar 
and MatJafri, 2013; Schinabeck et al., 2018; Zhong and 
Wang, 2019).

Currently, the application of UPE in food quality is a 
hot topic, and investigations are still ongoing regarding 
measuring food quality indices. However, to the best of 
our knowledge, no overview of this subject in the food 
quality area has been provided. Therefore, this article 
was undertaken to provide an overview considering the 
measurement of ROS production by UPE in food qual-
ity assessment. In this context, the definition, sources of 
generation, detection mechanisms, and applications of 
UPE in agricultural products are pinpointed.

Ultra-Weak Photon Emission

UPE definition

In addition to chemical signal transduction pathways, 
the communication between living beings can be carried 
out through electromagnetic waves (Van Wijk, 2001). In 
this regard, they could emit light either spontaneously or 
coherently, which is different from fluorescence, phos-
phorescence, and conventional bioluminescence (Cifra 
and Pospíšil, 2014; Shanei et al., 2017). The spontaneous 
emission can occur without an external excitation or any 
pre-illumination. The living organisms have a nonex-
ponential decay of UPE after exposure to external light 
(Rafii-Tabar and Rafieiolhosseini, 2015). The coherent 
emission is another aspect of UPE, defined as a state of 
light in which waves can interfere constructively and 
form interference patterns (Gu, 1999). 

As mentioned earlier, the oxidation of biomolecules 
during cellular metabolism leads to UPE. It was also 
reported that an organism’s DNA could act as a source of 
UPE (Prasad et al., 2014).

Induced UPE can be originated from various oxidative 
factors, mainly biotic and abiotic stresses. The biotic fac-
tors include bacterial (Mansfield, 2005), viral (Kobayashi 
et al., 2006), fungal (Rastogi and Pospíšil, 2012), and 
herbivorous stress (Yoshinaga et al., 2006). The abi-
otic stresses arise from factors such as the surrounding 
environment (Münzel et al., 2018), mechanical damage 

Prasad et al., 2014; Prasad et al., 2020; Van Wijk et al., 
2001). According to literature, the concept of UPE was 
introduced in a variety of terms such as “biophotons,” 
“ultra-weak emission,” “self-bioluminescent emission,” 
“photoluminescence,” “delayed luminescence,” “ultra-
weak luminescence,” “spontaneous chemiluminescence,” 
“endogenous bioluminescence,” and “biochemilumines-
cence” (Salari et al., 2011; Shanei et al., 2017). 

As very active and unstable compounds, free radi-
cals are referred to as atoms, molecules, or ions with 
unpaired electrons (Mayorga Burrezo et al., 2019). In 
this regard, the oxygen radicals are classified as free 
radicals which can be produced continuously in all 
living organs with destructive effects on cellular pro-
teins, lipids, and, most notably, DNA that may lead to 
carcinogenesis (Saikolappan et al., 2019). The ROS can 
be classified into two groups as radical and non-radical 
species (Gill and Tuteja, 2010; Pospíšil et al., 2019). 
The ROS can react with biomolecules, such as lipids, 
nucleic acids, and proteins, to cause a deformity and 
finally increase their levels of energy. Consequently, 
this reaction creates electron excitation, with later elec-
tron’s transition from a singlet-triplet state to the base 
state with photon emission, usually called UPE (Pospíšil 
et al., 2014).

The formation of ROS in the food and agricultural indus-
try must be monitored as it is strongly related to public 
health and may cause an economic burden at a global 
level. ROS production can be associated with monitor-
ing plant response to pathogens, drought stress, flooding 
stress, salt stress, and herbicides among agriculture prod-
ucts. Currently, the evaluation of UPE as a robust, real-
time, inexpensive, nondestructive, and noninvasive tool 
to monitor oxidative reactions among several scientific 
fields, such as medical, pharmaceutical, biological, envi-
ronmental, agricultural, and food products, is the point 
of interest. A probable correlation between UPE and food 
quality indices can be proposed (Gałązka-Czarnecka 
et al., 2019; Sun et al., 2019). Therefore, the UPE as a 
diagnostic tool to monitor agriculture processes can be 
considered for further developments (Cifra and Pospíšil, 
2014; Guo et al., 2017; Inagaki et al., 2008; Moraes et al., 
2012; Prasad and Pospíšil, 2011).

Due to the rapid growth of the world population, food 
security, safety, and quality are important issues that 
should be considered severe challenges (Cheeseman, 
2016; Godfray et al., 2010; McCarthy et al., 2018; 
Prosekov and Ivanova, 2018). Destructive methods 
are widely employed to evaluate food quality, but they 
are usually more labor-intensive and time-consuming, 
which may harm the material. In contrast, the non
destructive methods allow the measurement of differ-
ent food quality attributes without affecting physical 
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visible range and UV range. Up to now, PMT and CCD 
cameras have been used widely for the detection of UPE 
(Cifra et al., 2011). While the former enhances light radi-
ation up to 100 times, the latter detects this light in two 
dimensions as a highly sensitive photon detector. The 
MCP devices are sensitive compared with PDA and CCD 
(Madl, 2014; Ortega-Ojeda et al., 2018).

Effect of ROS on Plants

Oxidative stress

Oxidative stress is defined as “an imbalance between 
oxidant production by free radicals and the antioxidant 
capacity of the cell” (Sies et al., 2017), which causes severe 
adverse effects on the growth and productivity of plants. 
The biotic, abiotic, and stress conditions (Pitzschke et al., 
2006) are demonstrated in Figure 1. ROS are free radicals 
and play a critical role in oxidative stress in which their 
accumulation in the plant cell leads to damage to some 
organelles. Besides, along with ROS, reactive nitrogen 
and sulfur species play an essential role in the cell’s oxida-
tive stress development.

ROS formation

Reactive oxygen species in all aerobic organisms, as well 
as plants, are continuously formed as a toxic by-prod-
uct as a result of aerobic metabolism, while they also 
can be originated from various enzymatic and nonen-
zymatic processes as well as two biotic and abiotic fac-
tors (Bailey-Serres and Mittler, 2006; Gupta et al., 2015). 
While the sources of ROS in plant cells are located in 
chloroplasts, mitochondria, peroxisomes, endoplasmic 
reticulum, apoplast, plasma membranes, and cell wall 
(Abouzari and Fakheri, 2015), some ROS can be detox-
ified by some enzymatic and nonenzymatic mechanisms 

(Liang et al., 2019), undesired temperature (Ahammed 
et al., 2019), light (Nakashima et al., 2017), and ionizing 
radiation (Singh et al., 2017). All these factors increase 
oxidative damages because of excessive production of 
ROS. The UPE possesses a spectral range varying from 
200 to 800 nm with fragile intensity (few to hundreds of 
photons per cm2) (Yang et al., 2017). It is interesting to 
note that such intensity of radiation is equivalent to look 
at candlelight with naked eyes from a distance of nearly 
24 km (Bischof, 2005), which elucidates the difficulty of 
capturing these signals.

UPE detection

The photographic containers and tubes with a partic-
ular sensibility to ultraviolet (UV) rays were the first 
employed devices for UPE detection, capturing waves in 
the UV range (Cifra et al., 2011). However, the intensity 
of these waves was very weak for such detection with 
available detectors. Therefore, their detection was post-
poned for many years. After some advancements in tech-
nology, several suitable devices were introduced to detect 
UPE, for example, avalanche photodiodes (APD), pho-
todiode arrays (PDA), charged-coupled devices (CCD), 
microchannel plate (MCP), visible light photon counters 
(VLPC), superconducting tunnel junctions (STJ), hybrid 
photon detector (HPD), photo multiplier-tube (PMT), 
and channel photomultiplier (CPM). PDAs, CCDs, and 
MCPs, are used for spatial (2-dimensional [2D]) reso-
lution. Considering the devices introduced for 1D res-
olution, PMTs deal with a characteristic photon density 
ranging from a few to up to some hundred photons per 
square centimeter per second. Therefore, they remain 
a suitable choice for UPE detection. After PMT devel-
opment in the 1950s, detection of this light achieved 
notable improvement, and measurements became accu-
rate (Bischof, 2005; Rahnama et al., 2011). At this stage, 
scientists discovered that UPE was also emitted in the 
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Figure 1.  Sources of ROS generation. ROS, reactive oxygen species.
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et al., 2019). Another source of hydroxyl radical is the 
Haber–Weiss reaction (Equation 6). The Haber–Weiss 
cycle is a two-step reaction. In the first step, the ferric 
(Fe3+) ion reduction into the ferrous (Fe2+) ion occurs via 
reaction with superoxide radical. The second step is the 
Fenton reaction (Equations 4 and 5). The first and second 
steps’ net reaction is the Haber–Weiss reaction (Kehrer, 
2000).

Under normal conditions, the ROS production rate in 
cells is low (240 μmol/s and 0.5 μmol H2O2 at a steady-
state level), and the ROS generation is generally in bal-
ance with antioxidant capacity. When the oxidative stress 
exceeds the available antioxidants, the ROS generation’s 
rate increases (240–720 μmol/s and 5–15 μmol H2O2 
in a steady-state level), which consequently, due to fur-
ther accumulation, causes cell death when some adverse 
environmental factors perturb the balance between the 
rate of production and scavenging of ROS, the intra-
cellular levels of ROS may rapidly rise (Pitzschke et al., 
2006; Tsugane et al., 1999). Some defense mechanisms 
involved antioxidant agents that work hand in hand to 
reduce undesirable phenomenon (Racchi, 2013).

Antioxidant defense mechanisms

An antioxidant is a substance in low concentration that 
significantly inhibits oxidation or delays oxidation with 
different mechanisms (Mousavi Khaneghah, 2016). 
Among them, oxygen removal or localized oxygen reduc-
tion, removal of metal catalytic Cu2+ and Fe2+, removal of 
ROS such as O2, H2O2, and chain reaction interruptions, 
increase in the rate of ROS scavenging, acceleration of 
recovery of damaged cell structures, and enhancement 
of absorbed energy heat dissipation are mentioned in lit-
erature. Generally, an antioxidant’s capacity to neutralize 
ROS action and free radicals depends on various factors 

(Ahmad,  2013). Figure 2 demonstrates the radical and 
non-radical forms of ROS.

The reactions for significant ROS generation can be sum-
marized as follows:

	 O2 + e– → O2
•–	 (1)

	 2O2
•– + 2H+ → H2O2 + O2	 (2)

	 O2 + hν → 1O2	 (3)

	 Fe2+ + H2O2 → Fe3+ + •OH + OH–	 (4)

	 Cu+ + H2O2 → Cu2+ + •OH + OH–	 (5)

	 O2
•– + H2O2 → •OH + OH– + O2	 (6)

The one-electron reduction of molecular oxygen is 
responsible for forming high-reactive superoxide rad-
icals (Equation 1). This reduction occurs in mitochon-
dria, chloroplasts, and peroxisomes (Pospíšil et al., 
2019). Unlike the superoxide radical, hydrogen perox-
ide, which is formed through a dismutation reaction by 
superoxide dismutase (SOD) enzyme, is relatively stable 
and less reactive (Equation 2) (Battin and Brumaghim, 
2009). Hydrogen peroxide can also be produced by dif-
ferent enzymes, such as glycolate oxidase, L-amino acid 
oxidase, and urate oxidase (Battin and Brumaghim, 
2009; Thannickal and Fanburg, 2000). Singlet oxygen, a 
non-radical, is an excited state of O2, which is not very 
reactive in its ground state (Equation 3). The chloro-
phyll and their precursors performed singlet oxygen’s 
primary production (Krieger-Liszkay, 2005; Tripathy 
and Oelmüller, 2012). In the presence of transition met-
als (iron [Fe2+] or copper [Cu2+] ions), the highly reactive 
hydroxyl radical is formed (Equations 4 and 5) through 
the Fenton reaction (Battin and Brumaghim, 2009; Janků 
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Figure 2.  Radical and non-radical forms of ROS. ROS, reactive oxygen species
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blue-green regions of visible light (Fedorova et al., 2007). 
The spectrum range of singlet- and triplet-excited pig-
ments belongs to green-red (550–750 nm) and red–near 
IR (750–1000 nm), respectively (Pospíšil et al., 2014; 
Sauermann et al., 1999). The photon emissions of mono-
mol 1O2 and dimol are close to IR (at 1270 nm) and the 
visible light (at 634 and 703 nm), respectively (Adam 
et al., 2005; Pospíšil et al., 2014).

UPE Application in Food and Agriculture

As already discussed, UPE is produced and released by 
ROS and received by biological systems, especially in 
agriculture. However, how UPE is emitted and received 
in intercellular and intracellular interactions is still a sig-
nificant issue. Since the detection and analysis of the UPE 
spectrum are simple, available, inexpensive, and nonin-
vasive, it can be used in different fields.

As mentioned earlier, most experiments demonstrate the 
impact of UPE in the field of agriculture, which can be 
used for the detection of pathogens in plants (Bennett 

such as activity, interaction with other antioxidants (syn-
ergetic), absorption, distribution, and metabolism of anti-
oxidants (Pitzschke et al., 2006). Antioxidant systems can 
be classified into enzymatic and nonenzymatic groups 
(Table 1) (Caverzan et al., 2019; Karuppanapandian et al., 
2011).

Recently, several studies have been carried out to find the 
effects of various antioxidants on UPE. The experimen-
tal evidence showed that the antioxidants suppressed 
UPE in various living organisms. For instance, the UPE 
from human skin was suppressed by three antioxidants 
(d-δ-tocopherol sodium, L-glutathione, and L-ascorbate) 
(Tsuchida et al., 2019). Different antioxidants (α-tocoph-
erol, glutathione, +6 ascorbate, and coenzyme Q10) nota-
bly decreased the UPE from the human skin (Rastogi and 
Pospísil, 2011). In another research, the results showed 
that the topical application of oligomeric proanthocyan-
idins (antioxidants) significantly reduced the UPE from 
the human skin (Van Wijk et al., 2010). Similar research 
on humans (Egawa et al., 1999; Sauermann et al., 1999) 
and mouse skins (Evelson et al., 1997) were conducted 
to find the effect of antioxidants UPE. It has also been 
shown that the UPE from radish root cells was consid-
erably suppressed by different amounts of sodium ascor-
bate and cysteine (Rastogi and Pospísil, 2010). The ROS 
induced in rice cells by N-acetylchitooligosaccharide, 
and consequently UPE, was also highly suppressed by 
the addition of diphenyl iodonium as a ROS scavenger 
(Kageyama et al., 2006).

Correlation between ROS and UPE

All living systems are connected to their surroundings 
through the UPE exchange, while the spontaneous UPE 
is originated from the transition of electronically excited 
species to the ground state formed during oxidative met-
abolic processes (Pospíšil et al., 2014). Cyclo-addition of 
1O2 or the hydrogen abstraction ⋅HO is two mechanisms 
for oxidation of biomolecules among oxidative meta-
bolic processes. The hydrogen abstraction from proteins, 
nucleic acids, and lipids by HO⋅ can result in an alkyl rad-
ical (R⋅), which could react with O2 and produce peroxy 
radical (ROO⋅). The cyclization of ROO· and the recom-
bination of two ROO⋅ lead to high-energy intermediates 
dioxetane (ROOR) and tetroxide (ROOOOR), respec-
tively. The production of dioxetane is also performed by 
cycloaddition of singlet oxygen. The electronic species, 
such as triplet-excited carbonyls (3R=O*), singlet (1P*), 
and triplet pigment (3P*), and 1O2 are formed due to the 
decomposition of tetroxide and dioxetane (Fedorova et 
al., 2007; Pospíšil et al., 2014; Yang et al., 2015).

The spectrum of the spectrum associated with pho-
ton emission of 3R=O* (350–550 nm) is near UV and 

Table 1.  Classification of important enzymatic and nonenzymatic 
antioxidants.

ROS scavenging by antioxidant enzymes 

Enzymes Reactions

SOD 2O2
•– + 2H+ → H2O2 + O2

CAT 2H2O2 → 2H2O + O2

POD H2O2 + GSH → H2O + GSSG

APX H2O2 + ASCA → 2H2O + DHA

MDHAR 2MDHA + NAD(P)H → 2ASCA + NAD(P)

DHAR DHA + 2GSH → ASCA + GSSG

GR GSSG + NAD(P)H → 2GSH + NAD(P)+

GPX H2O2 + 2GSH → 2H2O + GSSG

ROS scavenging by antioxidant nonenzymes

Nonenzymes Reactions

AscA Detoxifies H2O2, O2
∙– and *OH

GSH Substrate for various PODs, GSTs, and GR. 
Detoxifies H2O2,O2

.–, and *OH

TOCs Protects membrane lipids from peroxidation, 
detoxifies lipid peroxides, and quenching 1O2

CARs Quench 1O2

Flavonoids Can directly scavenge H2O2 and OH˙

AscA: ascorbic acid; APX: ascorbate peroxidase;  
CARs: carotenoids; CAT: catalase; DHA: dehydroascorbate; DHAR: 
dehydroascorbate reductase; GPX: guaiacol peroxidase; GR: glu-
tathione reductase; GSH: glutathione; GSSG: oxidized glutathione; 
GSTs: glutathione-S-transferases;  
MDHA: monodehydroascorbate; MDHAR: monodehydroascorbate 
reductase; PODs: peroxidases; SOD: superoxide dismutase; TOCs: 
tocopherols.
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et al., 2005; Iyozumi et al., 2002; Kageyama et al., 2006; 
Kobayashi et al., 2006; Makino et al., 1996; Mansfield, 
2005; Montillet et al., 2005; Rastogi and Pospíšil, 2012), 
drought stress (Guo and Tan, 2013; Kausar et al., 2012; 
Komatsu et al., 2014; Ohya et al., 2000), salinity (Ohya 
et al., 2000), flooding stress (Kamal and Komatsu, 2016; 
Kausar et al., 2012; Khatoon et al., 2012; Komatsu et al., 
2014), and herbicides (Inagaki et al., 2007, 2008, 2009; 
Kato et al., 2014; Nukui et al., 2013).

Food quality and safety with UPE

As stated above, the studies on UPE in the areas of food 
quality are limited. The aim is to review the useful, rele-
vant documents to find the relation between food quality 
and safety with UPE (Table 2).

For better clarity, the extensive description of each study 
(Table 2) follows.

The UPE method was employed to assess the quality of 
milk, hen’s eggs, and vegetable oils. In the case of milk, 
to improve its durability, some heating methods were 
applied, resulting in a further decrease in the light stor-
age capacity of milk and consequently lead to a change 
in its components and quality, such as protein denatur-
ation dephosphorylation and loss of vitamins. For this 
purpose, some pasteurized, homogenized, and ultra-high 
temperature milk samples with different fat percentages 
were prepared. The samples were exposed to white, red, 
and blue lights (light illumination). The UPE was mostly 
increased after light illumination was applied to these 
samples. It was revealed that the higher the light storage 
capacity, the lower the intensity of UPE. Based on these 
findings, a decrease and increase in the milk’s light stor-
age with low fat (1.5%) and natural fat content (3.5–3.8%) 
were noted, respectively. In the case of eggs, the aim was 
to find the origin of eggs while the egg yolk’s desired color 
attracted the consumers. To identify the origin of eggs, 
325 brown hens were divided into four different groups: 
soil, soil with free-range on vegetation, cage, and sand.

Further chemical analysis showed that no significant 
differences between the groups were evident. Although 
the eggs from cages or soil exhibited a lower UPE rate 
than free-range eggs (on vegetation and sand), it demon-
strated that the source of UPE is not a single chemical 
substance. In edible oil, 24 different types of sunflower 
oils were subjected to UPE measurement in three groups 
(without external illumination, after white and red lights 
illumination). The quality of sunflower oils is charac-
terized by three-factor values, including light storage 
capacity, decomposition procedures (e.g., low quality 
of storage and aging), and the order’s value in the sense 

of physiological and nutritional values. A high rate of 
UPE after red light illumination can be associated with 
decomposition procedures. The irradiation of food 
breaks chemical bonds and consequently forms radi-
cals. By illumination with light, the electronically excited 
radicals fall to their base stats, and due to these different 
energy levels, the light is emitted. Therefore, food irra-
diation shows a much higher emission rate (higher by a 
factor of 50) after light illumination than nonirradiated 
ones (Lambing, 1992).

Another study aimed to monitor the UPE accompany-
ing autoxidation and water–biopolymer interactions 
in cereal products using the CCD technique. While the 
hydration of cellulose, dextran, or starch chains resulted 
in the hydrogen-bond formation and, consequently, 
accumulation of the excitation energy, incorporating 
water into cereal products enhanced the UPE (Slawinska 
and Slawinski, 1997, 1998).

The quality of tomato fruit was studied using UPE mea-
surement. The fruits were harvested at four maturity 
stages (green–orange, orange-red, light red, and red) 
with almost the same size and weight. They were stored 
at a particular temperature (20 °C) and humidity (80% 
RH) for 10 days. It was found that the UPE was directly 
related to harvest maturity. It was mentioned that UPE 
could be used as a nondestructive method to evaluate 
tomato quality (Triglia et al., 1998).

The UPE was measured for rice (Oryza sativa L.) seeds, 
which were stored during different years (1996, 1998, 
1999, and 2001), and the correlation between the degree 
of aging of rice seeds and the intensity of UPE was noted. 
It was observed that the rice seeds stored for a shorter 
period had a stronger intensity of UPE in early imbibi-
tion. Moreover, a significant correlation was reported 
between the germination rates of rice seeds and the 
intensity of UPE (Chen et al., 2003).

The coffee seed viability was studied by the aid of a UPE 
measurement. For this purpose, six coffee seeds were 
selected to measure UPE after exposure to white light at a 
constant temperature (22 °C). The germination rates were 
recorded on the 15th and 30th day. The proposed method 
with further investigations can promote advances in stor-
ing methods via the UPE technique (Gallep et al., 2004).

The quality parameters of differently cultivated carrots 
from an organic farm and conventional farms in Austria 
were studied for 5 years (1998–2003) with different qual-
ity assessment methods, including sensor tests, food 
preference tests with laboratory rats, decomposition 
tests, P-value determination, chemical analysis, and UPE. 
In this work, the carrot slices were put under a light bulb, 
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cadmium stresses) considered 2 or 3-day-old seedling 
samples and exposed to stresses above. They measured 
the activity of the APX and isoflavone reductase, which 
have related to the UPE measurement. They found that 
differential patterns of UPE were detected for considered 
days, and maximum UPE was evident under flooding 
stress compared to drought stress, and the UPE in the 
leaves treated with cadmium was higher than untreated 
soybean samples.

Flooding is abiotic stress that influences plant growth 
and crop yields. Kamal and Komatsu (2016) investigated 
the molecular systems based on flooding-stressed roots 
in soybean and UPE evaluation under light and dark 
conditions. They found that the UPE was considerably 
increased with light and dark conditions after flooding 
stress but decreased with continued flooding exposure. 
They also showed that increase in the activity of enzyme 
lysine ketoglutarate reductase/saccharopine dehydroge-
nase bifunctional was due to flooding stress, which con-
sequently increased ROS rate scavenging and UPE.

The UPE measurement for evaluating microbial contam-
ination (coliform group) of water samples from a river 
near Curitiba City in Brazil was assessed. It was observed 
that the UPE measurement is an effective way to discrim-
inate between contaminated and noncontaminated water 
samples (Cordeiro et al., 2017).

Grasso et al. (2018) verified the growth performance of 
inherently aged or damaged watermelon seeds by the 
UPE technique. For this purpose, they selected two lots 
of watermelon seeds, with 96 seeds in each lot. All the 
germination tests were performed using 12 dishes per 
lot, eight seeds in each dish, and a filter paper. To per-
form UPE measurements, the samples were placed in a 
controlled dark condition (at a temperature of 28.3°C) 
until a 2-mm root length was reached. For the spectral 
analysis of UPE, the interference filters (Edmund Optics; 
center wavelength 450, 550, and 650 nm, respectively) 
were employed. The results showed that the UPE mea-
surements were strictly related to the system’s biologi-
cal state under analysis. They claimed that the proposed 
method could be used as a noninvasive and nondestruc-
tive technique for rapidly analyzing the seeds’ viability 
and enhancing tools for seed-sorting systems.

Nawara et al. (2018) designed and manufactured a sta-
tion to assess food quality. The designed device was to 
measure the degree of UPE of organic matters and pro-
cesses. The manufactured instrument included a PC 
with counting, controlling systems, and measurements, 
including amplification and counting single photons 
(ESPC), control card, the light source for automatic 
recording of test results, and an application software cre-
ated in the LabView environment. The measuring station 

and UPE was measured. A significantly better capacity 
to store biophotons in organic carrot samples was com-
pared with conventional samples (Velimirov, 2005).

The photon-counting of wheat seeds germinating in 
three different wastewater sediment solutions was ana-
lyzed using a PMT device, and correlation with seedling 
development was studied. It was indicated that there 
was an increasing relation between seedling growth 
and detected light intensity over time (Gallep and Dos 
Santos, 2007).

The quality of organic and conventional eggs (for 1 year) 
was investigated using a UPE measurement. In this 
regard, four different forms of production systems (barn, 
cage, organic, and free-range) were considered to evalu-
ate the quality of eggs based on conventional (egg mass, 
shell-breaking strength, albumen height, the proportion 
of yolk, fatty acid profile, and yellow color) quality crite-
ria and UPE measurements. The results depicted higher 
UPE with a slower declining trend for organic eggs. It 
was reported that the measurement of UPE could be a 
suitable method for evaluating the quality of organic eggs 
(Grashorn and Egerer, 2007).

Correlation between UPE intensity and vigor of irra-
diated wheat grain and its irradiation dose was investi-
gated. At first, wheat grain and wheat flour were irritated 
by 60Co sources with a dose rate of 1 kGy/h, including 0, 
0.6, 1.5, 2.4, and 3 kGy. Samples were stored for 0, 6, 12, 
and 18 months under commercial storage conditions for 
UPE measurement. In summary, UPE analysis could not 
detect irradiation dose but was capable of determining 
vigor (Wang and Yu, 2009).

Hossu et al. (2010) tried to find a relation between the 
UPE and sweet potato samples’ quality. They selected 
eight sweet potato roots with 5-mm thick disk slices and 
an average of nine samples from each root. The sam-
ples were placed in a Petri dish with 8-mL 3% sucrose 
(media). The samples were incubated for 1 week at a rel-
ative humidity of 90–95% and a temperature of 30 °C to 
increase storage quality. Different concentrations of the 
2-mL solution of silver (Ag) nanoparticles (NP) were 
added on sweet potato samples’ surfaces. Then UPE mea-
surements were carried out for three cases (no media, 
media only, and adding Ag NP). They found that the UPE 
was enhanced by as much as 15 times by adding Ag NP. 
They mentioned that the UPE could provide useful infor-
mation about the quality of biological material.

The relation between the UPE intensity and soybean 
seedling subjected to abiotic stresses was investi-
gated. For this purpose, Kausar et al. (2012) (flooding 
and drought stresses), Khatoon et al. (2012) (flooding 
stress), and Komatsu et al. (2014) (flooding, drought, and 
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Owing to the growing world population and food secu-
rity, safety, and quality is imperative issues, the current 
study focuses on the applications of UPE on the subject 
of food quality. The proposed method with further inves-
tigations could open new horizons on many branches of 
sciences. This technique is non-invasive and nondestruc-
tive and a cheap, rapid, and real-time technique that does 
not need complex instrumentation.
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