Effects of wine processed Polygonatum polysaccharides on immunomodulatory effects and intestinal microecology in mice

Main Article Content

Xiao-yan Xiao
Zhi-jun Guo
Xiaoman Li
Peng Chen
Yu Li
Jiu-ba Zhang
Chun-qin Mao
De Ji
Lian-lin Su
Bo Gao
Tu-lin Lu


gut microbiota, immunomodulatory, Polygonatum polysaccharides, polysaccharides, short-chain fatty acids, wine processed


Polygonatum sibiricum is a traditional Chinese medicinal and food homologous substance, usually used after processing with yellow wine. However, its main active ingredient, polysaccharide, has been less studied after wine processing. This study aimed to investigate the effect of Polygonatum polysaccharides after wine processing on the function of immunosuppressed mice and its related mechanisms. The yellow wine processed Polygonatum (YWPP) polysaccharides were extracted by the water extraction alcohol precipitation method. BALB/c mice were used to establish the immunosuppressive animal model with cyclophosphamide (CTX). The immunomodulatory effect of the YWPP polysaccharides Interleukin 2, interferon γ, immunoglobulin A, Immunoglobulin M, T lymphocyte subsets, and other indexes were detected by enzyme-linked immunosorbent assay, flow cytometry, and other technologies. To study the mechanism of immunomodulation of polysaccharides, 16s rDNA sequencing and Gas Chromatography/Mass Spectrometry (GC/MS) were used to analyze the changes of intestinal microbiota composition, diversity, and the content of short-chain fatty acids (SCFAs). The Spearman method was used to analyze the correlation between gut microbiota and various immune indexes and SCFAs. The results showed that the YWPP polysaccharides could significantly restore the body weight of immunosuppressed mice, improve the spleen and thymus, and regulate peripheral blood cell values. The YWPP polysaccharides can also effectively promote Interleukin 2, interferon γ, immunoglobulin A, and immunoglobulin M in immunosuppressed mice and regulate the expression of immune-related indexes. The YWPP polysaccharides promoted the production of SCFAs, significantly regulated the relative abundance of norank_f__norank_o__RF39, Rikenellaceae_RC9_gut_group, norank_f__UCG-010, and norank_f__norank_o__Clostridia_UCG-014; reversed CTX-induced metabolic abnormalities of mouse gut microbiota; and normalized them. Spearman correlation analysis showed that the relative abundance of gut microbiota was significantly correlated with various immune indices and SCFAs. In conclusion, the YWPP polysaccharides can improve the immune function of CTX-induced immunocompromised mice, promote cytokine upregulation and the relative abundance of immune-related beneficial bacteria in mice, and regulate the gut microbiota, thereby regulating host immunity. The results of this study will provide a theoretical basis for the practical application of the YWPP polysaccharides, health product development, and diversified product development.


Download data is not yet available.
Abstract 97 | PDF Downloads 152 HTML Downloads 18 XML Downloads 1


Cabral, L., Persinoti, G.F., Paixão, D.A.A., Martins, M.P., Morais, M.A.B., Chinaglia, M., et al. 2022. Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides. Nature Communications. 13(1): 629. 10.1038/s41467-022-28310-y

Cervantes-Barragan, L., Züst, R., Maier, R., Sierro, S., Janda, J., Levy, F., et al. 2010. Dendritic cell-specific antigen delivery by coronavirus vaccine vectors induces long-lasting protective antiviral and antitumor immunity. mBio. 1(4): e00171–10. 10.1128/mBio.00171-10

Chen, Z.R., Zhu, B.J., Chen, Z.X., Cao, W., Wang, J.Q., Li, S.P., et al. 2022. Effects of steam on polysaccharides from Polygonatum cyrtonema based on saccharide mapping analysis and pharmacological activity assays. Chinese Medicine. 17(1): 97. 10.1186/s13020-022-00650-3

Cheng, X., Ji, H., Cheng, C., Sun, Y., Cheng, H., Wang, D., et al. 2022. Comprehensive determination of the processing level of rhizome of Polygonatum sibiricum by macroscopic, micromorphological, and microscopic characterizations. Microscopy research and technique 85(7): 2669–2678. 10.1002/jemt.24121

Chinese Pharmacopoeia Commission, 2020. Chinese Pharmacopoeia (S). Part I. China medicine science and technology press 327–328.

El Kaoutari, A., Armougom, F., Gordon, J.I., Raoult, D. and Henrissat, B., 2013. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology 1(7): 497–504. 10.1038/nrmicro3050

Gao, H., Zhang, W.C., Wang, B.S., Hui, A.L., Du, B., Wang, T.T., et al. 2018. Purification, characterization and anti-fatigue activity of polysaccharide fractions from okra (Abelmoschus esculentus (L.) Moench). Food & function, 9(2), 1088–1101. 10.1039/c7fo01821e

He, Y.F., Huang, L., Jiang, P., Xu, G.P. and Sun, T.T., 2022. Immunological regulation of the active fraction from Polygonatum sibiricum F. Delaroche based on improvement of intestinal microflora and activation of RAW264.7 cells. Journal of Ethnopharmacology. 293: 115240. 10.1016/j.jep.2022.115240

Huang, S., Yuan, H.Y., Li, W.Q., Liu, X.Y., Zhang, X.J., Xiang, D.X., et al. 2021. Polygonatum sibiricum polysaccharides protect against MPP-induced neurotoxicity via the Akt/mTOR and Nrf2 pathways. Oxidative medicine and cellular longevity. 2021: 8843899. 10.1155/2021/8843899

Ivaylo, I.I. and Honda, K., 2012. Intestinal commensal microbes as immune modulators. Cell Host and Microbe 12(4): 496–508. 10.1016/j.chom.2012.09.009

Jie, D., Gao, T.T., Shan, Z.S., Song, J.Y., Zhang, M., Kurskaya, O., et al. 2020. Immunostimulating effect of polysaccharides isolated from Ma-Nuo-Xi decoction in cyclophosphamide-immunosuppressed mice. International journal of biological macromolecules. 146: 45–52. 10.1016/j.ijbiomac.2019.12.042

Jordan, S., Tung, N., Casanova-Acebes, M., Chang, C., Cantoni, C., Zhang, D., et al. 2019. Dietary intake regulates the circulating inflammatory monocyte pool. Cell 178(5): 1102–1114.e17. 10.1016/j.cell.2019.07.050

Khan, A.I., Rehman, A.U., Farooqui, N.A., Siddiqui, N.Z., Ayub, Q., Ramzan, M.N., et al. 2022. Effects of shrimp peptide hydrolysate on intestinal microbiota restoration and immune modulation in cyclophosphamide-treated mice. Molecules 27(5): 1720. 10.3390/molecules27051720

Li, Q.Y., Zhang, C.J., Xilin, T., Ji, M.Y., Meng, X.X., Zhao, Y.L., et al. 2022. Effects of koumiss on intestinal immune modulation in immunosuppressed rats. Frontiers in nutrition 9: 765499. 10.3389/fnut.2022.765499

Liang, Q.X., Zhao, Q.C., Hao, X.T., Wang, J.M., Ma, C.Y., Xi, X.F., et al. 2022. The effect of Flammulina velutipes polysaccharide on immunization analyzed by intestinal flora and proteomics. Frontiers in nutrition 9: 841230. 10.3389/fnut.2022.841230

Liu, N., Dong, Z.H., Zhu, X.S., Xu, H.Y. and Zhao, Z.X., 2018. Characterization and protective effect of Polygonatum sibiricum polysaccharide against cyclophosphamide-induced immunosuppression in Balb/c mice. International journal of biological macromolecules 107(Pt A): 796–802. 10.1016/j.ijbiomac.2017.09.051

Long, T.T., Liu, Z.J., Shang, J.C., Zhou, X., Yu, S., Tian, H., et al. 2019. Corrigendum to “Polygonatum sibiricum polysaccharides play anti-cancer effect through TLR4-MAPK/NF-κB signaling pathways” [Int. J. Biol. Macromol. 111 (2018): 813–821]. International journal of biological macromolecules 127: 703. 10.1016/j.ijbiomac.2018.08.087

Luo, Y., Fang, Q., Lai, Y., Lei, H., Zhang, D., Niu, H., et al. 2022. Polysaccharides from the leaves of Polygonatum sibiricum Red. regulate the gut microbiota and affect the production of short-chain fatty acids in mice. AMB Express. 12(1): 35. 10.1186/s13568-022-01376-z

Rimoldi, M. and Rescigno, M., 2005. Uptake and presentation of orally administered antigens. Vaccine 23(15): 1793–1796. 10.1016/j.vaccine.2004.11.007

Shen, W.D., Li, X.Y., Deng, Y.Y., Zha, X.Q., Pan, L.H., Li, Q.M., et al. 2021. Polygonatum cyrtonema Hua polysaccharide exhibits anti-fatigue activity via regulating osteocalcin signaling. International journal of biological macromolecules. 175: 235–241. 10.1016/j.ijbiomac.2021.01.200

Shu, G., Xu, D., Zhao, J., Yin, L.Z., Lin, J.C., Fu, H.L., et al. 2021. Protective effect of Polygonatum sibiricum polysaccharide on cyclophosphamide-induced immunosuppression in chickens. Research in veterinary science. 135: 96–105. 10.1016/j.rvsc.2020.12.025

Sun, T.T., Zhang, H., Li, Y., Liu, Y., Dai, W., Fang, J., et al. 2020. Physicochemical properties and immunological activities of polysaccharides from both crude and wine-processed Polygonatum sibiricum. International journal of biological macromolecules. 143: 255–264. 10.1016/j.ijbiomac.2019.11.166

Tatiana, T., Fenero, C.I.M. and Câmara, N.O.S., 2017. Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers 5(4): e1373208. 10.1080/21688370.2017.1373208

Wang, F.F., Jiang, Y.J., Jin, S.F., Wang, D.K., Wu, K.J., Yang, Q.W., et al. 2022. Structure characterization and bioactivity of neutral polysaccharides from different sources of Polygonatum Mill. Biopolymers 113(6): e23490. 10.1002/bip.23490

Xie, Z.Y., Bai, Y.X., Chen, G.J., Dong, W., Peng, Y.J., Xu, W.Q., et al. 2022. Immunomodulatory activity of polysaccharides from the mycelium of Aspergillus cristatus, isolated from Fuzhuan brick tea, associated with the regulation of intestinal barrier function and gut microbiota. Food research international 152: 110901. 10.1016/j.foodres.2021.110901

Ying, M.X., Yu, Q., Zheng, B., Wang, H., Wang, J.Q., Chen, S.P., et al. 2020. Cultured Cordyceps sinensis polysaccharides modulate intestinal mucosal immunity and gut microbiota in cyclophosphamide-treated mice. Carbohydrate polymers 235: 115957. 10.1016/j.carbpol.2020.115957

Yoo, J.H., Lee, Y.S., Ku, S. and Lee, H.J., 2020. Phellinus baumii enhances the immune response in cyclophosphamide-induced immunosuppressed mice. Nutrition research 75: 15–31. 10.1016/j.nutres.2019.12.005

Zhang, J., Zhou, H.C., He, S.B., Zhang, X.F., Ling, Y.H., Li, X.Y., et al. 2021. The immunoenhancement effects of sea buckthorn pulp oil in cyclophosphamide-induced immunosuppressed mice. Food & Function 2(17): 7954–7963. 10.1039/d1fo01257f

Zhang, T.H., Yang, Y., Liang, Y., Jiao, X. and Zhao, C.H., 2018. Beneficial effect of intestinal fermentation of natural polysaccharides. Nutrients 10(8): 1055. 10.3390/nu10081055