Effect of Pretreatments on bioremoval of metals and subsequent exposure to simulated gastrointestinal conditions

Main Article Content

Alaleh Zoghi https://orcid.org/0000-0002-6938-6453
Mahla Salimi
Razieh Sadat Mirmahdi
Ramona Massoud
Kianoush Khosravi-Darani https://orcid.org/0000-0002-0269-6385
Reza Mohammadi https://orcid.org/0000-0001-5572-6114
Milad Rouhi https://orcid.org/0000-0001-5277-6191
Abhishek Dutt Tripathy


Adsorption, bioremediation, bioremoval, heavy metals, lactic acid bacteria


Water contamination with heavy metals is increased due to environmental contaminants. Arsenic, cadmium, mercury, and lead are well-known toxic heavy metals for humans. Lactobacillus acidophilus is an ideal absorbent for the removal of metals from drinking water. In this study, the ability of treated and untreated L. acidophilus ATCC 4356 to remove four heavy metals, simultaneously, from multi-metallic contaminated water in 24 h was investigated. In addition, the stability of the bacteria–metal complexes was evaluated in simulated gastrointestinal tract conditions. According to the results, untreated L. acidophilus could remove 99.01% and 92.35% of mercury and lead in water, respectively (initial concentration of 700 µg.L−1; inoculum size of 2.6×1012 CFU.mL−1; pH 4; 37°C; 24 h), whereas removal of arsenic and cadmium, under the same conditions, was 91.28% and 61.91% by heat and NaOH treated cells, respectively. In the digest condition, the complexes of bacteria-metal were reversible and the bond stability of untreated bacteria–Hg complexes was stronger than other complexes. The results suggest that treated or untreated L. acidophilus ATCC 4356 cells have the potential to adsorb heavy metals in contaminated water.

Abstract 511 | PDF Downloads 328 HTML Downloads 199 XML Downloads 3


Afraz, V., Younesi, H., Bolandi, M. and Hadiani, M.R., 2020. Optimization of lead and cadmium biosorption by Lactobacillus acidophilus using response surface methodology. Biocatalysis and Agricultural Biotechnology 29: 101828. 10.1016/j.bcab.2020.101828

Ameen, F.A., Hamdan, A.M. and El-Naggar, M.Y., 2020. Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Scientific Reports 10(1): 1–11. 10.1038/s41598-019-57210-3

Amiri, S., Mokarram, R.R., Khiabani, M.S., Bari, M.R., and Khaledabad, M.A., 2022. Characterization of antimicrobial peptides produced by Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12 and their inhibitory effect against foodborne pathogens. LWT 153: 112449. 10.1016/j.lwt.2021.112449

Amiri, S., Teymorlouei, M.J., Bari, M.R. and Khaledabad, M.A., 2021. Development of Lactobacillus acidophilus LA5-loaded whey protein isolate/lactose bionanocomposite powder by electrospraying: A strategy for entrapment. Food Bioscience 43: 101222. 10.1016/j.fbio.2021.101222

Asati, A., Pichhode, M. and Nikhil, K., 2016. Effect of heavy metals on plants: an overview. International Journal of Application or Innovation in Engineering & Management 5(3): 56–66.

Assi, M.A., Hezmee, M.N.M., Haron, A.W., Sabri, M.Y.M. and Rajion, M.A., 2016. The detrimental effects of lead on human and animal health. Veterinary World 9(6): 660. 10.14202/vetworld.2016.660-671

Bhakta, J., Ohnishi, K., Munekage, Y., Iwasaki, K. and Wei, M. 2012. Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. Journal of Applied Microbiology 112(6): 1193–1206. 10.1111/j.1365-2672.2012.05284.x

Bianchi, E., Biancalani, A., Berardi, C., Antal, A., Fibbi, D., Coppi, A., Lastrucci, L., Bussotti, N., Colzi, I. and Renai, L., 2020. Improving the efficiency of wastewater treatment plants: Bio-removal of heavy-metals and pharmaceuticals by Azolla filiculoides and Lemna minuta. Science of The Total Environment 746: 141219. 10.1016/j.scitotenv.2020.141219

Carocci, A., Rovito, N., Sinicropi, M.S. and Genchi, G., 2014. Mercury toxicity and neurodegenerative effects. In: Reviews of Environmental Contamination and Toxicology, Vol. 229. Springer, Cham, pp. 1–18. 10.1007/978-3-319-03777-6_1

Chen, Y., Zhang, B.-C., Sun, Y.-H., Zhang, J.-G., Sun, H.-J. and Wei, Z.-J., 2015. Physicochemical properties and adsorption of cholesterol by okra (Abelmoschus esculentus) powder. Food & Function 6(12): 3728–3736. 10.1039/C5FO00600G

Chen, Z., Pan, X., Chen, H., Guan, X. and Lin, Z., 2016. Biomineralization of Pb (II) into Pb-hydroxyapatite induced by Bacillus cereus 12-2 isolated from Lead–Zinc mine tailings. Journal of Hazardous Materials 301: 531–537. 10.1016/j.jhazmat.2015.09.023

Daisley, B.A., Monachese, M., Trinder, M., Bisanz, J.E., Chmiel, J.A., Burton, J.P. and Reid, G., 2019. Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium. Gut Microbes 10(3): 321–333. 10.1080/19490976.2018.1526581

Dubinin, M., 1960. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chemical Reviews 60(2): 235–241. 10.1021/cr60204a006

Elsanhoty, R.M., Salam, S.A., Ramadan, M.F. and Badr, F.H., 2014. Detoxification of aflatoxin M1 in yoghurt using probiotics and lactic acid bacteria. Food Control 43: 129–134. 10.1016/j.foodcont.2014.03.002

Fochesato, A.S., Cuello, D., Poloni, V., Galvagno, M.A., Dogi, C.A. and Cavaglieri, L.R., 2019. Aflatoxin B1 adsorption/desorption dynamics in the presence of Lactobacillus rhamnosus RC 007 in a gastrointestinal tract-simulated model. Journal of Applied Microbiology 126(1): 223–229. 10.1111/jam.14101

Freundlich, H., 1906. Uber die adsorption in losungen, zeitschrift fur phtsikalische chemie. Zeitschrift Fur Physikalische Chemie 62(5): 121–125.

Gerbino, E., Mobili, P., Tymczyszyn, E., Fausto, R. and GómezZavaglia, A., 2011. FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions. Journal of Molecular Structure 987(1–3): 186–192. 10.1016/j.molstruc.2010.12.012

Göksungur, Y., Üren, S. and Güvenç, U., 2005. Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresource Technology 96(1): 103–109. 10.1016/j.biortech.2003.04.002

Hadiani, M.R., Khosravi-Darani, K. and Rahimifard, N., 2019. Optimization of As (III) and As (V) removal by Saccharomyces cerevisiae biomass for biosorption of critical levels in the food and water resources. Journal of Environmental Chemical Engineering 7(2): 102949. 10.1016/j.jece.2019.102949

Hadiani, M.R., Khosravi-Darani, K., Rahimifard, N. and Younesi, H., 2018. Assessment of mercury biosorption by Saccharomyces cerevisiae: response surface methodology for optimization of low Hg (II) concentrations. Journal of Environmental Chemical Engineering 6(4): 4980–4987. 10.1016/j.jece.2018.07.034

Kargar, S.H.M. and Shirazi, N.H., 2020. Lactobacillus fermentum and Lactobacillus plantarum bioremediation ability assessment for copper and zinc. Archives of Microbiology 202: 1957–1963. 10.1007/s00203-020-01916-w

Hsu, T.-C., Yi, P.-J., Lee, T.-Y. and Liu, J.-R., 2018. Probiotic characteristics and zearalenone-removal ability of a Bacillus licheniformis strain. PloS One 13(4): e0194866. 10.1371/journal.pone.0194866

Hussein, K.A., Hassan, S.H. and Joo, J.H., 2011. Potential capacity of Beauveria bassiana and Metarhizium anisopliae in the biosorption of Cd2+ and Pb2+. The Journal of General and Applied Microbiology 57(6): 347–355. 10.2323/jgam.57.347

Khosravi-Darani, K., Zoghi, A., Jazayeri, S. and da Cruz, A.G., 2020. Decontamination of aflatoxins with a focus on aflatoxin b1 by probiotic bacteria and yeasts: a review. Journal of Microbiology, Biotechnology and Food Sciences 10(3): 424–435. 10.15414/jmbfs.2020.10.3.424-435

Kirillova, A.V., Danilushkina, A.A., Irisov, D.S., Bruslik, N.L., Fakhrullin, R.F., Zakharov, Y.A., Bukhmin, V.S. and Yarullina, D.R., 2017. Assessment of resistance and bioremediation ability of Lactobacillus strains to lead and cadmium. International Journal of Microbiology 2017: 9869145. 10.1155/2017/9869145

Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 40(9): 1361–1403. 10.1021/ja02242a004

Lentini, P., Zanoli, L., Granata, A., Signorelli, S.S., Castellino, P. and Dell’Aquila, R., 2017. Kidney and heavy metals-The role of environmental exposure. Molecular Medicine Reports 15(5): 3413–3419. 10.3892/mmr.2017.6389

Li, X., Ming, Q., Cai, R., Yue, T., Yuan, Y., Gao, Z. and Wang, Z., 2020. Biosorption of Cd2+ and Pb2+ from apple juice by the magnetic nanoparticles functionalized lactic acid bacteria cells. Food Control 109: 106916. 10.1016/j.foodcont.2019.106916

Li, Z., Ma, Z., van der Kuijp, T.J., Yuan, Z. and Huang, L., 2014. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of the Total Environment 468: 843–853. 10.1016/j.scitotenv.2013.08.090

Maham, M., Karami-Osboo, R., Kiarostami, V. and Waqif-Husain, S., 2013. Novel binary solvents-dispersive liquid—liquid micro-extraction (BS-DLLME) method for determination of patulin in apple juice using high-performance liquid chromatography. Food Analytical Methods 6(3): 761–766. 10.1007/s12161-012-9483-6

Massoud, R., Khosravi-Darani, K., Sharifan, A., Asadi, G. and Hadiani, M., 2020. Mercury Biodecontamination from Milk by using L. acidophilus ATCC 4356. Journal of Pure Applied Microbiology 14(4): 2313–2321. 10.22207/JPAM.14.4.10

Massoud, R., Khosravi-Darani, K., Sharifan, A., Asadi, G. and Zoghi, A., 2020. Lead and cadmium biosorption from milk by Lactobacillus acidophilus ATCC 4356. Food Science & Nutrition 8(10): 5284–5291. 10.1002/fsn3.1825

Medina-Pizzali, M., Damián-Bastidas, N. and Vargas-Reyes, M., 2019. Arsenic in baby foods: health effects and dietary exposure. Quality Assurance and Safety of Crops & Foods 11(4): 369–380. 10.3920/QAS2018.1477

Mirmahdi, R.S., Mofid, V., Zoghi, A., Khosravi_Darani, K. and Mortazavian, A.M., 2022. Risk of low stability Saccharomyces cerevisiae ATCC 9763-heavy metals complex in gastrointestinal simulated conditions. Heliyon 8: e09452. 10.1016/j.heliyon.2022.e09452

Mirmahdi, R.S., Zoghi, A., Mohammadi, F., Khosravi-Darani, K., Jazaiery, S., Mohammadi, R. and Rehman, Y., 2021. Biodecontamination of milk and dairy products by probiotics: Boon for bane. Italian Journal of Food Science 33(SP1): 78–91. 10.15586/ijfs.v33iSP2.2053

Moghaddam, S.T., Javadi, A. and Matin, A.A., 2020. Reduction of bisphenol A by Lactobacillus acidophilus and Lactobacillus plantarum in yoghurt. International Journal of Dairy Technology 73(4): 737–742. 10.1111/1471-0307.12706

Moghari, A.A., Razavi, S., Ehsani, M., Mousavi, M., and Nia, T.H., 2015. Chemical, proteolysis and sensory attributes, and probiotic microorganisms viability of Iranian ultrafiltered-Feta cheese as a function of inulin concentration and storage temperature. Quality Assurance and Safety of Crops & Foods 7(2): 217–224. 10.3920/QAS2013.0326

Monachese, M., Burton, J.P. and Reid, G., 2012. Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Applied and Environmental Microbiology 78(18): 6397. 10.1128/AEM.01665-12

Musawi, A.M., Johari, W.L.W., Ikhsan, N.F.M., Ahmad, S.A., Yasid, N.A. and Shukor, M.Y., 2019. The growth potential and bioaccumulation ability of probiotics under the exposure of different heavy metals. Pertanika Journal of Tropical Agricultural Science 42(1): 305–314. http://www.pertanika.upm.edu.my/

Pan, J., Ge, X., Liu, R. and Tang, H., 2006. Characteristic features of Bacillus cereus cell surfaces with biosorption of Pb (II) ions by AFM and FT-IR. Colloids and surfaces B: Biointerfaces 52(1): 89–95. 10.1016/j.colsurfb.2006.05.016

Pandey, G. and Madhuri, S., 2014. Heavy metals causing toxicity in animals and fishes. Research Journal of Animal, Veterinary and Fishery Sciences 2(2): 17–23. https://www.researchgate.net/publication/270169412

Park, J.-D. and Zheng, W., 2012. Human exposure and health effects of inorganic and elemental mercury. Journal of Preventive Medicine and Public Health 45(6): 344. 10.3961/jpmph.2012.45.6.344

Perczak, A., Goliński, P., Bryła, M. and Waśkiewicz, A., 2018. The efficiency of lactic acid bacteria against pathogenic fungi and mycotoxins. Arhiv za higijenu rada i toksikologiju 69(1): 32–44. 10.2478/aiht-2018-69-3051

Petruzzi, L., Corbo, M.R., Sinigaglia, M. and Bevilacqua, A., 2016. Ochratoxin A removal by yeasts after exposure to simulated human gastrointestinal conditions. Journal of Food Science 81(11): M2756–M2760. 10.1111/1750-3841.13518

Prasad, K.S., Ramanathan, A., Paul, J., Subramanian, V. and Prasad, R., 2013. Biosorption of arsenite (As+3) and arsenate (As+5) from aqueous solution by Arthrobacter sp. biomass. Environmental Technology 34(19): 2701–2708. 10.1080/09593330.2013.786137

Ryan, J., Hutchings, S.C., Fang, Z., Bandara, N., Gamlath, S., Ajlouni, S. and Ranadheera, C.S., 2020. Microbial, physico-chemical and sensory characteristics of mango juice-enriched probiotic dairy drinks. International Journal of Dairy Technology 73(1): 182–190. 10.1111/1471-0307.12630

Sharma, H., Rawal, N. and Mathew, B.B., 2015. The characteristics, toxicity and effects of cadmium. International Journal of Nanotechnology and Nanoscience 3: 1–9.

Sieuwerts, S., De Bok, F.A., Mols, E., De Vos, W.M. and Vlieg, J.H., 2008. A simple and fast method for determining colony forming units. Letters in Applied Microbiology 47(4): 275–278. 10.1111/j.1472-765X.2008.02417.x

Sohrabpour, S., Bari, M.R., Alizadeh, M. and Amiri, S., 2021. Investigation of the rheological, microbial, and physico-chemical properties of developed synbiotic yogurt containing Lactobacillus acidophilus LA-5, honey, and cinnamon extract. Journal of Food Processing and Preservation 45(4): e15323. 10.1111/jfpp.15323

Teemu, H., Seppo, S., Jussi, M., Raija, T. and Kalle, L., 2008. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria. International Journal of Food Microbiology 125(2): 170–175. 10.1016/j.ijfoodmicro.2008.03.041

Tempkin, M. and Pyzhev, V., 1940. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physico-Chimica Sinica USSR 12(1): 327.

Teodorowicz, M., Van Neerven, J. and Savelkoul, H., 2017. Food processing: The influence of the maillard reaction on immunogenicity and allergenicity of food proteins. Nutrients 9(8): 835. 10.3390/nu9080835

Thirunavukkarasu, O., Viraraghavan, T., Subramanian, K. and Tanjore, S., 2002. Organic arsenic removal from drinking water. Urban Water 4(4): 415–421. 10.1016/S1462-0758(02)00029-8

Tunali, S., Akar, T., Özcan, A.S., Kiran, I. and Özcan, A., 2006. Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola. Separation and Purification Technology 47(3): 105–112. 10.1016/j.seppur.2005.06.009

Wang, L., Wang, Z., Yuan, Y., Cai, R., Niu, C., and Yue, T., 2015. Identification of key factors involved in the biosorption of patulin by inactivated lactic acid bacteria (LAB) cells. PloS One 10(11): e0143431. 10.1371/journal.pone.0143431

World Health Organization. 2006. Guidelines for drinking-water quality: incorporating first addendum. Vol. 1, Recommendations, third (ed.). World Health Organization.

Yin, J., Wu, B., Liu, S., Hu, S., Gong, T., Cherr, G.N., Zhang, X.-X., Ren, H., and Xian, Q., 2018. Rapid and complete dehalogenation of halonitromethanes in simulated gastrointestinal tract and its influence on toxicity. Chemosphere 211: 1147–1155. 10.1016/j.chemosphere.2018.08.039

Zhai, Q., Wang, G., Zhao, J., Liu, X., Narbad, A., Chen, Y.Q., Zhang, H., Tian, F. and Chen, W., 2014. Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice indicate routes of protection besides intestinal sequestration. Applied and Environmental Microbiology 80(13): 4063–4071. 10.1128/AEM.00762-14

Zhai, Q., Yin, R., Yu, L., Wang, G., Tian, F., Yu, R., Zhao, J., Liu, X., Chen, Y.Q., and Zhang, H., 2015. Screening of lactic acid bacteria with potential protective effects against cadmium toxicity. Food Control 54: 23–30. 10.1016/j.foodcont.2015.01.037

Zhao, L., Jin, H., Lan, J., Zhang, R., Ren, H., Zhang, X. and Yu, G., 2015. Detoxification of zearalenone by three strains of Lactobacillus plantarum from fermented food in vitro. Food Control 54: 158–164. 10.1016/j.foodcont.2015.02.003

Zoghi, A., Khosravi-Darani, K. and Sohrabvandi, S., 2014. Surface binding of toxins and heavy metals by probiotics. Mini Reviews in Medicinal Chemistry 14(1): 84–98. 10.2174/1389557513666131211105554

Zoghi, A., Khosravi _Darani, K. and Hekmatdoost, A., 2021. Effects of pretreatments on patulin removal from apple juices using lactobacilli: binding stability in simulated gastrointestinal condition and modeling. Probiotics and Antimicrobial Proteins 13(1): 135–145. 10.1007/s12602-020-09666-3

Zoghi, A., Massoud, R., Todorov, S.D., Chikindas, M.L., Popov, I., Smith, S. and Khosravi-Darani, K., (2021). Role of the lactobacilli in food bio-decontamination: Friends with benefits. Enzyme and Microbial Technology 150: 109861. 10.1016/j.enzmictec.2021.109861