Zebrafish models for the evaluation of essential oils (EOs): A comprehensive review

Main Article Content

Lulu Wang
Meijie Yu
Shiwei Ding
Jiazhen Cao
Xianghe Meng
Li Li
Ren Sa
Min He
Mengmeng Sun

Keywords

Essential oils, Zebrafish, Toxicity, Safety, Bioactivity

Abstract

Essential oils (EOs) derived from crops, especially aromatic plants, have been well-acknowledged to provide several health benefits for humans. Zebrafish as an unprecedented tool has been widely used as an excellent vertebrate model in labs owing to its many useful characteristics. Its applications for rapidly and economically screening and identifying toxicity, safety, and bioactivity of EOs may serve to meet the rising demand for nutraceuticals, food supplements, and natural cosmetics. In this study, we summarized the research progress of zebrafish models in evaluating EOs. In addition, toxicity, safety, and various bioactivities of EOs were summarized using a wide variety of readily applicable zebrafish models covering antioxidant, anti-inflammatory, angiogenesis inhibition, neuromodulation, anesthesia, anti-melanogenesis, analgesic activities, etc. In conclusion, zebrafish is a valuable animal model for evaluating the bioactivity and safety of EOs, and using such a model may contribute to speeding up the identification of novel EOs with potential health functions and quality assessment, which in turn boosts the recognition of aromatic plants as important industrial crops and encourages a healthier way of life.

Abstract 886 | PDF Downloads 559 HTML Downloads 0 XML Downloads 74

References

Akermi, S., Smaoui, S., Elhadef, K., Fourati, M., Louhichi, N., Chaari, M., et al., 2022. Cupressus sempervirens Essential Oil: Exploring the Antibacterial Multitarget Mechanisms, Chemcomputational Toxicity Prediction, and Safety Assessment in Zebrafish Embryos. Molecules. 27(9): 2630. 10.3390/molecules27092630

Allenspach, M. and Steuer, C., 2021. alpha-Pinene: A never-ending story. Phytochemistry. 190: 112857. 10.1016/j.phytochem.2021.112857

Anegundi, N. and Pancharatna, K., 2017. 7-Hydroxycoumarin Elicit Anti-Angiogenic Effects Through Cellular Apoptosis in Developing Embryos of Zebrafish (Danio Rerio). European Scientific Journal, ESJ. 13(21): 53. 10.19044/esj.2017.v13n21p53

Araujo, J., Maximino, C., de Brito, T.M., da Silva, A.W.B., Oliveira, K.R.M., de Jesus Oliveira Batista, E., et al., 2012. Behavioral and Pharmacological Aspects of Anxiety in the Light/Dark Preference Test, Zebrafish Protocols for Neurobehavioral Research, pp. 191–202.

Arunachalam, M., Raja, M., Vijayakumar, C., Malaiammal, P. and Mayden, R.L., 2013. Natural History of Zebrafish (Danio rerio) in India. Zebrafish. 10(1): 1–14. 10.1089/zeb.2012.0803

Ayushi, K.U., Danish, S.M. and Mohammad, P.U., 2020. A review on biological and therapeutic uses of Syzygium aromaticum Linn.(Clove): Based on phyto-chemistry and pharmacological evidences. International Journal of Botany Studies. 5(4): 33–39.

Baskar, K., Sudha, V., Nattudurai, G., Ignacimuthu, S., Duraipandiyan, V., Jayakumar, M., et al., 2018. Larvicidal and repellent activity of the essential oil from Atalantia monophylla on three mosquito vectors of public health importance, with limited impact on non-target zebra fish. Physiological and Molecular Plant Pathology. 101: 197–201. 10.1016/j.pmpp.2017.03.002

Batista, F.L.A., de Araújo, J.I.F., de Araújo, S.M.B., de Sousa, D.B., Sobrinho, F.B.C., Bezerra, F.S., et al., 2021. Antinociceptive Effect of Volatile Oils from Ocimum basilicum Flowers on Adult Zebrafish. Revista Brasileira de Farmacognosia. 31(3): 282–289. 10.1007/s43450-021-00154-5

Bauer, B., Mally, A. and Liedtke, D., 2021. Zebrafish Embryos and Larvae as Alternative Animal Models for Toxicity Testing. Int J Mol Sci. 22(24): 13417. 10.3390/ijms222413417

Benavides, S., Cortes, P., Parada, J. and Franco, W., 2016. Development of alginate microspheres containing thyme essential oil using ionic gelation. Food Chemistry. 204: 77–83. 10.1016/j.foodchem.2016.02.104

Benvenutti, R., Marcon, M., Gallas-Lopes, M., de Mello, A.J., Herrmann, A.P. and Piato, A., 2021. Swimming in the maze: An overview of maze apparatuses and protocols to assess zebrafish behavior. Neuroscience & Biobehavioral Reviews. 127: 761–778. 10.1016/j.neubiorev.2021.05.027

Bezerra, F., Vieira-Neto, A.E., Benevides, S.C., Tavares, K.C.S., Ribeiro, A.D.C., Santos, S., et al., 2023. Pharmacological Potential of cis-jasmone in Adult Zebrafish (Danio rerio). Planta Medica. 89(5): 539–550. 10.1055/a-1988-2098

Boiangiu, R.S., Bagci, E., Dumitru, G., Hritcu, L. and Todirascu-Ciornea, E., 2022. Angelica purpurascens (Ave-Lall.) Gilli. Essential Oil Improved Brain Function via Cholinergic Modulation and Antioxidant Effects in the Scopolamine-Induced Zebrafish (Danio rerio) Model. Plants (Basel). 11(8): 1096. 10.3390/plants11081096

Boiangiu, R.S., Bagci, E., Dumitru, G., Hritcu, L. and Todirascu-Ciornea, E., 2023. Promnesic, Anxiolytic and Antioxidant Effects of Glaucosciadium cordifolium (Boiss.) Burtt & Davis Essential Oil in a Zebrafish Model of Cognitive Impairment. Plants (Basel). 12(4): 784. 10.3390/plants12040784

Borges, R.S., Keita, H., Ortiz, B.L.S., Dos Santos Sampaio, T.I., Ferreira, I.M., Lima, E.S., et al., 2018. Anti-inflammatory activity of nanoemulsions of essential oil from Rosmarinus officinalis L.: in vitro and in zebrafish studies. Inflammopharmacology. 26(4): 1057–1080. 10.1007/s10787-017-0438-9

Bostancioglu, R.B., Kurkcuoglu, M., Baser, K.H. and Koparal, A.T., 2012. Assessment of anti-angiogenic and anti-tumoral potentials of Origanum onites L. essential oil. Food and chemical Toxicology. 50(6): 2002–2008. 10.1016/j.fct.2012.03.074

Brillatz, T., Jacmin, M., Queiroz, E.F., Marcourt, L., Slacanin, I., Petit, C., et al., 2020. Zebrafish bioassay-guided isolation of antiseizure compounds from the Cameroonian medicinal plant Cyperus articulatus L. Phytomedicine. 70: 153175. 10.1016/j.phymed.2020.153175

Brinza, I., Boiangiu, R.S., Cioanca, O., Hancianu, M., Dumitru, G., Hritcu, L., et al., 2023. Direct Evidence for Using Coriandrum sativum var. microcarpum Essential Oil to Ameliorate Scopolamine-Induced Memory Impairment and Brain Oxidative Stress in the Zebrafish Model. Antioxidants (Basel). 12(8): 1534. 10.3390/antiox12081534

Burdock, G.A. and Carabin, I.G., 2009. Safety assessment of coriander (Coriandrum sativum L.) essential oil as a food ingredient. Food and chemical Toxicology. 47(1): 22–34. 10.1016/j.fct.2008.11.006

Campolo, O., Giunti, G., Laigle, M., Michel, T. and Palmeri, V., 2020. Essential oil-based nano-emulsions: Effect of different surfactants, sonication and plant species on physicochemical characteristics. Industrial Crops and Products. 157. 10.1016/j.indcrop.2020.112935

Campos, J.R., Severino, P., Ferreira, C.S., Zielinska, A., Santini, A., Souto, S.B., et al., 2019. Linseed Essential Oil–Source of Lipids as Active Ingredients for Pharmaceuticals and Nutraceuticals. Current Medicinal Chemistry. 26(24): 4537–4558. 10.2174/0929867325666181031105603

Capatina, L., Boiangiu, R.S., Dumitru, G., Napoli, E.M., Ruberto, G., Hritcu, L., et al., 2020a. Rosmarinus officinalis Essential Oil Improves Scopolamine-Induced Neurobehavioral Changes via Restoration of Cholinergic Function and Brain Antioxidant Status in Zebrafish (Danio rerio). Antioxidants (Basel). 9(1): 62. 10.3390/antiox9010062

Capatina, L., Napoli, E.M., Ruberto, G. and Hritcu, L., 2021. Origanum vulgare ssp. hirtum (Lamiaceae) Essential Oil Prevents Behavioral and Oxidative Stress Changes in the Scopolamine Zebrafish Model. Molecules. 26(23): 7085. 10.3390/molecules26237085

Capatina, L., Todirascu-Ciornea, E., Napoli, E.M., Ruberto, G., Hritcu, L. and Dumitru, G., 2020b. Thymus vulgaris Essential Oil Protects Zebrafish against Cognitive Dysfunction by Regulating Cholinergic and Antioxidants Systems. Antioxidants (Basel). 9(11): 1083. 10.3390/antiox9111083

Capparucci, F., De Benedetto, G., Natale, S., Pecoraro, R., Iaria, C. and Marino, F., 2022. Evaluation of Anaesthetic Effect of Commercial Basil Ocimum basilicum on Zebrafish (Danio rerio) Embryos. Fishes. 7(6): 318. 10.3390/fishes7060318

Carmeliet, P. and Jain, R.K., 2000. Angiogenesis in cancer and other diseases. Nature. 407(6801): 249–257. 10.1038/35025220.

Chaieb, K., Hajlaoui, H., Zmantar, T., Kahla-Nakbi, A.B., Rouabhia, M., Mahdouani, K., et al., 2007. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytotherapy Research. 21(6): 501–506. 10.1002/ptr.2124

Chaita, E., Lambrinidis, G., Cheimonidi, C., Agalou, A., Beis, D., Trougakos, I., et al., 2017. Anti-Melanogenic Properties of Greek Plants. A Novel Depigmenting Agent from Morus alba Wood. Molecules. 22(4): 514. 10.3390/molecules22040514

Chen, J., Chen, Y., Zheng, Y., Zhao, J., Yu, H., Zhu, J., et al., 2021a. Protective Effects and Mechanisms of Procyanidins on Parkinson’s Disease In Vivo and In Vitro. Molecules. 26(18): 5558. 10.3390/molecules26185558

Chen, S.X., Xiang, J.Y., Han, J.X., Yang-Feng, Li, H.Z., Chen, H., et al., 2021b. Essential Oils from Spices Inhibit Cholinesterase Activity and Improve Behavioral Disorder in AlCl3 Induced Dementia. Chemistry & Biodiversity. 19(1). 10.1002/cbdv.202100443

Chen, Z., Wan, X., Hou, Q., Shi, S., Wang, L., Chen, P., et al., 2016. GADD45B mediates podocyte injury in zebrafish by activating the ROS-GADD45B-p38 pathway. Cell Death and Disease. 7(1): e2068. 10.1038/cddis.2015.300

Cheng, H., Duan, Z., Wu, Y., Wang, Y., Zhang, H., Shi, Y., et al., 2022. Immunotoxicity responses to polystyrene nanoplastics and their related mechanisms in the liver of zebrafish (Danio rerio) larvae. Environment International. 161: 107128. 10.1016/j.envint.2022.107128

da Fonsêca, D.V., da Silva Maia Bezerra Filho, C., Lima, T.C., de Almeida, R.N. and de Sousa, D.P., 2019. Anticonvulsant Essential Oils and Their Relationship with Oxidative Stress in Epilepsy. Biomolecules. 9(12): 835. 10.3390/biom9120835

da Silva Campelo, M., Camara Neto, J.F., de Souza, A.L., Ferreira, M.K.A., Dos Santos, H.S., Gramosa, N.V., et al., 2023. Clove volatile oil-loaded nanoemulsion reduces the anxious-like behavior in adult zebrafish. DARU Journal of Pharmaceutical Sciences. 31: 183–192. 10.1007/s40199-023-00473-z

Davis, D.J., Klug, J., Hankins, M., Doerr, H.M., Monticelli, S.R., Song, A., et al., 2015. Effects of clove oil as a euthanasia agent on blood collection efficiency and serum cortisol levels in Danio rerio. Journal of the American Association for Laboratory Animal Science. 54(5): 564–567. 10.1089/154585404774101671

de Moraes Pultrini, A., Almeida Galindo, L. and Costa, M., 2006. Effects of the essential oil from Citrus aurantium L. in experimental anxiety models in mice. Life Sciences. 78(15): 1720–1725. 10.1016/j.lfs.2005.08.004

de Oliveira Ferraz, T., Ferreira, D.Q., Mourão, R.H.V., Formiga, F.R., Carvalho, J.C.T. and Fernandes, C.P., 2020. Nano-emulsification of Aeollanthus suaveolens Mart. Ex Spreng essential oil modifies its neuroeffects? Drug Delivery and Translational Research. 10(6): 1764–1770. 10.1007/s13346-020-00846-w

Dezhi, L. and Aili, Q., 2008. “Aromatic Plants in China” by Wang Yumei. 2008. [book review]. The Canadian Field-Naturalist. 122(1): 85–86.

Doleželová, P., Mácová, S., Plhalová, L., Pištěková, V. and Svobodová, Z., 2011. The acute toxicity of clove oil to fish Danio rerio and Poecilia reticulata. Acta Veterinaria Brno. 80(3): 305–308. 10.2754/avb201180030305

Đorđević, S., Petrović, S., Dobrić, S., Milenković, M., Vučićević, D., Žižić, S., et al., 2007. Antimicrobial, anti-inflammatory, anti-ulcer and antioxidant activities of Carlina acanthifolia root essential oil. Journal of Ethnopharmacology. 109(3): 458–463. 10.1016/j.jep.2006.08.021

Eddin, L.B., Jha, N.K., Meeran, M.F.N., Kesari, K.K., Beiram, R. and Ojha, S., 2021. Neuroprotective Potential of Limonene and Limonene Containing Natural Products. Molecules. 26(15): 4535. 10.3390/molecules26154535

Edris, A.E., 2007. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytotherapy Research. 21(4): 308–323. 10.1002/ptr.2072

Ehrlich, O., Karamalakis, A., Krylov, A.J., Dudczig, S., Hassell, K.L. and Jusuf, P.R., 2019. Clove Oil and AQUI-S Efficacy for Zebrafish Embryo, Larva, and Adult Anesthesia. Zebrafish. 16(5): 451–459. 10.1089/zeb.2019.1737

Elsayed, E.A., Farooq, M., Sharaf-Eldin, M.A., El-Enshasy, H.A. and Wadaan, M., 2020. Evaluation of developmental toxicity and anti-angiogenic potential of essential oils from Moringa oleifera and Moringa peregrina seeds in zebrafish (Danio rerio) model. South African Journal of Botany. 129: 229–237. 10.1016/j.sajb.2019.07.022

Farias-Cea, A., Leal, C., Hodar-Salazar, M., Esparza, E., Martinez-Duran, L., Fuentes, I., et al., 2023. Behavioral Study of 3-and 5-Halocytisine Derivatives in Zebrafish Using the Novel Tank Diving Test (NTT). International Journal of Molecular Sciences. 24(13): 10635. 10.3390/ijms241310635

Félix, L., Coimbra, A.M., Valentim, A.M. and Antunes, L., 2019. Review on the use of zebrafish embryos to study the effects of anesthetics during early development. Critical Reviews in Toxicology. 49(4): 357–370. 10.1080/10408444.2019.1617236

Fiedler, U. and Augustin, H.G., 2006. Angiopoietins: a link between angiogenesis and inflammation. Trends in Immunology. 27(12): 552–558. 10.1016/j.it.2006.10.004

Gandhi, G.R., Hillary, V.E., Antony, P.J., Zhong, L.L.D., Yogesh, D., Krishnakumar, N.M., et al., 2023. A systematic review on anti-diabetic plant essential oil compounds: Dietary sources, effects, molecular mechanisms, and safety. Critical Reviews in Food Science and Nutrition. 1–20. 10.1080/10408398.2023.2170320

Geun Lee, H., Jayawardena, T.U., Liyanage, N.M., Song, K.M., Choi, Y.S., Jeon, Y.J., et al., 2022. Antioxidant potential of low molecular weight fucoidans from Sargassum autumnale against H(2)O(2)-induced oxidative stress in vitro and in zebrafish models based on molecular weight changes. Food Chemistry. 384: 132591. 10.1016/j.foodchem.2022.132591

Ghysen, A. and Dambly-Chaudiere, C., 2004. Development of the zebrafish lateral line. Current Opinion in Neurobiology. 14(1): 67–73. 10.1016/j.conb.2004.01.012

Grush, J., Noakes, D.L.G. and Moccia, R.D., 2004. The Efficacy of Clove Oil As An Anesthetic for the Zebrafish, Danio rerio (Hamilton). Zebrafish. 1(1): 46–53. 10.1089/154585404774101671

Gut, P., Reischauer, S., Stainier, D.Y.R. and Arnaout, R., 2017. Little Fish, Big Data: Zebrafish as a Model for Cardiovascular and Metabolic Disease. Physiological Reviews. 97(3): 889–938. 10.1152/physrev.00038.2016

Haddad, J.G., Picard, M., Benard, S., Desvignes, C., Despres, P., Diotel, N., et al., 2019. Ayapana triplinervis Essential Oil and Its Main Component Thymohydroquinone Dimethyl Ether Inhibit Zika Virus at Doses Devoid of Toxicity in Zebrafish. Molecules. 24(19): 3447. 10.3390/molecules24193447

Haigis, A.C., Ottermanns, R., Schiwy, A., Hollert, H. and Legradi, J., 2022. Getting more out of the zebrafish light dark transition test. Chemosphere. 295: 133863. 10.1016/j.chemosphere.2022.133863

Han, R., Sun, Y., Ma, R., Wang, D., Sun, J., Zhao, S., et al., 2022. The Inhibitory Effect and Mechanism of Ferula akitschkensis Volatile Oil on Gastric Cancer. Evidence-Based Complementary and Alternative Medicine. 2022: 5092742. 10.1155/2022/5092742

Hanif, M.A., Nisar, S., Khan, G.S., Mushtaq, Z. and Zubair, M., 2019. Essential Oils, Essential Oil Research, pp. 3–17

Hasankhani, T., Nikaein, D., Khosravi, A., Rahmati-Holasoo, H. and Hasankhany, M., 2023. The Effect of Echinacea Purpurea L. (Eastern Purple Coneflower) Essential Oil on Hematological Parameters and Gut Microbial Population of Zebrafish (Danio Rerio) With Aflatoxicosis. Iranian Journal of Veterinary Medicine. 17(2): 173–182. 10.32598/ijvm.17.2.1005271

He, M., Halima, M., Xie, Y., Schaaf, M.J.M., Meijer, A.H. and Wang, M., 2020a. Ginsenoside Rg1 Acts as a Selective Glucocorticoid Receptor Agonist with Anti-Inflammatory Action without Affecting Tissue Regeneration in Zebrafish Larvae. Cells. 9(5): 1107. 10.3390/cells9051107

He, T., Li, X., Wang, X., Xu, X., Yan, X., Li, X., et al., 2020b. Chemical composition and anti-oxidant potential on essential oils of Thymus quinquecostatus Celak. from Loess Plateau in China, regulating Nrf2/Keap1 signaling pathway in zebrafish. Scientific Reports. 10(1): 11280. 10.1038/s41598-020-68188-8

He, Y.L., Shi, J.Y., Peng, C., Hu, L.J., Liu, J., Zhou, Q.M., et al., 2018. Angiogenic effect of motherwort (Leonurus japonicus) alkaloids and toxicity of motherwort essential oil on zebrafish embryos. Fitoterapia. 128: 36–42. 10.1016/j.fitote.2018.05.002

Ho, Y.-T., Liu, I.H., Chang, S.-T., Wang, S.-Y. and Chang, H.-T., 2023. In Vitro and In Vivo Antimelanogenesis Effects of Leaf Essential Oil from Agathis dammara. Pharmaceutics. 15(9): 2269. 10.3390/pharmaceutics15092269

Hoseinifar, S.H., Fazelan, Z., El-Haroun, E., Yousefi, M., Yazici, M., Van Doan, H., et al., 2023. The Effects of Grapevine (Vitis vinifera L.) Leaf Extract on Growth Performance, Antioxidant Status, and Immunity of Zebrafish (Danio rerio). Fishes. 8(6) 326. 10.3390/fishes8060326

Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., et al., 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 496(7446): 498–503. 10.1038/nature12111

Huo, J., Yu, Q., Zhang, Y., Liu, K., Hsiao, C.D., Jiang, Z., et al., 2019. Triptolide-induced hepatotoxicity via apoptosis and autophagy in zebrafish. Journal of Applied Toxicology. 39(11): 1532-1540. 10.1002/jat.3837

Islam, M.T., da Mata, A.M.O.F., de Aguiar, R.P.S., Paz, M.F.C.J., de Alencar, M.V.O.B., Ferreira, P.M.P., et al., 2016. Therapeutic Potential of Essential Oils Focusing on Diterpenes. Phytotherapy Research. 30(9): 1420–1444. 10.1002/ptr.5652

Jeong, J., Cho, H.-J., Choi, M., Lee, W.S., Chung, B.H. and Lee, J.-S., 2015. In vivo toxicity assessment of angiogenesis and the live distribution of nano-graphene oxide and its PEGylated derivatives using the developing zebrafish embryo. Carbon. 93: 431–440. 10.1016/j.carbon.2015.05.024

Jin, M., Zhang, B., Sun, Y., Zhang, S., Li, X., Sik, A., et al., 2020. Involvement of peroxisome proliferator-activated receptor gamma in anticonvulsant activity of alpha-asaronol against pentylenetetrazole-induced seizures in zebrafish. Neuropharmacology. 162: 107760. 10.1016/j.neuropharm.2019.107760

Jorge, S., Ferreira, J.M., Olsson, I.A.S. and Valentim, A.M., 2021. Adult Zebrafish Anesthesia: A Study of Efficacy and Behavioral Recovery of Different Anesthetics. Zebrafish. 18(5): 330–337. 10.1089/zeb.2021.0023

Junior, G.B., de Abreu, M.S., Rosa, J.G.d.S.d., Pinheiro, C.G., Heinzmann, B.M., Caron, B.O., et al., 2018. Lippia alba and Aloysia triphylla essential oils are anxiolytic without inducing aversiveness in fish. Aquaculture. 482: 49–56. 10.1016/j.aquaculture.2017.09.023

Kalueff, A.V., Stewart, A.M. and Gerlai, R., 2014. Zebrafish as an emerging model for studying complex brain disorders. Trends in Pharmacological Sciences. 35(2): 63–75. 10.1016/j.tips.2013.12.002

Kamei, M., Isogai, S., Pan, W. and Weinstein, B.M., 2010. Imaging blood vessels in the zebrafish. Methods in Cell Biology. 100: 27–54. 10.1016/B978-0-12-384892-5.00002-5

Kari, G., Rodeck, U. and Dicker, A.P., 2007. Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmacol Ther. 82(1): 70–80. 10.1038/sj.clpt.6100223

Keller, P.J., 2013. Imaging Morphogenesis: Technological Advances and Biological Insights. Science. 340(6137). 10.1126/science.1234168

Khalil, W., Abdel-Gawad, F., Belattar, N., Senator, A. and Abdel-Wahhab, M., 2011. Protective effects of Nigella sativa extract against chromium (VI)-induced genotoxicity in Nile tilapia (Oreochromis niloticus) and Zebrafish (Danio rerio). Global Veterinaria. 7: 283–293.

Kheawfu, K., Pikulkaew, S., Wellendorph, P., Jørgensen, L.v.G., Rades, T., Müllertz, A., et al., 2022. Elucidating Pathway and Anesthetic Mechanism of Action of Clove Oil Nanoformulations in Fish. Pharmaceutics. 14(5): 919. 10.3390/pharmaceutics14050919

Khosravanizadeh, A., Rahdari, A. and Gharaei, A., 2020. Anesthetic effects of Cuminum cyminum essential oil and 2-phenoxyethanol on zebrafish (Danio rario). Journal of Ornamental Aquatics. 7(1): 17–25.

Khumpirapang, N., von Gersdorff Jørgensen, L., Müllertz, A., Rades, T. and Okonogi, S., 2021. Formulation optimization, anesthetic activity, skin permeation, and transportation pathway of Alpinia galanga oil SNEDDS in zebrafish (Danio rerio). European Journal of Pharmaceutics and Biopharmaceutics. 165: 193–202. 10.1016/j.ejpb.2021.04.022

Kim, S., Cha, J., Choi, Y.-S., Yang, H.-W., Jang, H.W. and Kang, M.-C., 2023. Anti-melanogenic effects of the essential oil from Citrus reticulata blossom on B16-F10 melanoma cells and in vivo zebrafish embryos. Process Biochemistry. 134: 1–8. 10.1016/j.procbio.2023.09.011

Kim, S.H., Sharma, C. and Kang, S.C., 2017. Ajowan Oil Potentiates Ros-mediated Teratogenic Effect in Zebrafish Embryos. Journal of Essential Oil Bearing Plants. 20(4): 883–896. 10.1080/0972060x.2017.1383193

Ko, J.Y., Kim, E.A., Lee, J.H., Kang, M.C., Lee, J.S., Kim, J.S., et al., 2014. Protective effect of aquacultured flounder fish-derived peptide against oxidative stress in zebrafish. Fish and Shellfish Immunology. 36(1): 320–323. 10.1016/j.fsi.2013.11.018

Leite, M., Tercya, H., Nascimento, B.G., Rodrigues, J., Santos, R., Costa, B.P.D., et al., 2022. Anesthesia or seizure-like behavior? The effects of two Amazonian plants, Acmella oleracea and Piper alatabaccum in zebrafish (Danio rerio). Brazilian Journal of Biology. 82: e266010. 10.1590/1519-6984.266010

Li, J., Chen, W., Liu, H., Liu, H., Xiang, S., You, F., et al., 2023. Pharmacologic effects approach of essential oils and their components on respiratory diseases. Journal of Ethnopharmacology. 304. 10.1016/j.jep.2022.115962

Liao, W., Chen, Y., Zhu, Z., Chen, J., Gao, T., Limsila, B., et al., 2021. Vinegar-processed Curcuma phaeocaulis promotes anti-angiogenic activity and reduces toxicity in zebrafish and rat models. Pharmaceutical Biology. 59(1): 410–417. 10.1080/13880209.2021.1874427

Lieschke, G.J. and Currie, P.D., 2007. Animal models of human disease: zebrafish swim into view. Nature Reviews Genetics. 8(5): 353–367. 10.1038/nrg2091

Lima, M.d.C.L., de Araújo, J.I.F., Gonçalves Mota, C., Magalhães, F.E.A., Campos, A.R., da Silva, P.T., et al., 2020. Antinociceptive Effect of the Essential Oil of Schinus terebinthifolius (female) Leaves on Adult Zebrafish (Danio rerio). Zebrafish. 17(2): 112–119. 10.1089/zeb.2019.1809

Lin, F.J., Li, H., Wu, D.T., Zhuang, Q.G., Li, H.B., Geng, F., et al., 2022. Recent development in zebrafish model for bioactivity and safety evaluation of natural products. Critical Reviews in Food Science and Nutrition. 62(31): 8646-8674. 10.1080/10408398.2021.1931023

Lira, S.M., Dionisio, A.P., Holanda, M.O., Marques, C.G., Silva, G.S.D., Correa, L.C., et al., 2020. Metabolic profile of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) by UPLC-QTOF-MS(E) and assessment of its toxicity and anxiolytic-like effect in adult zebrafish. Food Research International. 127: 108701. 10.1016/j.foodres.2019.108701

Lizarraga-Valderrama, L.R., 2021. Effects of essential oils on central nervous system: Focus on mental health. Phytotherapy Research. 35(2): 657–679. 10.1002/ptr.6854

Lodovichi, J., Landucci, E., Pitto, L., Gisone, I., D’Ambrosio, M., Luceri, C., et al., 2022. Evaluation of the increase of the thymoquinone permeability formulated in polymeric micelles: In vitro test and in vivo toxicity assessment in Zebrafish embryos. European Journal of Pharmaceutical Sciences. 169: 106090. 10.1016/j.ejps.2021.106090

Luz, T.R.S.A., Leite, J.A.C., de Mesquita, L.S.S., Bezerra, S.A., Silveira, D.P.B., de Mesquita, J.W.C., et al., 2020. Seasonal variation in the chemical composition and biological activity of the essential oil of Mesosphaerum suaveolens (L.) Kuntze. Industrial Crops and Products. 153. 10.1016/j.indcrop.2020.112600

Ly, T.H.N., Nhi, P.K.N., Khoa, N.T., Shin, H.-M. and Yang, I.-J., 2023. Investigation of Anxiolytic-and Antidepressant-like Effects of Essential Oils from Six Traditional Korean Herbal Prescriptions. Korean Journal of Oriental Physiology and Pathology. 37(2): 36–44. 10.15188/kjopp.2023.04.37.2.36

Mácová, S., Dolezelova, P., Pistekova, V., Svobodova, Z., Bedanova, I. and Voslarova, E., 2008. Comparison of acute toxicity of 2-phenoxyethanol and clove oil to juvenile and embryonic stages of Danio rerio. Neuroendocrinology Letters. 29(5): 680–684.

Manosroi, J., Dhumtanom, P. and Manosroi, A., 2006. Anti-proliferative activity of essential oil extracted from Thai medicinal plants on KB and P388 cell lines. Cancer Letters. 235(1): 114–120. 10.1016/j.canlet.2005.04.021

Matera, R., Lucchi, E. and Valgimigli, L., 2023. Plant Essential Oils as Healthy Functional Ingredients of Nutraceuticals and Diet Supplements: A Review. Molecules. 28(2): 901. 10.3390/molecules28020901

Mektrirat, R., Yano, T., Okonogi, S., Katip, W. and Pikulkaew, S., 2020. Phytochemical and Safety Evaluations of Volatile Terpenoids from Zingiber Cassumunar Roxb. On Mature Carp Peripheral Blood Mononuclear Cells and Embryonic Zebrafish. Molecules. 25(3): 613. 10.3390/molecules25030613

Mendes Hacke, A.C., Miyoshi, E., Marques, J.A. and Pereira, R.P., 2020. Anxiolytic properties of Cymbopogon citratus (DC.) stapf extract, essential oil and its constituents in zebrafish (Danio rerio). Journal of Ethnopharmacology. 260: 113036. 10.1016/j.jep.2020.113036

Meng, R., Wu, S., Chen, J., Cao, J., Li, L., Feng, C., et al., 2022. Alleviating effects of essential oil from Artemisia vulgaris on enteritis in zebrafish via modulating oxidative stress and inflammatory response. Fish and Shellfish Immunology. 131: 323–341. 10.1016/j.fsi.2022.10.010

Mileva, M., Ilieva, Y., Jovtchev, G., Gateva, S., Zaharieva, M.M., Georgieva, A., et al., 2021. Rose Flowers—A Delicate Perfume or a Natural Healer? Biomolecules. 11(1): 127. 10.3390/biom11010127

More, S. and Pawar, A., 2023. Brain Targeted Curcumin Loaded Turmeric Oil Microemulsion Protects Against Trimethyltin Induced Neurodegeneration in Adult Zebrafish: A Pharmacokinetic and Pharmacodynamic Insight. Pharmaceutical Research. 40(3): 675–687. 10.1007/s11095-022-03467-9

Moura, W.S., Oliveira, E.E., Haddi, K., Corrêa, R.F.T., Piau, T.B., Moura, D.S., et al., 2021. Cassava starch-based essential oil microparticles preparations: Functionalities in mosquito control and selectivity against non-target organisms. Industrial Crops and Products. 162: 113289. 10.1016/j.indcrop.2021.113289

Najar, B., Mecacci, G., Nardi, V., Cervelli, C., Nardoni, S., Mancianti, F., et al., 2021. Volatiles and Antifungal-Antibacterial-Antiviral Activity of South African Salvia spp. Essential Oils Cultivated in Uniform Conditions. Molecules. 26(9): 2826. 10.3390/molecules26092826

Nerio, L.S., Olivero-Verbel, J. and Stashenko, E., 2010. Repellent activity of essential oils: a review. Bioresource Technology. 101(1): 372–378. 10.1016/j.biortech.2009.07.048

Nguyen, L.T.H., Nguyen, N.P.K., Tran, K.N., Shin, H.M. and Yang, I.J., 2022. Anxiolytic-like Effect of Inhaled Cinnamon Essential Oil and Its Main Component Cinnamaldehyde in Animal Models. Molecules. 27(22): 7997. 10.3390/molecules27227997

Nonato, C.F.A., de Melo, E.V.S., Camilo, C.J., Ferreira, M.K.A., de Meneses, J.E.A., da Silva, A.W., et al., 2023. Antibacterial Activity and Anxiolytic Effect in Adult Zebrafish of Genus Lippia L. Species. Plants (Basel). 12(8): 1675. 10.3390/plants12081675

Novoa, B. and Figueras, A., 2012. Zebrafish: Model for the Study of Inflammation and the Innate Immune Response to Infectious Diseases, Current Topics in Innate Immunity, pp. 253–275.

Nurdjannah, N. and Bermawie, N., 2012. Cloves, Handbook of Herbs and Spices, pp. 197–215.

Orellana-Paucar, A.M., Afrikanova, T., Thomas, J., Aibuldinov, Y.K., Dehaen, W., de Witte, P.A., et al., 2013. Insights from zebrafish and mouse models on the activity and safety of ar-turmerone as a potential drug candidate for the treatment of epilepsy. PLoS One. 8(12): e81634. 10.1371/journal.pone.0081634

Orellana-Paucar, A.M., Serruys, A.S., Afrikanova, T., Maes, J., De Borggraeve, W., Alen, J., et al., 2012. Anticonvulsant activity of bisabolene sesquiterpenoids of Curcuma longa in zebrafish and mouse seizure models. Epilepsy & Behavior. 24(1): 14–22. 10.1016/j.yebeh.2012.02.020

Paramasivam, A., Kalaimangai, M., Sambantham, S., Anandan, B. and Jayaraman, G., 2012. Anti-angiogenic activity of thymoquinone by the down-regulation of VEGF using zebrafish (Danio rerio) model. Biomedicine & Preventive Nutrition. 2(3): 169–173. 10.1016/j.bionut.2012.03.011

Patton, E.E. and Zon, L.I., 2001. The art and design of genetic screens: zebrafish. Nature Reviews Genetics. 2(12): 956–966. 10.1038/35103567

Piasecki, B., Biernasiuk, A., Skiba, A., Skalicka-Wozniak, K. and Ludwiczuk, A., 2021. Composition, Anti-MRSA Activity and Toxicity of Essential Oils from Cymbopogon Species. Molecules. 26(24): 7542. 10.3390/molecules26247542

Polednik, K.M., Koch, A.C. and Felzien, L.K., 2018. Effects of Essential Oil from Thymus vulgaris on Viability and Inflammation in Zebrafish Embryos. Zebrafish. 15(4): 361–371. 10.1089/zeb.2017.1519

Prabahar, T., 2018. Bioprospective of Citrus Sinensis Linn. Leaves: Its Volatile Oil as a Weapon on Convulsion in Zebra Fish Larvae Seizure Model. College of Pharmacy, Madurai Medical College, Madurai.

Qin, W.-n., Zhang, K.-c., Geng, T., Cheng, F.-f., Chen, P.-d., Yao, W.-f., et al., 2021. The toxicity mechanism of toxic compounds from Euphorbiae pekinensis Radix on zebrafish embryos. Biomedicine & Pharmacotherapy. 138. 10.1016/j.biopha.2021.111521

Raguraman, V., L, S.A., J, J., Palaniappan, S., Gopal, S., R, T., et al., 2019. Sulfated polysaccharide from Sargassum tenerrimum attenuates oxidative stress induced reactive oxygen species production in in vitro and in zebrafish model. Carbohydrate Polymers. 203: 441–449. 10.1016/j.carbpol.2018.09.056

Ramos, T.R., Souza, K.A., Lewandowski, V., Prado, R.M.d., Ornaghi, M.G., Vital, A.C.P., et al., 2022. Animal development, liver histology, and antioxidant activity in the muscle of zebrafish (Danio rerio) fed with natural additives in the diets. Research, Society and Development. 11(4): 10.33448/rsd-v11i4.27326

Rashan, L., Efferth, T., Bishir, M., Hediyal, T.A., Essa, M.M. and Babu, S., 2023. Acute, genetic, and target organ toxicity profiling of Frankincense essential oil from Boswellia sacra in zebrafish (Danio rerio). Archives of Clinical Toxicology. 5(1): 12–21.

Raut, J.S. and Karuppayil, S.M., 2014. A status review on the medicinal properties of essential oils. Industrial Crops and Products. 62: 250–264. 10.1016/j.indcrop.2014.05.055

Rezaei, M., Fooladi, P., Norani, M., Crawford, A., Eisa-Beygi, S., Tahamtani, Y., et al., 2023. Investigation of Kelussia odoratissima and Angelica sinensis similarities in zebrafish-based in-vivo bioactivity assays and their chemical composition. Galen Medical Journal. 12: e2793–e2793. 10.31661/gmj.v12i0.2793

Rubinstein, A.L., 2006. Zebrafish assays for drug toxicity screening. Expert opinion on drug metabolism & toxicology. 2(2): 231–240. 10.1517/17425255.2.2.231

Sánchez-Vázquez, F.J., Terry, M.I., Felizardo, V.O. and Vera, L.M., 2011. Daily Rhythms of Toxicity and Effectiveness of Anesthetics (MS222 and Eugenol) in Zebrafish (Danio Rerio). Chronobiology International. 28(2): 109–117. 10.3109/07420528.2010.538105

Santos, D., Vieira, R., Luzio, A. and Félix, L., 2018. Zebrafish Early Life Stages for Toxicological Screening: Insights From Molecular and Biochemical Markers, pp. 151–179.

Santos, M.d.F., Silva, K.C.D.d., Carneiro, W.F., Castro, T.F.D., Virote, B.d.C.R., Murgas, L.D.S., et al., 2022. Toxicity and Anti-Inflammatory Activity of the Essential Oil of Siparuna Guianensis Aublet (Siparunaceae) in Embryos and Larvae of Zebrafish (Danio Rerio). Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4201198.

Selles, S.M.A., Kouidri, M., Belhamiti, B.T. and Ait Amrane, A., 2020. Chemical composition, in-vitro antibacterial and antioxidant activities of Syzygium aromaticum essential oil. Journal of Food Measurement and Characterization. 14(4): 2352–2358. 10.1007/s11694-020-00482-5

Sendra, E., 2016. Essential Oils in Foods: From Ancient Times to the 21st Century. Foods. 5(4): 43. 10.3390/foods5020043

Serifi, I., Tzima, E., Bardouki, H., Lampri, E. and Papamarcaki, T., 2019. Effects of the Essential Oil from Pistacia lentiscus Var. chia on the Lateral Line System and the Gene Expression Profile of Zebrafish (Danio rerio). Molecules. 24(21): 3919. 10.3390/molecules24213919

Seyidoglu, N. and Yagcilar, C., 2020. The Anesthetic Role of Some Herbal Oils for Zebrafish. Erciyes Üniversitesi Veteriner Fakültesi Dergisi. 17(3): 209–214. 10.32707/ercivet.828319

Sharma, S., Chakrapani, I., Yeruva, A.R. and Priyadarsini, A.I., 2022. Integrated network pharmacology and zebrafish model to investigate effects components of Origanum valgare for treating Alzheimers Disease. Neuro Quantology. 20(13): 1465–1474. 10.14704/nq.2022.20.13.NQ88182

Sharmeen, J., Mahomoodally, F., Zengin, G. and Maggi, F., 2021. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules. 26(3): 666. 10.3390/molecules26030666

Silva, J., Abebe, W., Sousa, S.M., Duarte, V.G., Machado, M.I.L. and Matos, F.J.A., 2003. Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. Journal of Ethnopharmacology. 89(2–3): 277–283. 10.1016/j.jep.2003.09.007

Silva, T.C.D., Utsunomiya, K.S., Castro, P.L., Rocha, J.D.M., Visentainer, J.V., Gasparino, E., et al., 2022. Fatty Acid Incorporation in the Muscle, Oxidative Markers, Lipid Peroxidation and PPAR-alpha and SREBP-2 Expression of Zebrafish Fed Linseed Oil and Clove Leaf Essential Oil. An Acad Bras Cienc. 94(2): e20210236. 10.1590/0001-3765202220210236

Silveira, V., Santos Rubio, K.T. and Poleti Martucci, M.E., 2022. Anxiolytic effect of Anthemis nobilis L. (roman chamomile) and Citrus reticulata Blanco (tangerine) essential oils using the light-dark test in zebrafish (Danio rerio). Journal of Ethnopharmacology. 298: 115580. 10.1016/j.jep.2022.115580

Şişman, T. and Ceylan, Z., 2023. The Embryotoxicity of Alpha-Pinene to the Early Life Stages of Zebrafish (Danio Rerio Hamilton, 1822). Natural and Life Sciences Communications. 22(2). 10.12982/nlsc.2023.020

Stephen, A., 2019. Anabolic effect on bone formation of nano encapsulated volatile oil of Ruta Graveolens leaves in larval zebrafish Model. International Journal of Pharmacognosy. 6(4): 146–154. 10.13040/IJPSR.0975-8232.IJP

Stewart, A., Gaikwad, S., Kyzar, E., Green, J., Roth, A. and Kalueff, A.V., 2012. Modeling anxiety using adult zebrafish: a conceptual review. Neuropharmacology. 62(1): 135–143. 10.1016/j.neuropharm.2011.07.037

Stewart, A., Maximino, C., Marques de Brito, T., Herculano, A.M., Gouveia, A., Morato, S., et al., 2011. Neurophenotyping of Adult Zebrafish Using the Light/Dark Box Paradigm, Zebrafish Neurobehavioral Protocols, pp. 157–167.

Stewart, A.M., Braubach, O., Spitsbergen, J., Gerlai, R. and Kalueff, A.V., 2014. Zebrafish models for translational neuroscience research: from tank to bedside. Trends in Neurosciences. 37(5): 264–278. 10.1016/j.tins.2014.02.011

Szaszkiewicz, J., Leigh, S. and Hamilton, T.J., 2021. Robust behavioural effects in response to acute, but not repeated, terpene administration in Zebrafish (Danio rerio). Scientific Reports. 11(1): 19214. 10.1038/s41598-021-98768-1

Tanguay, R.L., 2018. The Rise of Zebrafish as a Model for Toxicology. Toxicological Sciences. 163(1): 3–4. 10.1093/toxsci/kfx295

Tanwar, G., Mazumder, A.G., Bhardwaj, V., Kumari, S., Bharti, R., Yamini, et al., 2019. Target identification, screening and in vivo evaluation of pyrrolone-fused benzosuberene compounds against human epilepsy using Zebrafish model of pentylenetetrazol-induced seizures. Scientific Reports. 9(1): 7904. 10.1038/s41598-019-44264-6

Tavares Carvalho, J.C., 2016. Obtainment and Study of the Toxicity of Perillyl Alcohol Nanoemulsion on Zebrafish (Danio rerio). Journal of Nanomedicine Research. 4(4): 093. 10.15406/jnmr.2016.04.00093

Thitinarongwate, W., Mektrirat, R., Nimlamool, W., Khonsung, P., Pikulkaew, S., Okonogi, S., et al., 2021. Phytochemical and Safety Evaluations of Zingiber ottensii Valeton Essential Oil in Zebrafish Embryos and Rats. Toxics. 9(5): 102. 10.3390/toxics9050102

Todirascu-Ciornea, E., El-Nashar, H.A.S., Mostafa, N.M., Eldahshan, O.A., Boiangiu, R.S., Dumitru, G., et al., 2019. Schinus terebinthifolius Essential Oil Attenuates Scopolamine-Induced Memory Deficits via Cholinergic Modulation and Antioxidant Properties in a Zebrafish Model. Evidence-Based Complementary and Alternative Medicine. 2019: 5256781. 10.1155/2019/5256781

Ullah, S., Zuberi, A., Alagawany, M., Farag, M.R., Dadar, M., Karthik, K., et al., 2018. Cypermethrin induced toxicities in fish and adverse health outcomes: Its prevention and control measure adaptation. Journal of Environmental Management. 206: 863–871. 10.1016/j.jenvman.2017.11.076

Van Leeuwen, M.P.C., Slot, D.E. and Van der Weijden, G.A., 2011. Essential Oils Compared to Chlorhexidine With Respect to Plaque and Parameters of Gingival Inflammation: A Systematic Review. Journal of Periodontology. 82(2): 174–194. 10.1902/jop.2010.100266

Verallo-Rowell, V.M., Katalbas, S.S. and Pangasinan, J.P., 2016. Natural (Mineral, Vegetable, Coconut, Essential) Oils and Contact Dermatitis. Current Allergy and Asthma Reports. 16(7). 10.1007/s11882-016-0630-9

Wang, S.Y., Cai, L., Yang, N., Xu, F.F., Wu, Y.S. and Liu, B., 2023a. Chemical composition of the Kaempferia galanga L. essential oil and its in vitro and in vivo antioxidant activities. Frontiers in Nutrition. 10: 1080487. 10.3389/fnut.2023.1080487

Wang, Y.F., Zheng, Y., Feng, Y., Chen, H., Dai, S.X., Wang, Y., et al., 2023b. Comparative Analysis of Active Ingredients and Potential Bioactivities of Essential Oils from Artemisia argyi and A. verlotorum. Molecules. 28(9) : 3297. 10.3390/molecules28093927

Wang, Z., Bai, H., Lu, C., Hou, C., Qiu, Y., Zhang, P., et al., 2019. Light controllable chitosan micelles with ROS generation and essential oil release for the treatment of bacterial biofilm. Carbohydrate Polymers. 205: 533–539. 10.1016/j.carbpol.2018.10.095

Wijaya, R.C., 2020. Lethal concentration 50% of patchouli oil (Pogostemon cablin) towards zebrafish embryo (Danio rerio). Herb-Medicine Journal: Terbitan Berkala Ilmiah Herbal, Kedokteran dan Kesehatan. 3(2): 1–6. 10.30595/hmj.v3i2.6360

Wong, D., von Keyserlingk, M.A.G., Richards, J.G. and Weary, D.M., 2014. Conditioned Place Avoidance of Zebrafish (Danio rerio) to Three Chemicals Used for Euthanasia and Anaesthesia. PLoS One. 9(2). 10.1371/journal.pone.0088030

Xiong, Y., Halima, M., Che, X., Zhang, Y., Schaaf, M.J.M., Li, M., et al., 2022. Steamed Panax notoginseng and its Saponins Inhibit the Migration and Induce the Apoptosis of Neutrophils in a Zebrafish Tail-Fin Amputation Model. Frontiers in Pharmacology. 13: 946900. 10.3389/fphar.2022.946900

Yan, X., Ma, X., Dai, D., Yan, X., Han, X., Bao, X., et al., 2023. Potent pigmentation inhibitory activity of incensole-enriched frankincense volatile oil-identification, efficacy and mechanism. Journal of Cosmetic Dermatology. 10.1111/jocd.15887

Yeh, J.C., Cindrova-Davies, T., Belleri, M., Morbidelli, L., Miller, N., Cho, C.W., et al., 2011. The natural compound n-butylidenephthalide derived from the volatile oil of Radix Angelica sinensis inhibits angiogenesis in vitro and in vivo. Angiogenesis. 14(2): 187–197. 10.1007/s10456-011-9202-8

Yue, G.G.-L., Kwok, H.-F., Lee, J.K.-M., Jiang, L., Chan, K.-M., Cheng, L., et al., 2015. Novel anti-angiogenic effects of aromatic-turmerone, essential oil isolated from spice turmeric. Journal of Functional Foods. 15: 243–253. 10.1016/j.jff.2015.03.030

Zhang, N., Zhang, L., Feng, L. and Yao, L., 2016. The anxiolytic effect of essential oil of Cananga odorata exposure on mice and determination of its major active constituents. Phytomedicine. 23(14): 1727–1734. 10.1016/j.phymed.2016.10.017

Zhao, D., Qin, C., Fan, X., Li, Y. and Gu, B., 2014. Inhibitory effects of quercetin on angiogenesis in larval zebrafish and human umbilical vein endothelial cells. European Journal of Pharmacology. 723: 360–367. 10.1016/j.ejphar.2013.10.069

Zhao, S., Huang, J. and Ye, J., 2015. A fresh look at zebrafish from the perspective of cancer research. Journal of Experimental & Clinical Cancer Research. 34(1): 80. 10.1186/s13046-015-0196-8

Zhong, R., Chen, Y., Ling, J., Xia, Z., Zhan, Y., Sun, E., et al., 2019. The Toxicity and Metabolism Properties of Herba Epimedii Flavonoids on Laval and Adult Zebrafish. Evidence-Based Complementary and Alternative Medicine. 2019: 3745051. 10.1155/2019/3745051

Zhong, Z.F., Hoi, P.M., Wu, G.S., Xu, Z.T., Tan, W., Chen, X.P., et al., 2012. Anti-angiogenic effect of furanodiene on HUVECs in vitro and on zebrafish in vivo. Journal of Ethnopharmacology. 141(2): 721–727. 10.1016/j.jep.2011.08.052

Zhou, F., Dai, O., Peng, C., Xiong, L., Ao, H., Liu, F., et al., 2021. Pro-Angiogenic Effects of Essential Oil from Perilla frutescens and Its Main Component (Perillaldehyde) on Zebrafish Embryos and Human Umbilical Vein Endothelial Cells. Drug Design, Development and Therapy. 15: 4985–4999. 10.2147/DDDT.S336826

Zhou, W., He, Y., Lei, X., Liao, L., Fu, T., Yuan, Y., et al., 2020. Chemical composition and evaluation of antioxidant activities, antimicrobial, and anti-melanogenesis effect of the essential oils extracted from Dalbergia pinnata (Lour.) Prain. Journal of Ethnopharmacology. 254. 10.1016/j.jep.2020.112731

Zon, L.I. and Peterson, R.T., 2005. In vivo drug discovery in the zebrafish. Nature Reviews Drug Discovery. 4(1): 35–44. 10.1038/nrd1606