Hepatic antioxidant and gut ecological modulation properties of long-term intake of tea (Camellia sinensis L.) flower extract in vivo

Main Article Content

Dan Chen
Jialiang Lv
Taoan Han
Juan Kan
Chang-Hai Jin
Jun Liu

Keywords

Camellia sinensis L., tea flower, antioxidation, gut microbiota, short-chain fatty acids, immunoglobulin A

Abstract

Tea (Camellia sinensis L.) flower extract (TFE) is a new type of tea beverage. The aim of this study was to explore the possible function after intake of TFE for a fixed period. In the study, 200 mg/kg body weight (BW)/day (d) of TFE was given to mice for 14 weeks. The results showed that the levels of hepatic superoxide dismutase and reduced glutathione were increased but the formation of malondialdehyde was reduced, compared to the normal control (NC) group. Meanwhile, administration of TFE contributed to the prior number of colonic goblet cells (1,505 ± 124 vs. 1,162 ± 112, per mm2) and enhancement of colonic messenger RNA expression of mucin 2 and Claudin5. Additionally, TFE intervention modulated the composition and metabolic pathways of gut microbiota with an important role in dietary metabolism. Representatively, the relative abundance of genera Bacteroides, Prevotella, and Lachnospiracea_incertae_sedis, and the levels of short-chain fatty acids (SCFAs) and immunoglobulin A were increased. Taken together, long-term intake of TFE could promote hepatic antioxidant and modulate gut ecological status. These results could provide a reference for the development of TFE as a functional beverage.

Abstract 334 | PDF Downloads 471 HTML Downloads 31 XML Downloads 8

References

Allaire, J.M., Crowley, S.M., Law, H.T., Chang, S.Y., Ko, H.J. and Vallance, B.A., 2018. The intestinal epithelium: central coordinator of mucosal immunity. Trends in Immunology 39: 677–696. 10.1016/j.it.2018.04.002

Baez-Duarte, B.G., Zamora-Ginez, I., De Jesus, K.L., Torres-Rasgado, E., Gonzalez-Mejia, E., Porchia, L., Ruiz-Vivanco, G. and Perez-Fuentes, R., 2016. Association of the metabolic syndrome with antioxidant defense and outstanding superoxide dismutase activity in Mexican subjects. Metabolic Syndrome and Related Disorders 14: 154–160. 10.1089/met.2015.0088

Breuninger, T.A., Wawro, N., Breuninger, J., Reitmeier, S., Clavel, T., Six-Merker, J., Pestoni, G., Rohrmann, S., Rathmann, W., Peters, A., Grallert, H., Meisinger, C., Haller, D. and Linseisen, J., 2021. Associations between habitual diet, metabolic disease, and the gut microbiota using latent Dirichlet allocation. Microbiome 9: 61. 10.1186/s40168-020-00969-9

Brooks, G.A., 2018., The science and translation of lactate shuttle theory. Cell Metabolism 27: 757–785. 10.1016/j.cmet.2018.03.008

Cani, P.D., 2019. Microbiota and metabolites in metabolic diseases. Nature Reviews Endocrinology 15: 69–70. 10.1038/s41574-018-0143-9

Chang, C.J., Lin, C.S., Lu, C.C., Martel, J., Ko, Y.F., Ojcius, D.M., Tseng, S-F., Wu, T-R., Chen, Y-Y.M., Young, J.D. and Lai, H-C., 2015. Ganoderma lucidumreduces obesity in mice by modulating the composition of the gut microbiota. Nature Communications 6: 7489. 10.1038/ncomms8489

Chen, D., Chen, G.J., Sun, Y., Zeng, X.X. and Ye, H., 2020a. Physiological genetics, chemical composition, health benefits and toxicology of tea (Camellia sinensis L.) flower: a review. Food Research International 137: 109584. 10.1016/j.foodres.2020.109584

Chen, D., Ding, Y., Chen, G.J., Sun, Y., Zeng, X.X. and Ye, H., 2020b. Components identification and nutritional value exploration of tea (Camellia sinensis L.) flower extract: evidence for functional food. Food Research International 132: 109100. 10.1016/j.foodres.2020.109100

Chen, Y.Y., Zhou, Y., Zeng, L.T., Dong, F., Tu, Y.Y. and Yang, Z.Y., 2018. Occurrence of functional molecules in the flowers of tea (Camellia sinensis) plants: evidence for a second resource. Molecules 23: 790. 10.3390/molecules23040790

de Amorim, L.M.N., Vaz, S.R., Cesário, G., Coelho, A.S.G. and Botelho, P.B., 2018. Effect of green tea extract on bone mass and body composition in individuals with diabetes. Journal of Functional Foods 40: 589–594. 10.1016/j.jff.2017.11.039

Ding, Y., Chen, D., Yan, Y.M., Chen, G.J., Ran, L.W., Mi, J., Lu. L., Zeng, X.X and Cao, Y.L., 2021. Effects of long-term consumption of polysaccharides from the fruit of Lycium barbarum on host’s health. Food Research International 139: 109913. 10.1016/j.foodres.2020.109913

Duncan, S.H., Louis, P. and Flint, H.J., 2004. Lactate-utilizing bacteria, isolated from human feces that produce butyrate as a major fermentation product. Applied and Environmental Microbiology 70: 5810–5817. 10.1128/aem.70.10.5810-5817.2004

Dusak, A., Atasoy, N., Demir, H., Dogan, E., Gursoy, T. and Sarikaya, E., 2017. Investigation of levels of oxidative stress and antioxidant enzymes in colon cancers. Journal of Clinical and Analytical Medicine 8: 469–473. 10.4328/jcam.5210

El-Bakry, H.A., El-Sherif, G. and Rostom, R.M., 2017. Therapeutic dose of green tea extract provokes liver damage and exacerbates paracetamol-induced hepatotoxicity in rats through oxidative stress and caspase 3-dependent apoptosis. Biomedicine and Pharmacotherapy 96: 798–811. 10.1016/j.biopha.2017.10.055

Fan, P.X., Liu, P., Song, P.X., Chen, X.Y. and Ma, X., 2017. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Scientific Reports 7: 43412. 10.1038/srep43412

Gaudier, E., Jarry, A., Blottiere, H.M., de Coppet, P., Buisine, M.P., Aubert, J.P., Laboisse, C., Cherbut, C. and Hoebler, C., 2004. Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. American Journal of Physiology-Gastrointestinal and Liver Physiology 287: G1168–G1174. 10.1152/ajpgi.00219.2004

Hachimura, S., Totsuka, M. and Hosono, A., 2018. Immunomodulation by food: impact on gut immunity and immune cell function. Bioscience, Biotechnology, and Biochemistry 82: 584–599. 10.1080/09168451.2018.1433017

Hozawa, A., Kuriyama, S., Nakaya, N., Ohmori-Matsuda, K., Kakizaki, M., Sone, T., Nagai, M., Sugawara, Y., Nitta, A., Tomata, Y., Niu, K.J. and Tsuji, I., 2009. Green tea consumption is associated with lower psychological distress in a general population: the Ohsaki Cohort 2006 Study. American Journal of Clinical Nutrition 90: 1390–1396. 10.3945/ajcn.2009.28214

Hu, Y., Le Leu, R.K., Christophersen, C.T., Somashekar, R., Conlon, M.A., Meng, X.Q., Winter, J.M., Woodman, R.J., McKinnon, R. and Young, G.P., 2016. Manipulation of the gut microbiota using resistant starch is associated with protection against colitis-associated colorectal cancer in rats. Carcinogenesis 37: 366–375. 10.1093/carcin/bgw019

Hu, J., Webster, D., Cao, J. and Shao, A., 2018. The safety of green tea and green tea extract consumption in adults—results of a systematic review. Regulatory Toxicology and Pharmacology 95: 412–433. 10.1016/j.yrtph.2018.03.019

Isobe, J., Maeda, S., Obata, Y., Iizuka, K., Nakamura, Y., Fujimura, Y., Kimizuka, T., Hattori, K., Kim, Y-G., Morita, T., Kimura, I., Offermanns, S., Adachi, T., Nakao, A., Kiyono, H., Takahashi, D. and Hase, K., 2020. Commensal-bacteria-derived butyrate promotes the T-cell-independent IgA response in the colon. International Immunology 32: 243–258. 10.1093/intimm/dxz078

Jin, S. and Hyun, T.K., 2020. Ectopic expression of production of anthocyanin pigment 1 (PAP1) improves the antioxidant and anti-melanogenic properties of Ginseng (Panax ginseng CA Meyer) hairy roots. Antioxidants 9: 922. 10.3390/antiox9100922

Kakutani, S., Watanabe, H. and Murayama, N., 2019. Green tea intake and risks for dementia, Alzheimer’s disease, mild cognitive impairment, and cognitive impairment: a systematic review. Nutrients 11: 1165. 10.3390/nu11051165

Kokaze, A., Ishikawa, M., Matsunaga, N., Karita, K., Yoshida, M., Ohtsu, T., Ochiai, H., Shirasawa, T., Saga, N., Hoshino, H. and Takashima, Y., 2012. Combined effect of longevity-associated mitochondrial DNA 5178 C/A polymorphism and green tea consumption on risk of hypertension in middle-aged Japanese men. Human Biology 84: 307–318. 10.3378/027.084.0309

Langille, M.G.I., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Thurber, R.L.V., Knight, R., Beiko, R.G. and Huttenhower, C., 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology 31: 814–823. 10.1038/nbt.2676

Li, B., Jin, Y.X., Xu, Y., Wu, Y.Y., Xu, J.Y., and Tu, Y.Y., 2011. Safety evaluation of tea (Camellia sinensis (L.) O. Kuntze) flower extract: assessment of mutagenicity, and acute and subchronic toxicity in rats. Journal of Ethnopharmacology 133(2), 583–590. 10.1016/j.jep.2010.02.030

Li, X.M., Wang, W., Hou, L.M., Wu, H.H., Wu, Y.J., Xu, R., Xiao, Y. and Wang, X.M., 2020. Does tea extract supplementation benefit metabolic syndrome and obesity? A systematic review and meta-analysis. Clinical Nutrition 39: 1049–1058. 10.1016/j.clnu.2019.05.019

Li, S.C., Xiao, Y., Wu, R.T., Xie, D., Zhao, H.H., Shen, G.Y. and Wu, E.Q., 2021. Comparative analysis of type 2 diabetes--associated gut microbiota between Han and Mongolian people. Journal of Microbiology 59: 693–701. 10.1007/s12275-021-0454-8

Livak, K.J. and Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–ΔΔ C(T)) method. Methods 25: 402–408. 10.1006/meth.2001.1262

Mhatre, S., Naik, S. and Patravale, V., 2021. A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2. Computers in Biology and Medicine 129: 104137. 10.1016/j.compbiomed.2020.104137

Morrison, D.J. and Preston, T., 2016. Formation of short-chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7: 189–200. 10.1080/19490976.2015.1134082

Oide, S. and Turgeon, B.G., 2020. Natural roles of nonribosomal peptide metabolites in fungi. Mycoscience 61: 101–110. 10.1016/j.myc.2020.03.001

Ouyang, Y.N., Jin, Y.X., Zhao, X.R., Chen, M., Yang, P.F., Zheng, X.W., Zeng, L., Chen, L. and Tian, Z.M., 2020. Revealing metabolic pathways relevant to prediabetes based on metabolomics profiling analysis. Biochemical and Biophysical Research Communications 533: 188–194. 10.1016/j.bbrc.2020.09.016

Overby, H.B. and Ferguson, J.F., 2021. Gut microbiota-derived short-chain fatty acids facilitate microbiota: host cross talk and modulate obesity and hypertension. Current Hypertension Reports 23(2): 8. 10.1007/s11906-020-01125-2

Pabst, O. and Slack, E., 2020. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunology 13: 12–21. 10.1038/s41385-019-0227-4

Parker, B.J., Wearsch, P.A., Veloo, A.C.M. and Rodriguez-Palacios, A., 2020. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Frontiers in Immunology 11: 906. 10.3389/fimmu.2020.00906

Rinninella, E., Cintoni, M., Raoul, P., Lopetuso, L.R., Scaldaferri, F., Pulcini, G., Miggiano, G.A.D., Gasbarrini, A. and Mele, M.C., 2019. Food components and dietary habits: keys for a healthy gut microbiota composition. Nutrients 11: 2393. 10.3390/nu11102393

Salvi, P.S. and Cowles, R.A., 2021. Butyrate and the intestinal epithelium: modulation of proliferation and inflammation in homeostasis and disease. Cells 10: 1775. 10.3390/cells10071775

Singh, B.N., Prateeksha, Rawat, A.K.S., Bhagat, R.M. and Singh, B.R., 2017. Black tea: phytochemicals, cancer chemoprevention, and clinical studies. Critical Reviews in Food Science and Nutrition 57: 1394–1410. 10.1080/10408398.2014.994700

Swayambhu, G., Bruno, M., Gulick, A.M. and Pfeifer, B.A., 2021. Siderophore natural products as pharmaceutical agents. Current Opinion in Biotechnology 69: 242–251. 10.1016/j.copbio.2021.01.021

Tawiah, A., Cornick, S., Moreau, F., Gorman, H., Kumar, M., Tiwari, S. and Chadee, K., 2018. High MUC2 mucin expression and misfolding induce cellular stress, reactive oxygen production, and apoptosis in goblet cells. American Journal of Pathology 188: 1354–1373. 10.1016/j.ajpath.2018.02.007

Teng, J., Zhou, W., Zeng, Z., Zhao, W.F., Huang, Y.H. and Zhang, X., 2017. Quality components and antidepressant-like effects of GABA green tea. Food and Function 8: 3311–3318. 10.1039/c7fo01045a

Tian, L., Scholte, J., Borewicz, K., Bogert, B.V., Smidt, H., Scheurink, A.J., Gruppen, H. and Schols, H.A., 2016. Effects of pectin supplementation on the fermentation patterns of different structural carbohydrates in rats. Molecular Nutrition and Food Research 60: 2256–2266. 10.1002/mnfr.201600149

Wang, M., Bai, Y., Wang, Z., Zhang, Z., Liu, D. and Lian, X. 2021. Higher tea consumption is associated with decreased risk of small vessel stroke. Clinical Nutrition 40: 1430–1435. 10.1016/j.clnu.2020.08.039

Wu, G.D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.Y., Keilbaugh, S.A., Bewtra, M., Knights, D., Walters, W.A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H.Z., Bushman, F.D. and Lewis, J.D., 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105–108. 10.1126/science.1208344

Wu, C.-H., Lu, F.-H., Chang, C.-S., Chang, T.-C., Wang, R.-H. and Chang, C.-J., 2003. Relationship among habitual tea consumption, percent body fat, and body fat distribution. Obesity Research 11: 1088–1095. 10.1038/oby.2003.149

Xie, M.H., Chen, G.J., Wan, P., Dai, Z.Q., Hu, B., Chen, L.G., Ou, S.Y., Zeng, X.X. and Sun, Y., 2017. Modulating effects of dicaffeoylquinic acids from Ilex kudingcha on intestinal microecology in vitro. Journal of Agricultural and Food Chemistry 65: 10185–10196. 10.1021/acs.jafc.7b03992

Zhang, L., Ho, C.T., Zhou, J., Santos, J.S., Armstrong, L. and Granato, D., 2019. Chemistry and biological activities of processed camellia sinensis teas: a comprehensive review. Comprehensive Reviews in Food Science and Food Safety 18: 1474–1495. 10.1111/1541-4337.12479