Investigation on thin-layer drying kinetics of sprouted wheat in a tray dryer

Main Article Content

M.R. Manikantan
D. Mridula
Monika Sharma
Anita Kochhar
V. Arun Prasath
Abhipriya Patra
R. Pandiselvam

Keywords

sprouted wheat, mathematical modeling, drying characteristics, effective moisture diffusivity, activation energy

Abstract

The thin-layer drying behavior of sprouted wheat (cv. PBW 550) was experimented at different drying periods, such as 24 h, 36 h and 48 h. The samples were dried in a tray dryer at 50–80οC at an interval of 10°C. The moisture ratio was fitted to the six thin-layer drying models, and the performance of the models was assessed by statistical parameters. The Wang and Singh model has accurately predicted the drying behavior of sprouted wheat for all sprouting periods and drying temperatures. In addition, the effective moisture diffusivity of grain sprouts at three drying periods (24 h, 36 h and 48 h) of sprouted wheat was increased from 1.79 × 10-9 to 2.58 × 10-9 m2 s-1, 1.921 × 10-9 to 2.781 × 10-9 m2 s-1 and 1.858 × 10-9 to 2.561 × 10-9 m2 s-1 with increase in drying temperature from 50oC to 80oC. Moreover, at the above-stated drying periods, the activation energy for sprouted wheat was 11.357 kJ mol-1, 11.428 kJ mol-1 and 9.427 kJ mol-1, respectively. Therefore, thin-layer drying of sprouted wheat was successfully simulated between 50°C and 80°C for various drying periods. This study provided imperative information to understand the drying behavior and relationship between various drying parameters of sprouted grains that could produce nutritive functional flour.

Abstract 1054 | PDF Downloads 824 HTML Downloads 101 XML Downloads 12

References

Abbaspour-Gilandeh, Y., Jahanbakhshi, A. and Kaveh, M., 2020. Prediction kinetic, energy and exergy of quince under hot air dryer using ANNs and ANFIS. Food Science and Nutrition 8(1): 594–611. 10.1002/fsn3.1347

Agarry, S.E., 2016. Modelling the thin-layer drying kinetics of untreated and blanch-osmotic pre-treated tomato slices. Turkish Journal of Agriculture–Food Science and Technology 4(10): 850. 10.24925/turjaf.v4i10.850-858.774

Akkad, R., Buchko, A., Johnston, S.P., Han, J., House, J.D. and Curtis, J.M., 2021. Sprouting improves the flavour quality of faba bean flours. Food Chemistry 364: 130355. 10.1016/j.foodchem.2021.130355

Akpinar, E.K., 2010. Drying of mint leaves in a solar dryer and under open sun: modelling, performance analyses. Energy Conversion and Management 51(12): 2407–2418. 10.1016/j.enconman.2010.05.005

Aviara, N.A. and Igbeka, J.C., 2016. Modeling for drying of thin layer of native cassava starch in tray dryer. Journal of Biosystems Engineering 41(4): 342–356. 10.5307/jbe.2016.41.4.342

Awotona, E.O., Alade, A.O., Adebanjo, S.A., Duduyemi, O. and Afolabi, T.J., 2021. Drying kinetics and moisture diffusivity of four varieties of bambara beans. Engineering and Technology Research Journal 6(1): 30–33. 10.47545/etrj.2021.6.1.074

Baranzelli, J., Kringel, D.H., Colussi, R., Paiva, F.F., Aranha, B.C., Miranda, M.Z. de, et al. 2018. Changes in enzymatic activity, technological quality and gamma-aminobutyric acid, GABA) content of wheat flour as affected by germination. LWT–Food Science and Technology 90: 483–490. 10.1016/j.lwt.2017.12.070

Behera, G., Madhumita, M., Aishwarya, J. and Gayathri, V., 2021. Comparative evaluation of drying kinetics of carrot slices in hot air and microwave drying. Journal of Phytopharmacology 10(4): 242–248. 10.31254/phyto.2021.10405

Bozkir, H., 2020. Effects of hot air, vacuum infrared, and vacuum microwave dryers on the drying kinetics and quality characteristics of orange slices. Journal of Food Process Engineering 43(10): e13485. 10.1111/jfpe.13485

Cavalcanti-Mata, M.E.R.M., Duarte, M.E.M., Lira, V.V., de Oliveira, R.F., Costa, N.L. and Oliveira, H.M.L., 2020. A new approach to the traditional drying models for the thin-layer drying kinetics of chickpeas. Journal of Food Process Engineering 43(12): e13569. 10.1111/jfpe.13569

Chinma, C.E., Abu, J.O., Adedeji, O.E., Aburime, L.C., Joseph, D.G., Agunloye, G.F., et al. 2022. Nutritional composition, bioactivity, starch characteristics, thermal and microstructural properties of germinated pigeon pea flour. Food Bioscience 49: 101900. 10.1016/j.fbio.2022.101900

Darvishi, H., Khoshtaghaza, M.H. and Minaei, S., 2014. Drying kinetics and colour change of lemon slices. International Agrophysics 28(1): 1–6. 10.2478/intag-2013-0021

Dash, S., Dash, K.K. and Choudhury, S., 2021. Evaluation of energy efficiency and moisture diffusivity for convective drying of large cardamom. In: IOP conference series: Materials science and engineering, vol. 1020. IOP Publishing, Bristol, England, p. 12016. 10.1088/1757-899X/1020/1/012016

Dash, K.K., Gope, S., Sethi, A. and Doloi, M., 2013. Study on thin layer drying characteristics of star fruit slices. International Journal of Agriculture and Food Science Technology 4(7): 679–686.

Dasore, A., Polavarapu, T., Konijeti, R. and Puppala, N., 2020. Convective hot air drying kinetics of red beetroot in thin layers. Frontiers in Heat and Mass Transfer 14: 1–8. 10.5098/hmt.14.23

Delfiya, D.A., Prashob, K., Murali, S., Alfiya, P.V., Samuel, M.P. and Pandiselvam, R., 2022. Drying kinetics of food materials in infrared radiation drying: a review. Journal of Food Process Engineering 45(6): e13810. 10.1111/jfpe.138107

Demiray, E., Seker, A. and Tulek, Y., 2017. Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat and Mass Transfer/Waerme–Und Stoffuebertragung 53(5): 1817–1827. 10.1007/s00231-016-1943-x

Demiray, E. and Tulek, Y., 2012. Thin-layer drying of tomato (Lycopersicum esculentum Mill. cv. Rio grande) slices in a convective hot air dryer. Heat and Mass Transfer/Waerme–Und Stoffuebertragung 48(5): 841–847. 10.1007/s00231-011-0942-1

Doymaz, I. and Karasu, S., 2018. Effect of air temperature on drying kinetics, colour changes and total phenolic content of sage leaves (Salvia officinalis). J Quality Assurance Safety of Crops Foods 10(3): 269–276.

Doymaz, I. and Smail, O., 2011. Drying characteristics of sweet cherry. Food and Bioproducts Processing 89(1): 31–38. 10.1016/j.fbp.2010.03.006

Dziki, D., Gawlik-Dziki, U., Rózyło, R. and Mï, A., 2015. Drying and grinding characteristics of four-day germinated and crushed wheat: a novel approach for producing sprouted flour. Cereal Chemistry 92(3): 312–319. 10.1094/CCHEM-09-14-0188-R

Ee, C.T., Khaw, Y.J., Hii, C.L., Chiang, C.L. and Djaeni, M., 2021. Drying kinetics and modelling of convective drying of kedondong fruit. ASEAN Journal of Chemical Engineering 21(1): 93–103. 10.22146/ajche.62932

Erenturk, S., Gulaboglu, M.S. and Gultekin, S., 2004. The thin-layer drying characteristics of rosehip. Biosystems Engineering 89(2): 159–166. 10.1016/j.biosystemseng.2004.06.002

Ertaş, N., 2015. Technological and chemical characteristics of breads made with lupin sprouts. Quality Assurance and Safety of Crops & Foods 7(3): 313–319. 10.3920/QAS2013.0347

Faltermaier, A., Zarnkow, M., Becker, T., Gastl, M. and Arendt, E.K., 2015. Common wheat (Triticum aestivum L.): evaluating microstructural changes during the malting process by using confocal laser scanning microscopy and scanning electron microscopy. European Food Research and Technology 241(2): 239–252. 10.1007/s00217-015-2450-x

Farhang, A., Hosinpour, A., Darvishi, H., Khoshtaghaza, M.H. and Tavakolli Hashtjin, T., 2010. Accelerated drying of alfalfa (Medicago sativa l.) by microwave dryer. Global Veterinaria 5(3): 158–163.

Felizardo, M.P., Merlo, G.R.F. and Maia, G.D., 2021. Modeling drying kinetics of Jacaranda mimosifolia seeds with variable effective diffusivity via diffusion model. Biosystems Engineering 205: 234–245. 10.1016/j.biosystemseng.2021.03.008

Gazor, H.R. and Mohsenimanesh, A., 2010. Modelling the drying kinetics of canola in fluidised bed dryer. Czech Journal of Food Sciences 28(6): 531–537. 10.17221/256/2009-cjfs

Ghasemi, J., Moradi, M., Karparvarfard, S.H., Golmakani, M.T. and Khaneghah, A.M., 2021. Thin layer drying kinetics of lemon verbena leaves: a quality assessment and mathematical modeling. Quality Assurance and Safety of Crops and Foods 13(1): 59–72. 10.15586/qas.v13i1.835

Hemis, M., Singh, C.B. and Jayas, D.S., 2011. Microwave-assisted thin layer drying of wheat. Drying Technology 29(10): 1240–1247. 10.1080/07373937.2011.584999

Horwitz, W. (ed.), 2010. Official methods of analysis of AOAC International. Volume I, agricultural chemicals, contaminants, drugs. AOAC International, Gaithersburg, MD.

Hosain, M., Haque, R., Islam, M.N., Khatun, H. and Shams-Ud-Din, M., 2016. Effect of temperature and loading density on drying kinetics of wheat. Journal of Experimental Biology and Agricultural Sciences 4(2): 210–217. 10.18006/2016.4(2).210.217

Ingle, M., Tapre, A.R. and Nawkar, R., 2019. Drying kinetics and mathematical modeling of bottle gourd. Current Journal of Applied Science and Technology 38(5): 1–8. 10.9734/cjast/2019/v38i530382

Jeevarathinam, G., Pandiselvam, R., Pandiarajan, T., Preetha, P., Balakrishnan, M., Thirupathi, V. and Kothakota, A., 2021. Infrared assisted hot air dryer for turmeric slices: effect on drying rate and quality parameters. LWT–Food Science and Technology 144: 111258.

Joshi, A.P.K., Rupasinghe, H.P.V. and Khanizadeh, S., 2011. Impact of drying processes on bioactive phenolics, vitamin C, and antioxidant capacity of red-fleshed apple slices. Journal of Food Processing and Preservation 35(4): 453–457. 10.1111/j.1745-4549.2010.00487.x

Kadam, D.M., Goyal, R.K. and Gupta, M.K., 2011. Mathematical modeling of convective thin-layer drying of basil leaves. Journal of Medicinal Plant Research 5(19): 4721–4730.

Kertész, Á., Hlaváčová, Z., Vozáry, E. and Staroňová, L., 2015. Relationship between moisture content and electrical impedance of carrot slices during drying. International Agrophysics 29(1): 61–66. 10.1515/intag-2015-0013

Khawas, P., Das, A.J., Dash, K.K. and Deka, S.C., 2014. Thin-layer drying characteristics of Kachkal banana peel (Musa ABB) of Assam, India. International Food Research Journal 21(3): 1011–1018.

Kumar, P.S., Kanwat, M. and Choudhary, V.K., 2013. Mathematical modeling and thin-layer drying kinetics of bamboo slices on convective tray drying at varying temperature. Journal of Food Processing and Preservation 37(5): 914–923. 10.1111/j.1745-4549.2012.00725.x

Lemmens, E., Moroni, A.V., Pagand, J., Heirbaut, P., Ritala, A., Karlen, Y., et al. 2019. Impact of cereal seed sprouting on its nutritional and technological properties: a critical review. Comprehensive Reviews in Food Science and Food Safety 18(1): 305–328. 10.1111/1541-4337.12414

Liu, T., Hou, G.G., Cardin, M., Marquart, L. and Dubat, A., 2017. Quality attributes of whole-wheat flour tortillas with sprouted whole-wheat flour substitution. LWT–Food Science and Technology 77: 1–7. 10.1016/j.lwt.2016.11.017

Liu, W., Li, S., Han, N., Bian, H. and Song, D., 2022. Effects of germinated and ungerminated grains on the production of non-dairy probiotic-fermented beverages. Quality Assurance and Safety of Crops & Foods 14(2): 32–39.

Manikantan, M.R., Barnwal, P. and Goyal, R.K., 2014. Drying characteristics of paddy in an integrated dryer. Journal of Food Science and Technology 51(4): 813–819. 10.1007/s13197-013-1250-1

Marchini, M., Marti, A., Folli, C., Prandi, B., Ganino, T., Conte, P., et al. 2021. Sprouting of sorghum (Sorghum bicolor [l.] Moench): effect of drying treatment on protein and starch features. Foods 10(2): 1–17. 10.3390/foods10020407

Markowski, M., Majewska, K., Kwiatkowski, D., Malkowski, M. and Burdylo, G., 2010. Selected geometric and mechanical properties of barley (Hordeum vulgare L.) grain. International Journal of Food Properties 13(4): 890–903. 10.1080/10942910902908888

Mbegbu, N.N., Nwajinka, C.O. and Amaefule, D.O., 2021. Thin-layer drying models and characteristics of scent leaves (Ocimum gratissimum) and lemon basil leaves (Ocimum africanum). Heliyon 7(1): e05945. 10.1016/j.heliyon.2021.e05945

Medhe, S.V., Kamble, M.T., Kettawan, A.K., Monboonpitak, N. and Kettawan, A.J.F., 2022. Effect of hydrothermal cooking and germination treatment on functional and physicochemical properties of parkia timoriana bean flours: an underexplored legume species of Parkia Genera 11(13): 1822. 10.3390/foods11131822

Moezzi, Z., Movahhed, S. and Ahmadi Chenarbon, H., 2021. Effective parameters in hot air drying process on qualitative properties of grapefruit (Citrus paradise L.) and selection of a suitable mathematical thin-layer drying model. Journal of Food Biosciences and Technology 11(1): 69–80. Retrieved from http://jfbt.srbiau.ac.ir/article_16850.html%0A http://jfbt.srbiau.ac.ir/article_16850_ca141e045e178f46c77d9dd0289d623e.pdf

Motevali, A., Younji, S., Chayjan, R.A., Aghilinategh, N. and Banakar, A., 2013. Drying kinetics of dill leaves in a convective dryer. International Agrophysics 27(1): 39–47. 10.2478/v10247-012-0066-y

Mridula, D., Sharma, M., Gupta, R.K., 2015. Development of quick cooking multi-grain dalia utilizing sprouted grains. Journal of Food Science and Technology 52(9): 5826–5833. 10.1007/s13197-014-1634-x

Mridula, D., Sharma, M., Manikantan, M. and Gupta, R.K., 2013. Development of quick cooking dalia utilizing sprouted wheat. Journal of Food Science and Technology 50(4): 14–22. 10.1007/s13197-014-1634-x

Mykhailyk, V., Lementar, S., Yakobchuk, R., Skrynnyk, Y. and Semenko, R., 2016. Wheat grain drying kinetics in a thin layer. Ukrainian Journal of Food Science 4(2): 316–326. 10.24263/2310-1008-2016-4-2-13

Nag, S. and Dash, K.K., 2016. Mathematical modeling of thin layer drying kinetics and moisture diffusivity study of elephant apple. International Food Research Journal 23(6): 2594–2600.

Nipa, J.F. and Mondal, M.H.T., 2021. Thin layer drying kinetics of taro root (Colocasia esculenta l.). Agricultural Engineering International 23(1): 244–251.

Niu, Y., Wei, S., Liu, H., Zang, Y., Cao, Y., Zhu, R., Zheng, X., Yao, X., 2021. The kinetics of nutritional quality changes during winter jujube slices drying process. Quality Assurance and Safety of Crops & Foods 13(1): 73–82. 10.15586/qas.v13i1.824

Onwude, D. I., Hashim, N., Janius, R.B., Nawi, N.M. and Abdan, K., 2016. Modeling the thin-layer drying of fruits and vegetables: a review. Comprehensive Reviews in Food Science and Food Safety 15(3): 599–618. 10.1111/1541-4337.12196

Perea-Flores, M.J., Garibay-Febles, V., Chanona-Pérez, J.J., Calderón-Domínguez, G., Méndez-Méndez, J.V., Palacios-González, E., et al. 2012. Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Industrial Crops and Products 38(1): 64–71. 10.1016/j.indcrop.2012.01.008

Pravitha, M., Manikantan, M.R., Kumar, V.A., Beegum, P.S. and Pandiselvam, R., 2022. Comparison of drying behavior and product quality of coconut chips treated with different osmotic agents. LWT–Food Science and Technology 162: 113432. 10.1016/j.lwt.2022.113432

Radhika, G.B., Satyanarayana, S.V. and Rao, D.G., 2011. Mathematical model on thin-layer drying of finger millet (Eleusine coracana). Advance Journal of Food Science and Technology 3(2): 127–131.

Rani, M., Bandral, J.D., Sood, M., Sharma, S., Gupta, S. and Chand, G., 2022. Effect of germination on physico-chemical and antinutritional factors of oats flour. Pharma Innovation Journal 11(6): 1424–1428.

Rayaguru, K. and Routray, W., 2012. Mathematical modeling of thin-layer drying kinetics of stone apple slices. International Food Research Journal 19(4): 1503–1510.

Sayyad, F.G., Akbari, S.H., Vyas, D.K., Kumar, N. and Sutar, R.F., 2021. Mathematical modelling of hot air drying of water chestnut kernels. Journal of Pharmacognosy and Phytochemistry 10(3): 275–280. 10.22271/phyto.2021.v10.i3d.14084

Seguchi, M., Uozu, M., Oneda, H., Murayama, R. and Okusu, H., 2010. Effect of outer bran layers from germinated wheat grains on breadmaking properties. Cereal Chemistry 87(3): 231–236. 10.1094/CCHEM-87-3-0231

Shingare, S.P. and Thorat, B.N., 2013. Fluidized bed drying of sprouted wheat: Triticum aestivum. International Journal of Food Engineering, 10(1): 29–37. 10.1515/ijfe-2012-0097

Soydan, M. and Doymaz., 2021. An experimental study on thin-layer drying drying characteristics of apple slices. Latin American Applied Research 51(2): 119–126. 10.52292/j.laar.2021.660

Sultana, A. and Ghosh, U., 2021. Estimation of effective moisture diffusivity of Red amaranth leaves (Amaranthus tricolor L.) for thin-layer drying technology. International Journal of Agricultural Technology, 17(2): 737–752.

Suna, S. and Özkan-Karabacak, A., 2019. Investigation of drying kinetics and physicochemical properties of mulberry leather (pistil) dried with different methods. Journal of Food Processing and Preservation 43(8): e14051. 10.1111/jfpp.14051

Taheri-Garavand, A., Rafiee, S. and Keyhani, A., 2011. Study on effective moisture diffusivity, activation energy and mathematical modeling of thin-layer drying kinetics of bell pepper. Australian Journal of Crop Science 5(2): 128–131.

Torres-Ossandón, M.J., Vega-Gálvez, A., López, J., Stucken, K., Romero, J. and Di Scala, K., 2018. Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L). Journal of Supercritical Fluids 138, 215–220. 10.1016/j.supflu.2018.05.005

Zhang, Y., Ma, Z., Cao, H., Huang, K. and Guan, X.J.F.B., 2022. Effect of germinating quinoa flour on wheat noodle quality and changes in blood glucose. Food Bioscience 48: 101809. 10.1016/j.fbio.2022.101809