Optimization of ultrasound processing parameters for preservation of matured coconut water using a central composite design
Main Article Content
Keywords
ultrasonic treatment, coconut water, central composite design, total sugar, microbial load
Abstract
Mature coconut water (MCW) is a natural beverage and a main by-product of various coconut processing industries such as virgin coconut oil, coconut chips, coconut milk, etc. In spite of huge benefits, MCW’s short shelf life limits its market potential. In this context, the present study investigates the effect of ultrasonic processing parameters, such as amplitude (50%, 60% and 70%) and time (5 min, 10 min and 15 min), on microbial population and quality profile (pH, total soluble solids, total sugars, reducing sugars and non-reducing sugars) of MCW. Central composite design was used to create a multiple linear regression model for each response and to optimize ultrasound processing parameters. The optimal treatment parameters to ensure microbial safety and preserve the nutritional quality of MCW were 60% ultrasonic amplitude and treatment time of 10 min. Total sugars, reducing sugars, non-reducing sugars and microbial load of MCW determined at optimized conditions were 4.92%, 2.804%, 2.13% and 4.79 log cfu/mL, respectively. Ultrasonic treatment was found to be effective in inhibiting microbial growth and maintaining non-reducing sugars of MCW.
References
Abid, M., Jabbar, S., Wu, T., Hashim, M.H., Hu, B., Lei, S., et al. 2014. Sonication enhances polyphenolic compounds, sugars, carotenoids and mineral elements of apple juice. Ultrasonics Sonochemistry 21(1): 93–97. 10.1016/j.ultsonch.2013.06.002
Atalar, I., Gul, O., Mortas, M., Gul, L.B., Saricaoglu, F.T. and Yazici, F., 2019. Effect of thermal treatment on microbiological, physicochemical and structural properties of high pressure homogenised hazelnut beverage. Quality Assurance and Safety of Crops & Foods 11(6): 561–570. 10.3920/QAS2018.1493
Aydar, A.Y., 2018. Utilization of response surface methodology in optimization of extraction of plant materials. In: Silva, V. (ed.) Statistical approaches with emphasis on design of experiments applied to chemical processes. IntechOpen, London, pp. 157–169. 10.5772/intechopen.73690
Balter, S., Weiss, D., Hanson, H., Reddy, V., Das, D. and Heffernan, R., 2005. Three years of emergency department gastrointestinal syndromic surveillance in New York City: what have we found? MMWR–Morbidity & Mortality Weekly Report Supplements 54: 175–180.
Baş, D. and Boyacı, I.H., 2007. Modeling and optimization I: usability of response surface methodology. Journal of Food Engineering 78(3): 836–845. 10.1016/j.jfoodeng.2005.11.024
Beegum, P.P.S., Pandiselvam, R., Ramesh, S., Thube, S., Pandian, T., Khanashyam, A., Manikantan, M. and Hebbar, K., 2022. A critical appraisal on the antimicrobial, oral protective, and anti-diabetic functions of coconut and its derivatives. Quality Assurance and Safety of Crops & Foods 14(2): 86–100. 10.15586/qas.v14i2.1040
Beegum, S., Ramarathinam, M., Pandiselvam, R., Manivannan, A. and Hebbar, K.B., 2018. Comparative evaluation of natural vinegar produced from mature coconut water and coconut inflorescence sap. International Journal of Innovative Horticulture 7(2): 123–127.
Behera, S.K., Meena, H., Chakraborty, S. and Meikap, B.C., 2018. Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. International Journal of Mining Science and Technology 28(4): 621–629. 10.1016/j.ijmst.2018.04.014
Bhat, R., Kamaruddin, N.S.B.C., Min-Tze, L. and Karim, A.J.U.S. 2011. Sonication improves kasturi lime (Citrus microcarpa) juice quality. Food Chemistry 18(6): 1295–1300. 10.1016/j.ultsonch.2011.04.002
Burns, D.T., Johnston, E.L. and Walker, M.J., 2020. Authenticity and the potability of coconut water-a critical review. Journal of AOAC International 103 (3): 800-806. 10.1093/jaocint/qsz008
Cao, X., Cai, C.F., Wang, Y. and Zheng, X., 2019. Effects of ultrasound processing on physicochemical parameters, antioxidants, and color quality of bayberry juice. Journal of Food Quality 2019: 1–12; Article ID 7917419. 10.1155/2019/7917419
Chauhan, O., Archana, B., Singh, A., Raju, P. and Bawa, A., 2014. A refreshing beverage from mature coconut water blended with lemon juice. Journal of Food Science and Technology 51 (11):3355-3361. 10.1007/s13197-012-0825-6
Cruz-Cansino, N., Reyes-Hernández, I., Delgado-Olivares, L., Jaramillo-Bustos, D., Ariza-Ortega, J. and Ramírez-Moreno, E., 2016. Effect of ultrasound on survival and growth of Escherichia coli in cactus pear juice during storage. Brazilian Journal of Microbiology 47(2): 431–437. 10.1016/j.bjm.2016.01.014
de Souza Soares, A., Augusto, P.E.D., Júnior, B.R.D.C.L., Nogueira, C.A., Vieira, É.N.R., de Barros, F.A.R., et al. 2019. Ultrasound-assisted enzymatic hydrolysis of sucrose catalyzed by invertase: investigation on substrate, enzyme and kinetics parameters. LWT–Food Science and Technology 107: 164–170.
Dong, S., Ma, Y., Li, Y. and Xiang, Q., 2021. Effect of dielectric barrier discharge (DBD) plasma on the activity and structural changes of horseradish peroxidase. Quality Assurance and Safety of Crops & Foods 13(3): 92–101. 10.15586/qas.v13i3.934
Duarte, A.C.P., Coelho, M.A.Z. and Leite, S.G.F., 2002. Identification of peroxidase and tyrosinase in green coconut water. Ciencia Y Tecnologia Alimentaria 3(5): 266–270. 10.1080/11358120209487737
Dubois, M., Gilles, K.A., Hamilton, J.K., Rubbers, P.A. and Smith F., 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 26: 350. 10.1021/AC60111A017. Corpus ID: 38872824
Ercan, S. and Soysal, Ç., 2011. Effect of ultrasound and temperature on tomato peroxidase. Ultrasonics Sonochemistry, 18(2): 689–695. 10.1016/j.ultsonch.2010.09.014
Fonteles, T., Costa, M.G.M., de Jesus, A.L.T., Miranda, M.R.A., Fernandes, F.A.N. and Rodrigues, S., 2012. Power ultrasound processing of cantaloupe melon juice: effects on quality parameters. Food Research International 48: 41–48. 10.1016/j.foodres.2012.02.013
Gavahian, M., Meng-Jen, T. and Khaneghah, A.M., 2020. Emerging techniques in food science: the resistance of chlorpyrifos pesticide pollution against arc and dielectric barrier discharge plasma. Quality Assurance and Safety of Crops & Foods 12(SP1): 9–17. 10.15586/qas.v12iSP1.807
Haseena, M., Kasturi Bai, K.V. and Padmanabhan, S., 2010. Post-harvest quality and shelf-life of tender coconut. Journal of Food Science & Technology, 47(6): 686–689. 10.1007/s13197-010-0097-y
Jabbar, S., Abid, M., Hu, B., Wu, T., Hashim, M.S., Shicheng, L., et al. 2014. Quality of carrot juice as influenced by blanching and sonication treatments. LWT–Food Science and Technology 55: 16–21. 10.1016/j.lwt.2013.09.007
Jackson, J., Gordon, A., Wizard, G., McCook, K. and Rolle, R., 2004. Changes in chemical composition of coconut (Cocos nucifera) water during maturation of the fruit. Journal of Science of Food and Agriculture 84(9): 1049–1052. 10.1002/jsfa.1783
Jiang, Q., Zhang, M. and Xu, B., 2020. Application of ultrasonic technology in postharvested fruits and vegetables storage: a review. Ultrasonics Sonochemistry 69: 105261. 10.1016/j.ultsonch.2020.105261
Kailaku, S.I., Syah, A.N.A., Risfaheri, R., Setiawan, B., Sulaeman, A., 2015. Carbohydrate-electrolyte characteristics of coconut water from different varieties and its potential as natural isotonic drink. International Journal on Advanced Science, Engineering and Information Technology 3: 174–177. 10.18517/ijaseit.5.3.515
Kenari, R.E. and Belgheisi, S., 2019. Improving the qualitative indicators of apple juice by Chitosan and ultrasound. Journal of Food Science and Nutrition 7(4): 1214-1221. 10.1002/fsn3.925
Kongruang, S. and Kleesuwan, S., 2020. Nutritional quantification and shelf life analysis of non-thermal processed coconut juice. E3S Web of Conferences 141: 2008. 10.1051/e3sconf/202014102008
Moosavi, M., Khaneghah, A.M., Javanmardi, F., Hadidi, M., Hadian, Z., Jafarzadeh, S., et al. 2021. A review of recent advances in the decontamination of mycotoxin and inactivation of fungi by ultrasound. Ultrasonics Sonochemistry 79: 105755. 10.1016/j.ultsonch.2021.105755
Mousavi Khaneghah, A., 2021. New emerging techniques in combination with conventional methods in improving the quality, safety, and nutrient values of food products. Quality Assurance and Safety of Crops & Foods 13(SP1): 12–13. 10.1016/j.foodres.2021.110799
Nwabueze, T.U., 2010. Basic steps in adapting response surface methodology as mathematical modelling for bioprocess optimisation in the food system. International Journal of Food Science and Technology 45(9): 1768–1776. 10.1111/j.1365-2621.2010.02256.x
Pandiselvam, R., Manikantan, M.R., Subhashree, N., Mathew, A.C., Balasubramanian, D., Shameena Beegum, P.P., et al. 2019. Correlation and principal component analysis of physical properties of tender coconut (Cocos nucifera L.) in relation to the development of trimming machine. Journal of Food Process Engineering 42(6): e13217. 10.1111/jfpe.13217
Pandiselvam, R., Prithviraj, V., Manikantan, M.R., Beegum, P.S., Ramesh, S.V., Padmanabhan, S., et al. 2022. Central composite design, Pareto analysis, and artificial neural network for modeling of microwave processing parameters for tender coconut water. Measurement: Food 5: 100015. 10.1016/j.meafoo.2021.100015
Pratheepa, V. and Kamalanathan, G., 2020. Effect of ultrasonication on microbial, chemical and sensory properties of juices and its kinetic aspects: a review. International Journal of ChemTech Research 13: 90–97. 10.20902/IJCTR.2019.130111.
Prithviraj, V., Pandiselvam, R., Babu, A.C., Kothakota, A., Manikantan, M.R., Ramesh, S. V., et al. 2021. Emerging non-thermal processing techniques for preservation of tender coconut water. LWT–Food Science and Technology 149: 111850. 10.1016/j.lwt.2021.111850
Purkayastha, M.D., Kalita, D., Mahnot, N., Mahanta, C., Mandal, M. and Chaudhuri, M.K., 2012. Effect of L-ascorbic acid addition on the quality attributes of micro-filtered coconut water stored at 4°C. Innovative Food Science & Emerging Technologies 16: 69–79. 10.1016/j.ifset.2012.04.007
Ranganna, S. 1986. Handbook of analysis and quality control for fruit and vegetables. Tata McGraw-Hill, New Delhi, India, pp. 16–18.
Rostagno, M.A., Palma, M. and Barroso, C.G., 2003. Ultrasound-assisted extraction of soy isoflavones. Journal of Chromatography A, 1012: 119–128. 10.1016/s0021-9673(03)01184-1
Saeeduddin, M., Abid, M., Jabbar, S., Wu, T., Hashim, M.M., Awad, F.N., et al., 2015. Quality assessment of pear juice under ultrasound and commercial pasteurization processing conditions. LWT–Food Science And Technology 64(1): 452–458. 10.1016/j.lwt.2015.05.005
Sevda, S., Singh, A., Joshi, C. and Rodrigues, L., 2012. Extraction and optimization of guava juice by using response surface methodology. American Journal of Food Technology 7: 326–339. 10.3923/ajft.2012.326.339
Starek, A., Kobus, Z., Sagan, A., Chudzik, B., Pawlat, J., Kwiatkowski, M., et al. 2021. Influence of ultrasound on selected microorganisms, chemical and structural changes in fresh tomato juice. Scientific Reports 11(1): 3488. 10.1038/s41598-021-83073-8
Subramanian, P., Thamban, C., Hegde, V., Hebbar, K.B., Bhat, R., Krishnakumar, V., et al. 2018. Coconut. Technical Bulletin No. 133: 56. (ICAR-CPCRI, Kasaragod, Kerala, India)
Sunil, L., Appaiah, P., Prasanth Kumar, P.K. and Gopala Krishna, A.G., 2020. Coconut water—a nature’s miracle health drink: chemistry, health benefits, packaging, storage, and technologies: a review. Indian Coconut Journal, 1: 17–25. http://ir.cftri.res.in/id/eprint/14782
Vivek, K., Subbarao, K.V. and Srivastava, B.J.U.S., 2016. Optimization of postharvest ultrasonic treatment of kiwi fruit using RSM. Ultrasonics Sonochemistry, 32: 328–335. 10.1016/j.ultsonch.2016.03.029
Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A. and Pokomeda, K., 2014. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresource Technology 160: 150–160. 10.1016/j.biortech.2014.01.021
Xu, H.R., Zhang, Y.Q., Wang, S., Wang, W.D., Yu, N.N., Gong, H., et al. 2022. Optimization of functional compounds extraction from Ginkgo biloba seeds using response surface methodology. Quality Assurance and Safety of Crops & Foods 14(1): 102–112. 10.15586/qas.v14i1.1033
Yong, J.W., Ge, L., Ng, Y.F. and Tan, S.N., 2009. The chemical composition and biological properties of coconut (Cocos Nucifera L.) water. Molecules 14(12): 5144–5151. 10.3390/molecules14125144
Yuan, Y., Hu, Y., Yue, T., Chen, T. and Lo, Y.M., 2009. Effect of ultrasonic treatments on thermoacidophilic Alicyclobacillus acidoterrestris in apple juice. Journal of Food Processing and Preservation 33 (3):370-383. 10.1111/j.1745-4549.2009.00407.x
Zou, Y. and A, Jiang., 2016. Effect of ultrasound on quality and microbial load of carrot juice. Food Science Technology (Campinas) 36: 111–115. 10.1590/1678-457X.0061
