Discrimination of South American grains based on fatty acid
Main Article Content
Keywords
chemometric, fatty acids, gas chromatography-FID, HCA, heatmap, PCA
Abstract
This study developed a method for discriminating between Andean indigenous crops and hybrid crops, using total lipid composition, fatty acid profiles, and statistical comparison. Cluster analysis and Principal Component Analysis (PCA) revealed the standard fingerprints of the gas chromatography-FID and the primary fatty acids related to loadings, which shows the explained variance (91.4–99.5%) of the total 32 cultivars, including quinoa (Chenopodium quinoa), amaranth (Amaranthus), and triticale (X Triticosecale), collected from Brazil, Bolivia, Peru, and Argentina. The primary fatty acids found in quinoa, amaranth, and triticale were linoleic (essential PUFA) (36.59–63.04 g 100 g−1), oleic (11.95–36.95 g 100 g−1), and palmitic (essential MUFA) (9.40–20.20 g 100 g−1). All grains presented four groups with the PCA method, with the exception of amaranth, with three groups. Analysed separately, linoleic and eicosenoic acids are related to quinoa; stearic and palmitic acids to amaranth; and linolenic and oleic acids to triticale.
References
Amiry, S., Esmaiili, M. and Alizadeh, M., 2017. Classification of adulterated honeys by multivariate analysis. Food Chemistry 224: 390–397. 10.1016/j.foodchem.2016.12.025
AOAC, 1995. Official method of analysis. 16th ed. Association of Official Analytical Chemists, Method 923.03, AOAC International, Gaithersburg, MD.
Athukorala, Y. and Mazza, G., 2010. Supercritical carbon dioxide and hexane extraction of wax from triticale straw: content, composition and thermal properties. Industrial Crops and Produtcs 31(3): 550–556. Available at: https://www.sciencedirect.com/science/article/pii/S0926669010000440
Barba de la Rosa, A.P., Fomsgaard, I.S., Laursen, B., Mortensen, A.G., Olvera-Martínez, L., Mendoza-Herrera, A., González-Castañeda, J., De León-Rodriguez, A., 2009. Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: phenolic acids and flavonoids with potential impact on its nutraceutical quality. Journal of Cereal Science 49(1): 117–121. Available at: https://www.sciencedirect.com/science/article/pii/S0733521008001355
Bari, L.R., Ghanbari, A., Darvishzadeh, R., Giglou, M.T., Baneh, H.D., 2021. Discernment of grape rootstocks based on their response to salt stress using selected characteristics in combination with chemometric tools. Food Chemistry 365: 130408. 10.1016/j.foodchem.2021.130408
Bligh, E.G. and Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37(8): 911–917. Available at: https://cdnsciencepub.com/doi/10.1139/o59-099
Çevik, A. and Ertaş, N., 2019. Effect of quinoa, buckwheat and lupine on nutritional properties and consumer preferences of tarhana. Quality Assurance and Safety of Crops & Foods 11(2): 145–155. 10.3920/QAS2018.1305
Corke, H., Cai, Y.Z. and Wu, H.X., 2016. Amaranth: overview. Reference module in food science. Food Science: Elsevier. Available at: https://www.sciencedirect.com/science/article/pii/B9780081005965000329.
Dias, B.V., Gomes, S.V., Castro, M.L.C, Carvalho, L.C.F., Breguez, G.S., Souza, D.M.S., et al., 2022. EPA/DHA and linseed oil have different effects on liver and adipose tissue in rats fed with a high-fat diet. Prostaglandins & Other Lipid Mediators 159: 1098–8823. 10.1016/j.prostaglandins.2022.106622
FAOSTAT, 2022. Statistics division of food and agriculture organization of the United Nations. Food and Agriculture Organization of the United Nations, Rome. Available at: http://www.fao.org/faostat/en/#data/QC
Farag, M.A., Ezzat, S.M., Salama, M.M., Tadros, M.G., 2016. Anti-acetylcholinesterase potential and metabolome classification of 4 Ocimum species as determined via UPLC/qTOF/MS and chemometric tools. Journal of Pharmaceutical and Biomedical Analysis 125: 292–302. Available at: https://www.sciencedirect.com/science/article/pii/S0731708516301558
Ferreira, M., 2015. Quimiometria: conceitos, métodos e aplicações. Ed. Unicamp Ed., Campinas, SP.
Filho, A.M.M., Pirozi, M.R., Borges, J.T.S., Sant’Ana, H.M.P., Chaves, J.B.P., Coimbra, J.S.R., 2017. Quinoa: nutritional, functional, and antinutritional aspects. CRC Critical Reviews in Food Science and Nutrition 57(8): 1618–1630. Available at: https://pubmed.ncbi.nlm.nih.gov/26114306/
Fraś, A., Gołębiewska, K., Gołębiewski, D., Mańkowski, D., Boros, D., Szecówka, P., 2016. Variability in the chemical composition of triticale grain, flour and bread. Journal of Cereal Science 71: 66–72. Available at: https://www.sciencedirect.com/science/article/pii/S0733521016301229
Fraś, A., Gołębiewski, D., Gołębiewska, K., Mańkowski, D.R., Gzowska, M., Boros, D., 2018. Triticale-oat bread as a new product rich in bioactive and nutrient components. Journal of Cereal Science 82: 146–154. Available at: https://www.sciencedirect.com/science/article/pii/S0733521017302965.
Halford, N.G., Curtis, T.Y., Chen, Z., Huang, J., 2015. Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety. Journal of Experimental Botany 66(5): 1145–1156. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4438447/
Hamilton, J.S. and Klett, E.L., 2021. Linoleic acid and the regulation of glucose homeostasis: a review of the evidence. Prostaglandins, Leukotrienes and Essential Fatty Acids 175: 102366. 10.1016/j.plefa.2021.102366
Hartman, L. and Lago, R.C., 1973. Rapid preparation of fatty acid methyl esters from lipids. Laboratory Practice 22(6): 475–476. Available at: https://pubmed.ncbi.nlm.nih.gov/4727126/
Hlinková, A., Bednárová, A., Havrlentová, M., Šupová, J., Čičová, I., 2013. Evaluation of fatty acid composition among selected amaranth grains grown in two consecutive years. Biologia 68(4): 641–650. Available at: https://link.springer.com/article/10.2478/s11756-013-0190-6
Jahaniaval, F., Kakuda, Y. and Marcone, M.F., 2000. Fatty acid and triacylglycerol compositions of seed oils of five Amaranthus accessions and their comparison to other oils. JAOCS, Journal of the American Oil Chemists’ Society 77(8): 847–852. 10.1007/s11746-000-0135-0
Jonnala, R.S., Irmak, S., MacRitchie, F., Bean, S.R., 2010. Phenolics in the bran of waxy wheat and triticale lines. Journal of Cereal Science 52(3): 509–515. 10.1016/j.jcs.2010.07.013
Khandaker, L., Akond, A.S.M.G.M., Ali, M.B., Oba, S., 2010. Biomass yield and accumulations of bioactive compounds in red amaranth (Amaranthus tricolor L.) grown under different colored shade polyethylene in spring season. Scientia Horticulturae 123(3): 289–294. 10.1016/j.scienta.2009.09.012
Kurek, M.A., Karp, S., Wyrwisz, J., Niu, Y., 2018. Physicochemical properties of dietary fibers extracted from gluten-free sources: quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and millet (Panicum miliaceum). Food Hydrocolloids 85: 321–330. 10.1016/j.foodhyd.2018.07.021
Laroussi-Mezghani, S., Vanloot, P., Molinet, J., Dupuy, N., Hammami, M., Grati-Kamoun, N., Artaud, J., 2015. Authentication of Tunisian virgin olive oils by chemometric analysis of fatty acid compositions and NIR spectra. Comparison with Maghrebian and French virgin olive oils. Food Chemistry 173: 122–132. 10.1016/j.foodchem.2014.10.002
Lee, J.-H., Kim, Y.-G., Park, J.G., Lee, J., 2017. Supercritical fluid extracts of Moringa oleifera and their unsaturated fatty acid components inhibit biofilm formation by Staphylococcus aureus. Food Control 80: 74–82. 10.1016/j.foodcont.2017.04.035
Li, B., Zhao, L., Xu, B., Deng, B., Liu, Y., Dong, Y., 2018. Rice bran real-time stabilization technology with flowing microwave radiation: its impact on rancidity and some bioactive compounds. Quality Assurance and Safety of Crops & Foods 10(1): 25–34. 10.3920/QAS2016.0982
Luo, X., Du, Z., Yang, K., Wang, J., Zhou, J., Liu, J., Chen, Z., 2021. Effect of electron beam irradiation on phytochemical composition, lipase activity and fatty acid of quinoa. Journal of Cereal Science 98: 103161. 10.1016/j.jcs.2021.103161
Manley, M., Downey, G. and Baeten, V., 2008. Spectroscopic technique: near-infrared (NIR) spectroscopy. In: Sun, D. (ed.) Modern techniques for food authentication. Elsevier, London, pp. 65–115. Available at: https://www.elsevier.com/books/modern-techniques-for-food-authentication/sun/978-0-12-814264-6
Medina, W., Skurtys, O. and Aguilera, J.M., 2010. Study on image analysis application for identification Quinoa seeds (Chenopodium quinoa Willd) geographical provenance. LWT—Food Science and Technology 43(2): 238–246. 10.1016/j.lwt.2009.07.010
Mergoum, M., 2009. Triticale: a “new” crop with old challenges. In: Carena, M. (ed.) Handbook of plant breeding, vol 3. Springer, New York. Available at: https://link.springer.com/chapter/10.1007/978-0-387-72297-9_9
Mohammadi, S.A. and Prasanna, B.M., 2003. Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Science 43(4): 1235–1248. 10.2135/cropsci2003.1235
Mouithys-Mickalad, A., Tome, N.M., Boogaard, T., Serteyn, D., Schmitt, E., Paul, A., 2021. Evaluation of the fat oxidation quality of commercial Hermetia illucens meal. Journal of Insects as Food and Feed 7(6): 965–974. 10.3920/JIFF2021.0001
Naes, T., Isaksson, T., Fearm, T., Davies, T., 2002. A user-friendly guide to multivariate calibration and classification. Cambridge Eds NIR Publications, 352 p. 10.1255/978-1-906715-25-0
Navruz-Varli, S. and Sanlier, N., 2016. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science 69: 371–376. 10.1016/j.jcs.2016.05.004
Nsimba, R.Y., Kikuzaki, H. and Konishi, Y., 2008. Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chemistry 106(2): 760–766. 10.1016/j.foodchem.2007.06.004
Oliveira, C.C., Calado, V.M.A., Ares, G., Granato, D., 2015. Statistical approaches to assess the association between phenolic compounds and the in vitro antioxidant activity of Camellia sinensis and Ilex paraguariensis teas. Critical Reviews in Food Science and Nutrition 55(10): 1456–1473. Available at: https://pubmed.ncbi.nlm.nih.gov/24918265/
Pereira, E., Encina-Zelada, C., Barros, L., Gonzales-Barron, U., Cadavez, V., Ferreira, I.C.F.R., 2019. Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: a good alternative to nutritious food. Food Chemistry 280: 110–114. 10.1016/j.foodchem.2018.12.068
Peter, K. and Gandhi, P., 2017. Rediscovering the therapeutic potential of Amaranthus species: a review. Egyptian Journal of Basic and Applied Sciences 4(3): 196–205. 10.1016/j.ejbas.2017.05.001
Rabbani, G., Baig, M.H., Jan, A.T., Lee, E.J., Khan, M.V., Zaman, M., Farouk, A.-E., Khan, R.H., Choi, I., 2017. Binding of erucic acid with human serum albumin using a spectroscopic and molecular docking study. International Journal of Biological Macromolecules 105: 1572–1580. 10.1016/j.ijbiomac.2017.04.051
Rakha, A., Åman, P. and Andersson, R., 2011. Dietary fiber in triticale grain: variation in content, composition, and molecular weight distribution of extractable components. Journal of Cereal Science 54(3): 324–331. 10.1016/j.jcs.2011.06.010
Ribeiro, M.D.M.M., Arellano, D.B. and Grosso, C.R.F., 2012. The effect of adding oleic acid in the production of stearic acid-lipid microparticles with a hydrophilic core by a spray-cooling process. Food Research International 47(1): 38–44. 10.1016/j.foodres.2012.01.007
Rustan, A.C. and Drevon, C.A., 2005. Fatty acids: structures and properties. John Wiley & Sons. 10.1038/npg.els.0000715
Savitzky, A. and Golay, M.J.E., 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 36(8): 1627–1639. 10.1021/ac60214a047
Shi, T., Wu, G., Jin, Q., Wang, X., 2022. Camellia oil adulteration detection using fatty acid ratios and tocopherol compositions with chemometrics. Food Control 133: 108565. 10.1016/j.foodcont.2021.108565
Singh, R.J. and Jauhar, P.P., 2006. Triticale: a Low-input cereal with untapped potential. In: Singh, R.J. and Jauhar, P.P. (eds.) Genetic resource, chromosome engineering, and crop improvement. CRC Press, Taylor & Francis, Boca Raton, p. 43. 10.1201/9780203489260.CH13
Tang, Y.L.X., Li, X., Chen, P.X., Zhang, B., Hernandez, M., Zhang, H., Marcone, M.F., Liu, R., Tsao, R., 2015. Characterization of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry 174:502–508. 10.1016/j.foodchem.2014.11.040
Tavoletti, S., Foligni, R., Mozzon, M., Pasquini, M., 2018. Comparison between fatty acid profiles of old and modern varieties of T. turgidum and T. aestivum: a case study in central Italy. Journal of Cereal Science 82: 198–205. 10.1016/j.jcs.2018.06.012
Tomasi, G., Savorani, F. and Engelsen, S.B., 2011. icoshift: an effective tool for the alignment of chromatographic data. Journal of Chromatography A 1218(43): 7832–7840. 10.1016/j.chroma.2011.08.086
Turkut, G.M., Cakmak, H., Kumcuoglu, S., Tavman, S., 2016. Effect of quinoa flour on gluten-free bread batter rheology and bread quality. Journal of Cereal Science 69: 174–181. 10.1016/j.jcs.2016.03.005
Urquizo, F.E.L., Torres, S.M.G., Tolonen, T., Jaakkola, M., Pena-Niebuhr, M.G., Wright, A.V., Carrasco-Valencia, R.R., Korhonen, H., Plumed-Ferrer, C., 2017. Development of a fermented quinoa-based beverage. Food Science & Nutrition 5(3): 602–608. 10.1002/fsn3.436
Valencia-Chamorro, S.A., 2016. Quinoa. Reference module in food science. Food Science 1:np. 10.1016/B978-0-08-100596-5.00041-X
Vilcacundo, R. and Hernández-Ledesma, B., 2017. Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science 14: 1–6. 10.1016/j.cofs.2016.11.007
Yeganeh-Zare, S., Farhadi, K. and Amiri, S., 2022. Rapid detection of apple juice concentrate adulteration with date concentrate, fructose and glucose syrup using HPLC-RID incorporated with chemometric tools. Food Chemistry 370: 131015. 10.1016/j.foodchem.2021.131015
Zhu, F., 2018. Triticale: nutritional composition and food uses. Food Chemistry 241: 468–479. 10.1016/j.foodchem.2017.09.009