Physicochemical evaluation of Prinsepia utilis seed oil (PUSO) and its utilization as a base in pharmaceutical soap formulation

Main Article Content

Jitendra Pandey
Srijana Acharya
Rakshya Bagale
Akriti Gupta
Pooja Chaudhary
Bikash Rokaya
K.C. Manju
Pramod Aryal
Hari Prasad Devkota


ketoconazole, physicochemical parameters, P. utilis, PUSO, fixed oil, soap formulation


This study aims to evaluate the standard physicochemical parameters, such as iodine value, acid value, saponification value, ester value, refractive index, peroxide value, and viscosity, of Prinsepia utilis (P. utilis) seed oil (PUSO) obtained as hexane extract from seeds, and to formulate ketoconazole soap (2% w/w) by using extracted oil as a base. The quality control standards of the final ketoconazole soap complied with the standards specified in Indian Pharmacopeia. Pharmaceutical soap was obtained by treating PUSO with potassium hydroxide (KOH), undergoing basic saponification. All physicochemical parameters, such as acid value (21.78 mg KOH/g), saponification value (194.13 mg KOH/g), iodine value (99.7 g I2/100 g), ester value (172.35 mg KOH/g), refractive index (1.464), and viscosity (192 centipoises [cps]), conformed to industrial standards, except the peroxide value (19.23 milliequivalent KOH/g). Besides, evaluation of quality control parameters of pharmaceutical soap suggested that its various parameters, such as pH (7.3), foam-forming ability (14.5 cm), foam retention time (15 min), total fatty matter (69.31%), moisture content (10.35%), and drug content (99.37%), were within the acceptable limit. Overall, our study showed that P. utilis base was physicochemically stable and suitable for manufacturing cosmetic products, soaps, and shampoo in an economical manner, rather than using expensive chemical additives, in the pharmaceutical and cosmeceutical industry. Further, this study suggested that therapeutically and commercially successful ketoconazole soap, with all the required quality control parameters, could be manufactured by using naturally available oil at a low cost.

Abstract 871 | PDF Downloads 427 HTML Downloads 23 XML Downloads 29


Abenoza M., Benito M., Saldaña G., Álvarez I., Raso J. and Sánchez-Gimeno A.C., 2013. Effects of pulsed electric field on yield extraction and quality of olive oil. Food and Bioprocess Technology 6: 1367–1373. 10.1007/s11947-012-0817-6

Aburjai T. and Natsheh F.M., 2003. Plants used in cosmetics. Phytotherapy Research 9: 987–1000. 10.1002/ptr.1363

Ahmed L., Hazarika M.U. and Sarma D., 2021. Formulation and evaluation of an ayurvedic bath soap containing extracts of three ayurvedic herbs. Journal of Medicinal Plants 9(2): 115–117.

Akuaden N.J., Chindo I.Y. and Ogboji J., 2019. Formulation, physico-chemical and antifungal evaluation of herbal soaps of azadiractaindica and ziziphusmauritiana. IOSR Journal of Applied Chemistry 8: 26–34.

Alfawaz M.A., 2004. Chemical composition and oil characteristics of pumpkin (Cucurbita maxima) seed kernels. Food Science and Agricultural Research 129: 5–18.

Alibe I.M. and Inuwa B., 2012. Physicochemical and anti-microbial properties of sunflower (Helianthus annuus L.) seed oil. International Journal of Science and Technology 4: 151–154.

Amoo I.A., Eleyinmi A.F., Ilelaboye N.O.A. and Akoja S.S., 2004. Characterisation of oil extracted from gourd (Cucurbita maxima) seed. Journal of Food, Agriculture and Environment 2(2): 38–39.

Antonić B., Dordević D., Jančíková S., Tremlova B. and Kushkevych I., 2020. Physicochemical characterization of home-made soap from waste-used frying oils. Processes 8(10): 1219. 10.3390/pr8101219

Sustainable ChemistryPharmacyAremu M.O. and Akinwumi O.D., 2014. Extraction, compositional and physicochemical characteristics of cashew Anarcadiumoccidentale nuts reject oil. Asian Journal of Applied Science and Engineering 3(2): 227–234. 10.15590/ajase/2014/v3i7/5357

Aremu M.O., Olonisakin A., Bako D.A. and Madu P.C., 2006. Compositional studies and physicochemical characteristics of cashew nut (Anarcadiumoccidentale) flour. Pakistan Journal of Nutrition 5(4): 328–333. 10.3923/pjn.2006.328.333

Arya S.S., Ramanujam S. and Vijayaraghavan P.K., 1969. Refractive index as an objective method for evaluation of rancidity in edible oils and fats. Journal of American Oil Chemists’ Society 46(1): 28–30. 10.1007/BF02632705

Atolani O., Adamu N., Oguntoye O.S., Zubair M.F., Fabiyi O.A., Oyegoke R.A., Adeyemi O.S., Areh E.T., Tarigha D.E., Kambizi L. and Olatunji G.A., 2020. Chemical characterization, antioxidant, cytotoxicity, anti-toxoplasma gondii and antimicrobial potentials of the Citrus sinensis seed oil for sustainable cosmeceutical production. Heliyon 6(2): e03399. 10.1016/j.heliyon.2020.e03399

Atolani O., Olabiyi E.T., Issa A.A., Azeez H.T., Onoja E.G., Ibrahim S.O., Zubair M.F., Oguntoye O.S. and Olatunji G.A., 2016. Green synthesis and characterization of natural antiseptic soaps from the oils of underutilized tropical seed. Sustainable Chemistry and Pharmacy 4: 32–39. 10.1016/j.scp.2016.07.006

Bagale R., Acharya S., Gupta A., Chaudhary P., Chaudhary G.P. and Pandey J., 2022. Antibacterial and antioxidant activities of Prinsepiautilis Royle leaf and seed extracts. Journal of Tropical Medicine Article ID 3898939. 10.1155/2022/ 3898939

Bansal V., Medhi B. and Pandhi P., 2005. Honey—a remedy rediscovered and its therapeutic utility. Kathmandu University Medical Journal 3(3): 305–309.

Bello M.O., Akindele T.L., Adeoye D.O. and Oladimeji A.O., 2011. Physicochemical properties and fatty acids profile of seed oil of Telfairia occidentalis Hook, F. International Journal of Basic and Applied Science11(06): 9–14.

Bhattarai N.K., 1992. Medical ethnobotany in the karnali zone, Nepal. Economic Botany 46(3): 257–261. 10.1007/BF02866624

Chinedu N.U., Benjamin A. and Peter A., 2017. Chemical composition and physicochemical analysis of matured stems of Opuntia dillenii grown in Nigeria. Food Science and Technology 5(5): 106–112. 10.13189/fst.2017.050502

Choi F.D., Juhasz M.L.W. and Mesinkovska N.A., 2019. Topical ketoconazole: a systematic review of current dermatological applications and future developments. Journal of Dermatological Treatment 30(8): 760–771. 10.1080/09546634.2019.1573309

Dhakal B., Thakur J.K., Mahato R.K., Rawat I., Rabin D.C., Chhetri R.R., Shah K.P., Adhikari A. and Pandey J., 2022. Formulation of ebastine fast-disintegrating tablet using coprocessed super disintegrants and evaluation of quality control parameters. Scientific World Journal Article ID 9618344. 10.1155/2022/9618344

Dreno B., Chosidow O., Revuz J., Moyse D., 2003. Study investigator group. Lithium gluconate 8% vs. ketoconazole 2% in the treatment of seborrhoeic dermatitis: a multicentre, randomized study. British Journal of Dermatology 148(6): 1230–1236. 10.1046/j.1365-2133.2003.05328.x

Famurewa J.A., Jaiyeoba K.F., Ogunlade C.A. and Ayeni O.B., 2021. Effect of extraction methods on yield and some quality characteristics of coconut (Cocos nucifera L) oil. Agricultural Engineering International: CIGR Journal. 23(3): 251–260.

Government of India, 2018. Indian pharmacopoeia (IP), vol. 1. Controller of Publications, New Delhi, India, pp. 141–152.

Guan, B., Li, T., Xu, X.K., Zhang, X.F., Wei, P.L., Peng, C.C., Fu, J.J., Zeng, Q., Cheng, X.R., Zhang, S.D. and Yan, S.K., 2014. γ-Hydroxynitrile glucosides from the seeds of Prinsepia utilis. Phytochemistry. 105: 135–140. 10.1016/j.phytochem.2014.05.018

Gultekin F., Yasar S., Gurbuz N. and Ceyhan B.M., 2015. Food additives of public concern for their carcinogenicity. Journal of Nutrition & Food Sciences 3(4): 1–6. 10.15226/jnhfs.2015.00149

Gupta R., Goyal R., Bhattacharya S. and Dhar K.L., 2015. Antioxidative in vitro and antiosteoporotic activities of Prinsepia utilis Royle in female rats. European Journal of Integrative Medicine 7(2): 157–163. 10.1016/j.eujim.2014.10.002

Inekwe U.V., Odey M.O., Gauje B., Dakare A.M., Ugwumma C.D. and Adegbe E.S., 2012. Fatty acid composition and physicochemical properties of Jatropha Curcas oils from Edo and Kaduna states of Nigeria and India. Annals of Biological Research 3(10): 4860–4864.

Islam, M.R., Beg, M.D.H. and Jamari, S.S., 2014. Alkyd based resin from non-drying oil. Procedia Engineering 90: 78–88. 10.1016/j.proeng.2014.11.818

Jagdale S., Bhavsar D., Gattani M., Chaudhari K. and Chabukswar A., 2011. Formulation and evaluation of miconazole nitrate soap strips for dermal infections. International Journal of Pharmacy and Pharmaceutical Sciences 3(3): 299–302.

Kewlani P., Tiwari D.C., Singh B., Negi V.S., Bhatt I.D. and Pande V., 2022a. Source-dependent variation in phenolic compounds and antioxidant activities of Prinsepia utilis Royle fruits. Environmental Monitoring and Assessment 194(3): 1–5. 10.1007/s10661-022-09786-z

Kewlani P., Tewari D.C., Singh L., Negi V.S., Bhatt I.D., Pande V., 2022b. Saturated and polyunsaturated fatty acids rich populations of Prinsepia utilis Royle in western Himalaya. Journal of Oleo Science 71(4): 481–491. 10.5650/jos.ess21262

Kim S.A., Moon H., Lee K. and Rhee M.S., 2015. Bactericidal effects of triclosan in soap both in vitro and in vivo. Journal of Antimicrobial Chemotherapy 70(12): 3345–3352. 10.1093/jac/dkv275

Koirala S., Nepal P., Ghimire G., Basnet R., Rawat I., Dahal A., Pandey J. and Parajuli-Baral K., 2021. Formulation and evaluation of mucoadhesive buccal tablets of aceclofenac. Heliyon 17(3): e06439. 10.1016/j.heliyon.2021.e06439

Krist S., 2020. Vegetable fats and oils. Springer Nature, New York, NY. 10.1007/978-3-030-30314-3

Kunwar R.M. and Duwadi N.P.S., 2003. Ethnobotanical notes on flora of Khaptad National Park (KNP), far-western Nepal. Himalayan Journal of Sciences 1(1): 25–30. 10.3126/hjs.v1i1.182

Maikhuri R.K., Singh A. and Semwal R.L., 1994. Prinsepia utilis Royle: a wild, edible oil shrub of the higher Himalayas. Plant Genetic Resources Newsletter 98: 5–8.

EthnopharmacologyManandhar N.P., 1986. Ethnobotany of jumla district, Nepal. Pharmaceutical Biology 24(2): 81–89. 10.3109/13880208609083311

Manandhar N.P., 1995. A survey of medicinal plants of Jajarkot district, Nepal. Journal of Ethnopharmacology 48(1): 1–6. 10.1016/0378-8741(95)01269-J

Mekkawy A.I.A.A., Fathy M. and El-Shanawany S., 2013. Study of fluconazole release from O/W cream and water soluble ointment bases. British Journal of Pharmaceutical Research (4): 686–696. 10.9734/BJPR/2013/3702

Muhammad A., Ayub M., Zeb A., Wahab S. and Khan S., 2013. Physicochemical analysis and fatty acid composition of oil extracted from olive fruit. Food Science and Quality Management 19(1): 1–6.

Mwanza C. and Zombe K., 2020. Comparative evaluation of some physicochemical properties on selected commercially available soaps on the Zambian market. Open Access Library Journal 7(3): 1–3. 10.4236/oalib.1106147

Naveed S. and Jaweed L., 2014. UV spectrophotometric assay of ketoconazole oral formulations. American Journal of Life Sciences 2(5): 108–111.

Nierat T.H., Musameh S.M. and Abdel-Raziq I.R., 2014. Temperature-dependence of olive oil viscosity. Materials Science 11(7): 233–238.

Nowak K., Ratajczak–Wrona W., Górska M. and Jabłońska E., 2018. Parabens and their effects on the endocrine system. Molecular and Cellular Endocrinology 474: 238–251. 10.1016/j.mce.2018.03.014

Oladiji A.T., Yakubu M.T., Idoko A.S., Adeyemi O. and Salawu M.O., 2010. Studies on the physicochemical properties and fatty acid composition of the oil from ripe plantain peel (Musa paradisiaca). African Scientist 11(1): 73–78.

Pandey J., Bastola T., Tripathi J., Tripathi M., Rokaya R.K., Dhakal B., Bhandari R. and Poudel A., 2020. Estimation of total quercetin and rutin content in Malus domestica of Nepalese origin by HPLC method and determination of their antioxidative activity. Journal of Food Quality. 2020:1-13. 10.1155/2020/8853426

Pandey J., Khanal B., Bhandari J., Bashyal R., Pandey A., Mikrani A.A., Aryal P. and Bhandari R., 2021. Physiochemical evaluation of Diploknema butyracea seed extract and formulation of ketoconazole ointment by using the fat as a base. Journal of Food Quality. 2022:1-11. 10.1155/2021/6612135

Rane S.S. and Padmaja P., 2012. Spectrophotometric method for the determination of ketoconazole based on amplification reactions. Journal of Pharmaceutical Analysis 2(1): 43–47. 10.1016/j.jpha.2011.10.004

Ruckmani K., Krishnamoorthy R., Samuel S., Linda H. and Kumari J., 2014. Formulation of herbal bath soap from Vitex negundo leaf extract. Journal of Chemical and Pharmaceutical Sciences 2(2): 95–99.

Samuel C.B., Barine K.K. and Joy E.E., 2017. Physicochemical properties and fatty acid profile of shea butter and fluted pumpkin seed oil, a suitable blend in bakery fat production. International Journal of Nutrition and Food Science 6(3): 122–128. 10.11648/j.ijnfs.20170603.12

Sharma K.P., Belbase A. and Neupane U., 2020. Quality control and evaluation of certain properties of soaps available in Butwal sub-metropolitan city, Nepal. Butwal Campus Journal 2(1): 6–12. 10.3126/bcj.v2i1.35664

Shirsand S.B., Para M.S., Nagendrakumar D., Kanani K.M. and Keerthy D., 2012. Formulation and evaluation of ketoconazole niosomal gel drug delivery system. International Journal of Pharmaceutical Investigation 2(4): 201–208. 10.4103/2230-973X.107002

Sindhu R.K., Chitkara M., Kaur G., Kaur A., Arora S. and Sandhu I.S., 2019. Formulation development and antimicrobial evaluation of polyherbal soap. Plant Archives 19: 1342–1346.

Staub I., Flores L., Gosmann G., Pohlmann A., Froeehlich P.E., Schapoval E.E. and Bergold A.M., 2010. Photostability studies of ketoconazole: isolation and structural elucidation of the main photodegradation products. Latin American Journal of Pharmacy 29(7): 1100–1106.

Tareau M.A., Palisse M. and Odonne G., 2017. As vivid as a weed… Medicinal and cosmetic plant uses amongst the urban youth in French Guiana. Journal of Ethnopharmacology 203: 200–213. 10.1016/j.jep.2017.03.031

Teixeira C.B., Macedo G.A., Macedo J.A., da Silva L.H. and Rodrigues A.M., 2013. Simultaneous extraction of oil and antioxidant compounds from oil palm fruit (Elaeisguineensis) by an aqueous enzymatic process. Bioresource Technology 129: 575–581. 10.1016/j.biortech.2012.11.057

Touré A., Bahi C., Bagré I., N’guessan J.D., Djama A.J. and Coulibaly A., 2010. In vitro antifungal activity of the soap formulation of the hexane leaf extract of Morindamorindoides (Morinda; Rubiaceae). Tropical Journal of Pharmaceutical Research 9(3): 237–241. 10.4314/tjpr.v9i3.56283

Udensi E.A. and Iroegbu F.C., 2007. Quality assessment of palm oil sold in major markets in Abia state, Nigeria. Agro-Science 6(2): 25–27. 10.4314/as.v6i2.1566

Watanabe T., Rajbhandari K.R., Malla K.J., Devkota H.P. and Yahara S., 2013. Medicinal plants of Nepal. Ayurseed Life Environmental Institute, Kanagawa, Japan, 381 p.

Widyaningsih S., Chasani M. and Diastuti H., 2018. Novayanti. Formulation of antibacterial liquid soap from nyamplung seed oil (Calophyllum inophyllum L) with addition of Curcuma heyneana and its activity test on Staphylococcus aureus. IOP Conference Series: Materials Science and Engineering (MSE) 349: 1–9. 10.1088/1757-899X/349/1/012062

Winnicka K., Wroblewska M., Wieczorek P., Sacha P.T. and Tryniszewska E., 2012. Hydrogel of ketoconazole and PAMAM dendrimers: formulation and antifungal activity. Molecules 17(4): 4612–4624. 10.3390/molecules17044612

Yadav S., 2018. Edible oil adulterations: current issues, detection techniques and health hazards. International Journal of Chemical Studies 6(2): 1393–1397.

Yang J., Yang Z.w., Yi P., Huang D.s. and Min Y., 2012. Fatty acid compositions in seeds of Prinsepia utilis Royle. Journal of Honghe University. p. 4.

Yermanos D.M., Hemstreet S., Saleeb W., Huszar C.K., 1972. Oil content and composition of the seed in the world collection of sesame introductions. Journal of the American Oil Chemists’ Society (1): 20–23. 10.1007/BF02545131

Yu J.J., Manus M.B., Mueller O., Windsor S.C., Horvath J.E. and Nunn C.L., 2018. Antibacterial soap use impacts skin microbial communities in rural Madagascar. PloS One 13(8): e0199899. 10.1371/journal.pone.0199899

Zhang X., Jia Y., Ma Y., Cheng G. and Cai S., 2018. Phenolic composition, antioxidant properties, and inhibition toward digestive enzymes with molecular docking analysis of different fractions from Prinsepia utilis Royle fruits. Molecules 23: 3373. 10.3390/molecules23123373

Zheng Y., Zhao L. and Yi J., 2022. Phytochemical characteriza-tion and antioxidant and enzyme inhibitory activities of different parts of Prinsepia utilis Royle. Journal of Food Quality. Article ID 9739851. 10.1155/2022/9739851