Magnoflorine promotes Huh-7 cell apoptosis and autophagy by regulating PI3K/Akt/mTOR pathway

Main Article Content

Jifan Xu
Bo Du
Yunfeng Liu
Chonglin Tao


apoptosis, autophagy, hepatoma, Huh-7 cells, magnoflorine (MGN), proliferation


Hepatoma is a malignant tumor with high rates of heterogeneity, metastasis, and mortality. Currently, there is no effective treatment available for hepatoma. In order to treat advanced hepatoma in a better manner, new and more effective therapeutic targets still need to be developed. Magnoflorine (MGN) is a quaternary ammonium alkaloid with a variety of therapeutic properties. MGN inhibited the proliferation of lung cancer, breast cancer, glioma, and rhabdomyosarcoma cells, induced apoptosis, and blocked cell cycle. However, its possible effects on the progression of hepatoma are still indefinite. In this study, the effects of MGN on the progression of hepatoma in vitro and the underlying mechanisms were determined. MGN suppressed the proliferation, induced the autophagy, and stimulated the apoptosis of human hepatoma Huh-7 cells. Mechanically, MGN could regulate PI3K/AKT/mTOR pathway, which therefore affects the progression of hepatoma in vitro. Taken together, MGN affected Huh-7 cell proliferation, autophagy, and apoptosis, and might act as a promising therapeutic drug for treating hepatoma.

Abstract 439 | PDF Downloads 378 HTML Downloads 318 XML Downloads 56


Bao T., Ke Y., Wang Y., Wang W., Li Y., Wang Y., Kui X., Zhou Q., Zhou H., and Zhang C., 2018. Taraxasterol suppresses the growth of human liver cancer by upregulating Hint1 expression. Journal of Molecular Medicine (Berlin) 96(7): 661–672. 10.1007/s00109-018-1652-7. PMid: 29806073.

Chang L., Wang Q., Ju J., Li Y., Cai Q., Hao L. and Zhou Y., 2020. Magnoflorine ameliorates inflammation and fibrosis in rats with diabetic nephropathy by mediating the stability of lysine-specific demethylase 3A. Frontiers in Physiology 11: 580406. 10.3389/fphys.2020.580406. PMid: 33414721.

Fan Y., Zeng F., Ma L., and Zhang H., 2021. Effects of beta-carboline alkaloids from Peganum harmala on the FAK/PI3K/AKT/M-tor pathway in human gastric cancer cell line SGC-7901 and tumor-bearing mice. Pakistan Journal of Pharmaceutical Sciences. 34(3): 891–898. PMid: 34602411.

Gailhouste L., Gomez-Santos L. and Ochiya T., 2013. Potential applications of miRNAs as diagnostic and prognostic markers in liver cancer. Frontiers in Bioscience-Landmark 18: 199–223. 10.2741/4096. PMid: 23276918.

Galicia-Moreno M., Silva-Gomez J.A., Lucano-Landeros S., Santos A., Monroy-Ramirez H.C. and Armendariz-Borunda J., 2021. Liver cancer: therapeutic challenges and the importance of experimental models. Canadian Journal of Gastroenterology and Hepatology 8837811. 10.1155/2021/8837811. PMid: 33728291.

Golob-Schwarzl N., Krassnig S., Toeglhofer A.M., Park Y.N., Gogg-Kamerer M., Vierlinger K., Schroder F., Rhee H., Schicho R., Fickert P., and Haybaeck J., 2017. New liver cancer biomarkers: PI3K/AKT/mTOR pathway members and eukaryotic translation initiation factors. The European Journal of Cancer 83: 56–70. 10.1016/j.ejca.2017.06.003. PMid: 28715695.

Guo C., Chu H., Gong Z., Zhang B., Li C., Chen J. and Huang L., 2021. HOXB13 promotes gastric cancer cell migration and invasion via IGF-1R upregulation and subsequent activation of PI3K/AKT/mTOR signaling pathway. Life Sciences 278: 119522. 10.1016/j.lfs.2021.119522. PMid: 33894267.

Hoshimoto S., Hoshi N., Ozawa I., Tomikawa M., Shirakawa H., Fujita T., Wakamatsu S., Hoshi S., Hirabayashi K., Hishinuma S. Hirabayashi K., and Hishinuma S., 2018. Rapid progression of a granulocyte colony-stimulating factor-producing liver tumor metastasized from esophagogastric junction cancer: a case report and literature review. Oncology Letters 15(5): 6475–6480. 10.3892/ol.2018.8144. PMid: 29725401.

Jagric T. and Horvat M., 2020. Surgical resection of synchronous liver metastases in gastric cancer patients. A propensity score-matched study. Radiology and Oncology 55(1): 57–65. 10.2478/raon-2020-0067. PMid: 33885239.

Li Z.Y., Li H.L., Ji X.W., Shen Q.M., Wang J., Tan Y.T. and Xiang Y.B., 2021. Dose-response association between adiposity and liver cancer incidence: a prospective cohort study among non-smoking and non-alcohol-drinking Chinese women. Cancer Epidemiology Biomarkers & Prevention 30(6): 1200–1207. 10.1158/1055-9965.EPI-20-1610. PMid: 33849965.

Liang X., Xiang Y., Li Y., Feng P., Qin Y. and Lai X., 2020. A rapid method for simultaneous quantification of berberine, berbamine, magnoflorine and berberrubine in mouse serum using UPLC-MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 1142: 122040. 10.1016/j.jchromb.2020.122040. PMid: 32145638.

Luan Y., Li M., Zhao Y., Li Q., Wen J., Gao S. and Yang Y., 2021. Centrosomal-associated proteins: potential therapeutic targets for solid tumors? Biomedicine & Pharmacotherapy 144: 112292. 10.1016/j.biopha.2021.112292. PMid: 34700231.

Luo X., Cao M., Gao F. and He X., 2021. YTHDF1 promotes hepatocellular carcinoma progression via activating PI3K/AKT/mTOR signaling pathway and inducing epithelial-mesenchymal transition. Experimental Hematology & Oncology 10(1): 35. 10.1186/s40164-021-00227-0. PMid: 34088349.

Nurili F., Monette S., Michel A.O., Bendet A., Basturk O., Askan G., Cheleuitte-Nieves C., Yarmohammadi H., Maxwell A.W.P., and Ziv E., 2021. Transarterial embolization of liver cancer in a transgenic pig model. Journal of Vascular and Interventional Radiology 32(4): 510–517 e513. 10.1016/j.jvir.2020.09.011. PMid: 33500185.

Okon E., Luszczki J.J., Kukula-Koch W., Halasa M., Jarzab A., Khurelbat D., Stepulak A. and Wawruszak A., 2020a. Synergistic or additive pharmacological interactions between magnoflorine and cisplatin in human cancer cells of different histological origin. International Journal of Molecular Sciences 21(8). 10.3390/ijms21082848. PMid: 32325867.

Okon E., Kukula-Koch W., Halasa M., Jarzab A., Baran M., Dmoszynska-Graniczka M., Angelis A., Kalpoutzakis E., Guz M., Stepulak A et al., 2020b. Magnoflorine-isolation and the anticancer potential against NCI-H1299 lung, MDA-MB-468 breast, T98G glioma, and TE671 rhabdomyosarcoma cancer cells. Biomolecules 10(11). 10.3390/biom10111532. PMid: 33182753.

Seshadri V.D. 2021. Brucine promotes apoptosis in cervical cancer cells (ME-180) via suppression of inflammation and cell proliferation by regulating PI3K/AKT/mTOR signaling pathway. Environmental Toxicology 10.1002/tox.23304. PMid: 34076332.

Shun S.C., Chiou J.F., Lai Y.H., Yu P.J., Wei L.L., Tsai J.T., Kao C.Y. and Hsiao Y.L., 2008. Changes in quality of life and its related factors in liver cancer patients receiving stereotactic radiation therapy. Support Care Cancer 16(9): 1059–1065. 10.1007/s00520-007-0384-y. PMid: 18197433.

Sun Z., Zeng J., Wang W., Jia X., Wu Q., Yu D. and Mao Y., 2020a. Magnoflorine suppresses MAPK and NF-kappa B signaling to prevent inflammatory osteolysis induced by titanium particles in vivo and osteoclastogenesis via RANKL in vitro. Frontiers in Pharmacology 11: 389. 10.3389/fphar.2020.00389. PMid: 32300300.

Sun R., Zhai R., Ma C. and Miao W., 2020b. Combination of aloin and metformin enhances the antitumor effect by inhibiting the growth and invasion and inducing apoptosis and autophagy in hepatocellular carcinoma through PI3K/AKT/mTOR pathway. Cancer Medicine 9(3): 1141–1151. 10.1002/cam4.2723. PMid: 31830378.

Sun X.L., Zhang X.W., Zhai H.J., Zhang D. and Ma S.Y., 2020c. Magnoflorine inhibits human gastric cancer progression by inducing autophagy, apoptosis and cell cycle arrest by JNK activation regulated by ROS. Biomedicine & Pharmacotherapy 125: 109118. 10.1016/j.biopha.2019.109118. PMid: 32106366.

van Rensburg S.J., van Schalkwyk G.C. and van Schalkwyk D.J., 1990. Primary liver cancer and aflatoxin intake in Transkei. Journal of Environmental Pathology, Toxicology, and Oncology 10(1–2): 11–16. PMid: 2231312.

Wang Y., Shang G., Wang W., Qiu E., Pei Y. and Zhang X., 2020. Magnoflorine inhibits the malignant phenotypes and increases cisplatin sensitivity of osteosarcoma cells via regulating miR-410-3p/HMGB1/NF-kappaB pathway. Life Sciences 256: 117967. 10.1016/j.lfs.2020.117967. PMid: 32553931.

Wei T., Xiaojun X. and Peilong C., 2020. Magnoflorine improves sensitivity to doxorubicin (DOX) of breast cancer cells via inducing apoptosis and autophagy through AKT/mTOR and p38 signaling pathways. Biomedicine & Pharmacotherapy 121: 109139. 10.1016/j.biopha.2019.109139. PMid: 31707337.

Wu Y., Matsumoto K., Chen Y.M., Tung Y.C., Chiu T.Y. and Hasegawa T., 2020a. Comparison of the cost of illness of primary liver cancer between Japan and Taiwan. Health Economics Review 10(1): 38. 10.1186/s13561-020-00296-7. PMid: 33280073.

Wu S., Yu D., Liu W., Zhang J., Liu X., Wang J., Yu M., Li Z., Chen Q., Li X., Ye X., 2020b. Magnoflorine from coptis Chinese has the potential to treat DNCB-induced atopic dermatits by inhibiting apoptosis of keratinocyte. Bioorganic & Medicinal Chemistry 28(2): 115093. 10.1016/j.bmc.2019.115093.