Regulatory effect of intracellular polysaccharides from Antrodia cinnamomea on the intestinal microbiota of mice with antibiotic-associated diarrhea

Main Article Content

Chun-lei Lu
Hua-xiang Li
Xiao-yan Zhu
Zhi-shan Luo
Sheng-qi Rao
Zhen-quan Yang

Keywords

Antrodia cinnamomea, intracellular polysaccharide, lincomycin hydrochloride, diarrhea, intestinal flora

Abstract

Antrodia cinnamomea is a valuable and scarce medicinal and edible mushroom. Its main active substances are triterpenoids and polysaccharides with many biological activities, such as liver protection, immunity enhancement, antitumor, anti-inflammatory, and antiviral. The long-term use of antibiotics can easily lead to disorders in the intestinal flora and causes diarrhea, inflammation, immune decline, and other symptoms. In this study, A. cinnamomea intracellular polysaccharides (AIPSs) were extracted from mycelia in submerged fermentation, and the AIPSs with a neutral polysaccharide content of 82.74%±0.63% were obtained. Then, the therapeutic effect of AIPSs on diarrhea in mice caused by lincomycin hydrochloride (LIH), and their regulatory and recovery effects on the intestinal flora, was studied with fructooligosaccharide as the positive control. In vivo experiments in mice showed that fed intragastrically with 0.25 g/kg (bodyweight of mice) of AIPSs significantly reduced the weight loss caused by antibiotics and restored the immune-organ index (P<0.05). The AIPSs also significantly lowered the degrees of the inflammatory cytokines IL-6 and TNF-α in mouse serum (P<0.01). Analysis of mouse intestinal flora showed that AIPSs treated diarrhea caused by LIH and regulated and improved the flora’s structure. These effects were primarily manifested in the increased relative abundance of good microorganisms (e.g., Lachnospiraceae_NK4A136_group, Osllospiraceae, and Lachnospiraceae) and reduced relative abundance of harmful microorganisms (e.g., Enterococcus) (P<0.05). This study further expanded the application value of the submerged fermentation products of A. cinnamomea. A new perspective and theoretical basis for developing new multifunctional prebiotics to regulate antibiotic-induced disorders in the intestinal flora was also provided.

Abstract 603 | PDF Downloads 496 HTML Downloads 350 XML Downloads 6

References

Chang C.J., Lu CC., Lin C.S., Martel J., Ko Y.F., Ojcius D.M., Wu T.R., Tsai Y.H., Yeh T.S., and Lu J.J,, 2018. Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice. International Journal of Obesity, 42(2): 231–243. 10.1038/ijo.2017.149

Chen F and Huang GL, 2018. Preparation and immunological activity of polysaccharides and their derivatives. International Journal of Biological Macromolecules, 112: 211–216. 10.1016/j.ijbiomac.2018.01.169

Chen Q.L., Tang H.L., Zha Z.Q., Yin H.P., Wang Y., Wang Y.F., Li H.T., and Yue L., 2017. β-d-glucan from Antrodia Camphorata ameliorates LPS-induced inflammation and ROS production in human hepatocytes. International Journal of Biological Macromolecules, 104: 768–777. 10.1016/j.ijbiomac.2017.05.191

Chen X.Y., Li X., Sun-Waterhouse D.X., Zhu B.Y., You L.J., and Hileuskaya K., 2021. Polysaccharides from Sargassum fusiforme after UV/H2O2 degradation effectively ameliorate dextran sulfate sodium-induced colitis. Food & Function, 12(23): 11747–11759. 10.1039/D1FO02708E

De Oliveira A.F., Do Nascimento G.E., Lacomini M., Cordeiro L.M.C., and Cipriani T.R., 2017. Chemical structure and anti-inflammatory effect of polysaccharides obtained from infusion of Sedum dendroideum leaves. International Journal of Biological Macromolecules, 105: 940–946. 10.1016/j.ijbiomac.2017.07.122

Estaki M., Pither J., Baumeister P., Little J.P., Gill, S.K., Ghosh S., Ahmadi-Vand Z., Marsden K.R., and Gibson D.L., 2016. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome, 4(1): 1–13. 10.1186/s40168-016-0189-7

Everard A., Belzer C., Geurts L., Ouwerkerk J.P., Druart C., Bindels L.B., Guiot Y., Derrien M., Muccioli G.G., and Delzenne N.M., 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences, 110(22): 9066–9071. 10.1073/pnas.1219451110

Fan P.X., Kim M., Liu G., Zhai Y.T., Liu T., Driver J.D., and Jeong K.C., 2021. The gut microbiota of newborn calves and influence of potential probiotics on reducing diarrheic disease by inhibition of pathogen colonization. Frontiers in Microbiology, 12: 772863. 10.3389/fmicb.2021.772863

Ganesan N., Baskaran R., Velmurugan B.K., and Thanh N.C., 2019. Antrodia cinnamomea—An updated minireview of its bioactive components and biological activity. Journal of Food Biochemistry, 43(8): e12936. 10.1111/jfbc.12936

Gao P.F., Ma C., Sun Z., Wang L.F., Huang S., Su X.Q., Xu J., and Zhang H.P., 2017. Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome, 5(1): 1–14. 10.1186/s40168-017-0315-1

Geethangili M. and Tzeng Y.M., 2011. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evidence-Based Complementary and Alternative Medicine, 2011. 10.1093/ecam/nep108

Hollister E.B., Cain K.C., Shulman R.J., Jarrett M.E., Burr R.L., Ko C., Zia J., Han C.J., and Heitkemper M.M., 2020. Relationships of microbiome markers with extra-intestinal, psychological distress and gastrointestinal symptoms, and quality of life in women with irritable bowel syndrome. Journal of Clinical Gastroenterology, 54(2): 175. 10.1097/MCG.0000000000001107

Hooper L.V. and Macpherson A.J., 2010. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Reviews Immunology, 10(3): 159–169. 10.1038/nri2710

Hu S.W., Wang J.H., Xu Y.L., Yang H.C., Wang J.F., Xue C.H., Yan X.J., and Su L.J., 2019. Anti-inflammation effects of fucosylated chondroitin sulphate from Acaudina molpadioides by altering gut microbiota in obese mice. Food & Function, 10(3): 1736–1746. 10.1039/c8fo02364f

Kameyama K. and Itoh K., 2014. Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice. Microbes and Environments, 29(4): 427–430. 10.1264/jsme2.ME14054

Ker Y.B., Peng C.C., Chang W.L., Chyau C.C., and Peng R.Y., 2014. Hepatoprotective bioactivity of the glycoprotein, antrodan, isolated from Antrodia cinnamomea mycelia. PLoS One, 9(4): e93191. 10.1371/journal.pone.0093191

Li HX, Lu Z.M., Geng Y., Gong J.S., Zhang X.J., Shi J.S., Xu Z.H., and Ma Y.H., 2015. Efficient production of bioactive metabolites from Antrodia camphorata ATCC 200183 by asexual reproduction-based repeated batch fermentation. Bioresource Technology, 194: 334–343. 10.1016/j.biortech.2015.06.144

Liang J.J., Zhang M.N., Wang X.N., Ren Y.C., Yue T.L., Wang Z.L., and Gao Z.P., 2021. Edible fungal polysaccharides, the gut microbiota, and host health. Carbohydrate Polymers, 273: 118558. 10.1016/j.carbpol.2021.118558

Liu K.J., Leu S.J., Su C.H., Chiang B.L., Chen Y.L., and Lee Y.L., 2010. Administration of polysaccharides from Antrodia camphorata modulates dendritic cell function and alleviates allergen-induced T helper type 2 responses in a mouse model of asthma. Immunology, 129(3): 351-362. 10.1111/j.1365-2567.2009.03175.x

Liu L., Rohdin P., and Moshfegh B., 2018. Investigating cost--optimal refurbishment strategies for the medieval district of Visby in Sweden. Energy and Buildings, 158: 750–760. 10.1016/j.enbuild.2017.10.002

Liu Y.G., Li L.Z., An S.S., Zhang Y.Z., Feng S.W., Zhao L., Teng L.R., and Wang D., 2017a. Antifatigue effects of Antrodia cinnamomea cultured mycelium via modulation of oxidative stress signaling in a mouse model. BioMed Research International, 2017: 9374026. 10.1155/2017/9374026

Liu Y.G., Wang J., Li L.Z., Hu W.J., Qu Y.D., Ding Y.P., Meng L.N., Teng L.R., and Wang D., 2017b. Hepatoprotective effects of Antrodia cinnamomea: The modulation of oxidative stress signaling in a mouse model of alcohol-induced acute liver injury. Oxidative Medicine and Cellular Longevity, 2017: 7841823. 10.1155/2017/7841823

Liu Y.Y., Wang C.R., Li J.S., Li T.T., Zhang Y., Liang Y.X., and Mei Y.X., 2020. Phellinus linteus polysaccharide extract improves insulin resistance by regulating gut microbiota composition. The FASEB Journal, 34(1): 1065–1078. 10.1096/fj.201901943RR

Lu M.C., El Shazly M., Wu T.Y., Du Y.C., Chang T.T., Chen C.F., Hsu Y.M., Lai K.H., Chiu C.P., and Chang F.R., 2013. Recent research and development of Antrodia cinnamomea. Pharmacology & Therapeutics, 139(2): 124–156. 10.1016/j.pharmthera.2013.04.001

Lv W.J., Liu C., Ye C.X., Sun J.Q., Tan X.W., Zhang C., Qu Q., Shi D.Y., and Guo S.N., 2017. Structural modulation of gut microbiota during alleviation of antibiotic-associated diarrhea with herbal formula. International Journal of Biological Macromolecules, 105(3): 1622–1629. 10.1016/j.ijbiomac.2017.02.060

Maekawa T., Fukaya R., Takamatsu S., Itoyama S., Fukuoka T., Yamada M., Hata T., Nagaoka S., Kawamoto K., and Eguchi H., 2018. Possible involvement of Enterococcus infection in the pathogenesis of chronic pancreatitis and cancer. Biochemical and Biophysical Research Communications, 506(4): 962–969. 10.1016/j.bbrc.2018.10.169

Masuko T., Minami A., Iwasaki N., Majima T., Nishimura S.I., and Lee Y.C., 2005. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Analytical Biochemistry, 339(1): 69–72. 10.1016/j.ab.2004.12.001

O’Driscoll T. and Crank C.W., 2015. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infection and Drug Resistance, 8: 217–230. 10.2147/IDR.S54125

Onderdonk A.B., Richardson J.A., Hammer R.E., and Taurog J.D., 1998. Correlation of cecal microflora of HLA-B27 transgenic rats with inflammatory bowel disease. Infection and Immunity, 66(12): 6022–6023. 10.1128/IAI.66.12.6022-6023.1998

Pelaseyed T. and Hansson G.C., 2020. Membrane mucins of the intestine at a glance. Journal of Cell Science, 133(5): jcs240929. 10.1242/jcs.240929

Rajakovich L.J. and Balskus E.P., 2019. Metabolic functions of the human gut microbiota: the role of metalloenzymes. Natural Product Reports, 36(4): 593–625. 10.1039/C8NP00074C

Ren Y.L., Geng Y., Du Y., Li W., Lu Z.M., Xu H.Y., Xu G.H., Shi J.S., and Xu Z.H., 2018. Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota. The Journal of Nutritional Biochemistry, 57: 67–76. 10.1016/j.jnutbio.2018.03.005

Rose D.J., Venema K., Keshavarzian A., and Hamaker B.R., 2010. Starch-entrapped microspheres show a beneficial fermentation profile and decrease in potentially harmful bacteria during in vitro fermentation in faecal microbiota obtained from patients with inflammatory bowel disease. British Journal of Nutrition, 103(10): 1514–1524. 10.1017/S0007114509993515

Sava I.G., Heikens E., and Huebner J., 2010. Pathogenesis and immunity in enterococcal infections. Clinical Microbiology and Infection, 16(6): 533–540. 10.1111/j.1469-0691.2010.03213.x

Sheng K.L., Xu Y.F., Kong X.W., Wang J.M., Zha X.D., and Wang Y.Z., 2021. Probiotic Bacillus cereus Alleviates dextran sulfate sodium-induced colitis in mice through improvement of the intestinal barrier function, anti-inflammation, and gut microbiota modulation. Journal of Agricultural and Food Chemistry, 69(49): 14810–14823. 10.1021/acs.jafc.1c03375

Sivan A., Corrales L., Hubert N., Williams J.B., Aquino Michaels K., Earley Z.M., Benyamin F.W., Lei Y.M., Jabri B., and Alegre M.L., 2015. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science, 350(6264): 1084–1089. 10.1126/science.aac4255

Song T.Y., Hsu S.L., Yeh C.T., and Yen G.C., 2005. Mycelia from Antrodia camphorata in submerged culture induce apoptosis of human hepatoma HepG2 cells possibly through regulation of Fas pathway. Journal of Agricultural and Food Chemistry, 53(14): 5559–5564. 10.1021/jf050329

Stojanov S., Berlec, A., and Štrukelj B., 2020. The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms, 8(11): 1715. 10.3390/microorganisms8111715

Tian Y., Nichols R.G., Roy P., Gui W., Smith P.B., Zhang J.T., Lin Y.D., Weaver V., Cai J.W., and Patterson A.D., 2018. Prebiotic effects of white button mushroom (Agaricus bisporus) feeding on succinate and intestinal gluconeogenesis in C57BL/6 mice. Journal of Functional Foods, 45: 223–232. 10.1016/j.jff.2018.04.008

Varankovich N.V., Nickerson M.T., and Korber D.R., 2015. Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases. Frontiers in Microbiology, 6: 685. 10.3389/fmicb.2015.00685

Wang C.S., Li W.B., Wang H.Y., Ma, Y.M., Zhao X.H., Zhang X.D., Yang H., Qian J.M., and Li J.N., 2019. Saccharomyces boulardii alleviates ulcerative colitis carcinogenesis in mice by reducing TNF-α and IL-6 levels and functions and by rebalancing intestinal microbiota. BMC Microbiology, 19(1): 1–12. 10.1186/s12866-019-1610-8

Wu M.R., Chou T.S., Huang C.Y., and Hsiao J.K., 2020. A potential probiotic-Lachnospiraceae NK4A136 group: Evidence from the restoration of the dietary pattern from a high-fat diet. Research Square, 2020. 10.21203/rs.3.rs-48913/v1

Wu T.R., Lin C.S., Chang C.J., Lin T.L., Martel J., Ko Y.F., Ojcius D.M., Lu C.C., Young J.D., and Lai H.C., 2019. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut, 68(2): 248–262. 10.1136/gutjnl-2017-315458

Yang C.M., Zhou Y.J, Wang R.J., and Hu M.L., 2009. Anti-angiogenic effects and mechanisms of polysaccharides from Antrodia cinnamomea with different molecular weights. Journal of Ethnopharmacology, 123(3): 407–412. 10.1016/j.jep.2009.03.034

Yang H.L., Lin S.W., Lee C.C., Lin K.Y., Liao C.H., Yang T.Y., Wang H.M., Huang H.C., Wu C.R., and Hseu Y.C., 2015. Induction of Nrf2-mediated genes by Antrodia salmonea inhibits ROS generation and inflammatory effects in-lipopolysaccharide-stimulated RAW264. 7 macrophages. Food & Function, 6(1): 229–240. 10.1039/C4FO00869C

Yen I.C., Yao C.W., Kuo M.T., Chao C.L., Pai C.Y., and Chang W.L., 2015. Anti-cancer agents derived from solid-state fermented Antrodia camphorata mycelium. Fitoterapia, 102: 115–119. 10.1016/j.fitote.2015.02.010

Zeineldin M., Aldridge B., and Lowe J., 2018. Dysbiosis of the fecal microbiota in feedlot cattle with hemorrhagic diarrhea. Microbial Pathogenesis, 115: 123–130. 10.1016/j.micpath.2017.12.059

Zhang R.J., Yuan S.J., Ye J.F., Wang X.D., Zhang X.D., Shen J., Yuan M.M., and Liao W.Z., 2020. Polysaccharide from Flammuliana velutipes improves colitis via regulation of colonic microbial dysbiosis and inflammatory responses. International Journal of Biological Macromolecules, 149: 1252–1261. 10.1016/j.ijbiomac.2020.02.044

Zhang W.X., Song D., Xu D., Wang T.T., Chen L., and Duan J.Y., 2015. Characterization of polysaccharides with antioxidant and immunological activities from Rhizoma Acori Tatarinowii. Carbohydrate Polymers, 133: 154–162. 10.1016/j.carbpol.2015.07.018

Zhang X., Zhang M., Ho C.T., Guo X.J., Wu Z.F., Weng P.F., Yan M.D., and Cao J.X., 2018a. Metagenomics analysis of gut microbiota modulatory effect of green tea polyphenols by high fat diet-induced obesity mice model. Journal of Functional Foods, 46: 268–277. 10.1016/j.jff.2018.05.003

Zhang Y.T., Wang Z., Li D.Y., Zang W.T., Zhu H., Wu P.Y., Mei Y.X., and Liang Y.X., 2018b. A polysaccharide from Antrodia cinnamomea mycelia exerts antitumor activity through blocking of TOP1/TDP1-mediated DNA repair pathway. International Journal of Biological Macromolecules, 120: 1551–1560. 10.1016/j.ijbiomac.2018.09.162

Zheng J.P., Jiao S.M., Li Q.Y., Jia P.Y., Yin H., Zhao X.M., Du Y.G., and Liu H.T., 2018. Antrodia cinnamomea oligosaccharides suppress lipopolysaccharide-induced inflammation through promoting O-GlcNAcylation and repressing p38/Akt phosphorylation. Molecules, 23(1): 51. 10.3390/molecules23010051