Zebrafish as a promising model for investigating biological activities of ginseng species—a review
Main Article Content
Keywords
zebrafish, ginseng species, bioactivity, bioactive compounds, ginsenosides
Abstract
Plants of the ginseng species have a long history with broad traditional applications, as these are recognized as precious tonic herbal medicines since ancient times. More and more multiple chemical constituents and pharmacological activities have been confirmed and discovered recently. Owing to its advantages, such as intuitiveness, cheap, easy to operate, and high-throughput screening, zebrafish has become a very popular model at present. Recently, more and more toxicity tests, bio-activity evaluation, and mechanism studies have been achieved via zebrafish models, many of which were focused on the nature of products, including monomers, extracts, and formulas from ginseng species. This review summarizes the recent pharmacological studies achieved by embryos, larvae, and adult zebrafish. This review provides a theoretical basis for the rational use of ginseng species plants, thus providing guidance for a better rational utilization and the potential innovative product development of ginseng species plants.
References
Attele, A.S., Wu, J.A. and Yuan, C.S., 1999. Ginseng pharmacology: multiple constituents and multiple actions. Biochemical Pharmacology 58(11): 1685–1693.
Cao, L., Wu, H., Zhang, H., Zhao, Q., Yin, X., Zheng, D., et al. 2020. Highly efficient production of diverse rare ginsenosides using combinatorial biotechnology. Biotechnology and Bioengineering 117: 1615–1627. 10.1002/bit.27325
Chang, J.W., Park, K.H., Hwang, H.S., Shin, Y.S., Oh, Y.T. and Kim, C.H., 2014. Protective effects of Korean red ginseng against radiation-induced apoptosis in human HaCaT keratinocytes. Journal of Radiation Research 55: 245–256. 10.1093/jrr/rrt109
Chávez, M.N., Aedo, G., Fierro, F.A., Allende, M.L. and Egaña, J.T., 2016. Zebrafish as an emerging model organism to study angiogenesis in development and regeneration. Frontiers in Physiology 7: 1–15. 10.3389/fphys.2016.00056
Chen, C.F., Chiou, W.F. and Zhang, J.T., 2008. Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolium. Acta Pharmacologica Sinica 29: 1103–1108. 10.1111/j.1745-7254.2008.00868.x
Chen, Y., Li, J.L., Li, Q., Wang, T., Xing, L., Xu, H., et al. 2016. Du-huo-ji-sheng-tang attenuates inflammation of TNF-Tg mice related to promoting lymphatic drainage function. Evidence-Based Complementary and Alternative Medicine 2016: 1–12. 10.1155/2016/7067691
Chen, B., Wei, Y.J., Wang, D.D. and Jia, X.B., 2015. Metabolism of ginsenosides Rk3 and Rh4 from steamed notoginseng in zebrafish by ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry. Archives of Pharmacal Research 38: 1468–1476. 10.1007/s12272-014-0538-7
Chen, S.J., Wu, D.X., Liu, S.Y., Zhao, H.X. and Xiu, Y., 2022. Advances in chemical and biotransformation studies of ginsenosides. Chinese Traditional Patent Medicine 44: 1539–1545. 10.3969/j.issn.1001-1528.2022
Choi, T.Y., Kim, J.H., Ko, D.H., Kim, C.H., Hwang, J.S., Ahn, S., et al., 2007. Zebrafish as a new model for phenotype-based screening of melanogenic regulatory compounds. Pigment Cell Research 20: 120–127. 10.1111/j.1600-0749.2007.00365.x
Commission, C.P., 2020. Pharmacopoeia of the People’s Republic of China, Vol. 1. China Medical Science Press, Beijing, pp. 8–10.
Coussens L.M and Werb Z., 2002. Inflammation and cancer. Nature 420: 860–867. 10.1038/nature01322
Cui, L., Chen, L., Yang, G., Li, Y., Qiao, Z., Liu, Y., et al. 2021. Structural characterization and immunomodulatory activity of a heterogalactan from Panax ginseng flowers. Food Research International (Elsevier) 140: 109859. 10.1016/j.foodres.2020.109859
Cui, L., Liu, X.L., Yan, R.J., Chen, Q.X., Wang, L.Z., Nawaz, S., et al. 2023. Amino acid-modified OCMC-g-Suc-β-CD nanohydrogels carrying lapatinib and ginsenoside Rg1 exhibit high anticancer activity in a zebrafish model. Frontiers in Pharmacology 14: 1–11. 10.3389/fphar.2023.1149191
Dai, Y.L., Yang, D., Song, L.H., Yang, H.M., Yu, J.B., Zheng, F., et al. 2021. Low molecular weight oligosaccharide from Panax ginseng C.A. Meyer against UV-mediated apoptosis and inhibits tyrosinase activity in vitro and in vivo. Evidence-Based Complementary and Alternative Medicine 2021: 1–13. 10.1155/2021/8879836
Dharmananda, S., 2002. The nature of ginseng: from traditional use to modern research. Journal of the American Botanical Council. pp. 1–26 (Book).
Dietrich, K., Fiedler, I.A.K., Kurzyukova, A., López-Delgado, A.C., McGowan, L.M., Geurtzen, K., et al. 2021. Skeletal biology and disease modeling in zebrafish. Journal of Bone and Mineral Research 36: 436–458. 10.1002/jbmr.4256
Dong, S.Y., Chen, L., Zhang, L., Kan, J.T., Gao, H.X., Du, J., et al. 2021a. An experimental model based on zebrafish to evaluate the effect of ginseng rose ointment on improving qi and blood health. Lishizhen Medicine and Materia Medica Research 32: 2295–2298.
Dong, S.Y., Chen, L., Zhang, L., Kan, J.T., Zhang, Z.L., Du, J., et al. 2021b. Enhancement of immunity, alleviation of fatigue and muscle loss by Renshen rougui ointment in an experimental model of zebrafish (Danio rerio). Lishizhen Medicine and Materia Medica Research 32: 1631–1635.
Dong, R., Zhang, Y.G., Chen, S.J., Wang, H., Hu, K.Q., Zhao, H.X., et al. 2022. Identification of key pharmacodynamic markers of American ginseng against heart failure based on metabolomics and zebrafish model. Frontiers in Pharmacology 13: 1–16. 10.3389/fphar.2022.909084
Duan, Y.H., Zhang, Y., Wang, X., Han, L.W. and Li, Z.Y., 2019. Analysis on liver and renal toxicity of leaves of Tussilago farfara using zebrafish. Chinese Traditional and Herbal Drugs 50: 669–674.
Fei, Q.Q., Wei, Y.J., Wang J., Huang, Y.P., Chen, Y., Chen, B., 2019. Acute toxicity mechanism of Panax notoginseng saponins in larvae zebrafish based on metabonomics. China Journal of Chinese Materia Medicine 44(17): 3798–3805.
Feng, X. and McDonald, J.M., 2011. Disorders of bone remodeling. Annual Review of Pathology: Mechanisms of Disease 6: 121–145. 10.1146/annurev-pathol-011110-130203
Ferreira, A.M., de Souza, AA., Koga, R.D.C.R., Sena, I.D.S., Matos, M.D.J.S., Tomazi, R., et al. 2023. Anti-melanogenic potential of natural and synthetic substances: application in zebrafish model. Molecules 28(3): 1053.
Gao, S., Yuan, X., Feng, B.M., Sui, G.L. and Gong G.R., 2010. Flora of liaoning traditional Chinese medicine. Liaoning Science and Technology Press, Shenyang, China; 2010-12, 681 p.
He, M., Halima, M., Xie, Y.F., Schaaf, M.J.M., Meijer, A.H. and Wang, M., 2020. Ginsenoside Rg1 acts as a selective glucocorticoid receptor agonist with anti-inflammatory action without affecting tissue regeneration in zebrafish larvae. Cells 9: 1107. 10.3390/cells9051107
Hong, S.J., Wan, J.B., Zhang, Y., Hu, G., Lin, H.C., Seto, S.W., et al. 2009. Angiogenic effect of saponin extract from Panax notoginseng on HUVECs in vitro and zebrafish in vivo. Phytotherapy Research 23: 677–686. 10.1002/ptr.2705
Hsieh, C.-C., Chang, C.Y., Yar Lee, T.X.Y., Wu, J.F., Saovieng, S., Hsieh, Y.W., et al. 2021. Longevity, tumor, and physical vitality in rats consuming ginsenoside Rg1. Journal of Ginseng Research (Elsevier) 47: 210–217. 10.1016/j.jgr.2021.04.006
Hu K.Q., Wang, H., Wang, H., Wang, H.Y., Li, T.P., Li, Z.Y., et al. 2023. Discovery of key lipids from Panax quinquefolius against doxorubicin-induced cardiotoxicity based on a zebrafish model. Research Square. 10.21203/rs.3.rs-2436228/v1
Ighodaro, O.M., Adeosun, A.M. and Akinloye, O.A., 2017. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina 53: 365–374. 10.1016/j.medici.2018.02.001
Jang, A.-Y., Sueng, Y.-C. and Ji, J., 2016. The comparative study on physiological activity of white ginseng, red ginseng and black ginseng extract. Journal of Digital Convergence 14: 459–471. 10.14400/JDC.2016.14.5.459
Jayasinghe, C.D. and Jayawardena, U.A., 2019. Toxicity assessment of herbal medicine using zebrafish embryos: a systematic review. Evidence-Based Complementary and Alternative Medicine 2019: 1–17. 10.1155/2019/7272808
Jee, H.S., Chang, K.H., Park, S.H., Kim, K.T. and Paik, H.D., 2014. Morphological characterization, chemical components, and biofunctional activities of Panax ginseng, Panax quinquefolium, and Panax notoginseng roots: a comparative study. Food Reviews International, 30(2): 91–111. 10.1080/87559129.2014.883631
Jiménez-Pérez, Z.E., Kim, Y.J., Castro-Aceituno, V., Mathiyalagan, R., Markus, J., Ahn, S., et al., 2017. Novel application of cultured roots of mountain ginseng (Panax ginseng meyer) and ginsenoside Re as safe antimelanogenic cosmeceutical components. African Journal of Traditional, Complementary and Alternative Medicines 14: 209–218. 10.21010/ajtcam.v14i5.24
Jin, Y., Kim, J.H., Hong, H.D., Kwon, J., Lee, E.J., Jang, M., et al. 2018. Ginsenosides Rg5 and Rk1, the skin-whitening agents in black ginseng. Journal of Functional Foods (Elsevier) 45: 67–74. 10.1016/j.jff.2018.03.036
Kim, H.M., Kim, D., Han, H.J., Park, C.M., Ganipisetti, S., Valan Arasu, M., et al. 2016. Ginsenoside Re promotes osteoblast differentiation in mouse osteoblast precursor MC3T3-E1 cells and a zebrafish model. Molecules 22: 42. 10.3390/molecules22010042
Kimura, Y., Sumiyoshi, M., Kawahira, K. and Sakanaka, M., 2006. Effects of ginseng saponins isolated from red ginseng roots on burn wound healing in mice. British Journal of Pharmacology 148: 860–870. 10.1038/sj.bjp.0706794
Koh, E.J., Kim, K.J., Choi, J., Jeon, H.J., Seo, M.J. and Lee, B.Y., 2017. Ginsenoside Rg1 suppresses early stage of adipocyte development via activation of C/EBP homologous protein-10 in 3T3-L1 and attenuates fat accumulation in high fat diet-induced obese zebrafish. Journal of Ginseng Research (Elsevier) 41: 23–30. 10.1016/j.jgr.2015.12.005
Komakech, R., Shim, K.S., Yim, N.H., Song, J.H., Yang, S.K., Choi, G., et al. 2020. In vitro antiosteoporosis activity and hepatotoxicity evaluation in zebrafish larvae of bark extracts of prunus jamasakura medicinal plant. Evidence-Based Complementary and Alternative Medicine 2020: 1–9. 10.1155/2020/8582318
Kwon, H.J., Lee, S.Y., Lee, H.H., Cho, H.S. and Jung, J.H., 2021. Korean red ginseng enhances immunotherapeutic effects of NK Cells via eosinophils in metastatic liver cancer model. Nutrients 14: 134. 10.3390/nu14010134
Kyritsis, N., Kizil, C., Zocher, S., Kroehne, V., Kaslin, J., Freudenreich, D., et al. 2012. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 338: 1353–1356. 10.1126/science.1228773
Lai, Y.Q., Tan, Q.X., Xv, S., Huang, S., Wang, Y.H., Li, Y.J., et al. 2021. Ginsenoside Rb1 alleviates alcohol-induced liver injury by inhibiting steatosis, oxidative stress, and inflammation. Frontiers in Pharmacology 12: 1–12. 10.3389/fphar.2021.616409
Lee, S.M., 2019. Antimelanogenic effect of isomaltol glycoside from red ginseng extract. Journal of the Society of Cosmetic Scientists of Korea 45: 255–263. 10.15230/SCSK.2019.45.3.255
Lee, D.Y., Cha, B.J., Lee, Y.S., Kim, G.S., Noh, H.J., Kim, S.Y., et al. 2015a. The potential of minor ginsenosides isolated from the leaves of Panax ginseng as inhibitors of melanogenesis. International Journal of Molecular Sciences 16: 1677–1690. 10.3390/ijms16011677
Lee, D.Y., Jeong, Y.T., Jeong, S.C., Lee, M.K., Min, J.W., Lee, J.W., et al. 2015b. Melanin biosynthesis inhibition effects of ginsenoside Rb2 isolated from Panax ginseng berry. Journal of Microbiology and Biotechnology 25: 2011–2015.
Lee, D.Y., Jeong, S.C., Jeong, Y.T., Lee, M.K., Seo, K.H., Lee, J.W., et al. 2015c. Antimelanogenic effects of picrionoside A isolated from the leaves of Korean ginseng. Biological & Pharmaceutical Bulletin 38: 1663–1667.
Lee, D.Y., Kim, H.G., Lee, Y.G., Kim, J.H., Lee, J.W., Choi, B.R., et al. 2018. Isolation and quantification of ginsenoside Rh23, a new anti-melanogenic compound from the leaves of Panax ginseng. Molecules 23: 267. 10.3390/molecules23020267
Lee, D.Y., Lee, J., Jeong, Y.T., Byun, G.H. and Kim, J.H., 2017. Melanogenesis inhibition activity of floralginsenoside A from Panax ginseng berry. Journal of Ginseng Research (Elsevier) 41: 602–607. 10.1016/j.jgr.2017.03.005
Lee, Y.Y., Park, E.J., Lee, S.H., Kim, Y.H. and Lee, C.J., 2009. Ginsenoside Rg1 reduced spontaneous epileptiform discharges and behavioral seizure in the zebrafish. Journal of Ginseng Research 33(1): 48–54.
Lega, I.C. and Lipscombe, L.L., 2020. Review: diabetes, obesity, and cancer—pathophysiology and clinical implications. Endocrine Reviews 41: 33–52. 10.3389/fcell.2018.00091
Li, M.L., Gao, B., Guo, S.Y., Luo, C., Dai, M.Z., Gao, W.Y., et al. 2022a. Application of three blood stasis models in zebrafish in evaluation of anti-thrombosis and anti-mvocardial hypoxia activities of notoginseng Radix et Rhizoma. Chinese Journal of Experimental Traditional Medical Formulae 28: 98–108. 10.13422/j.cnki.syQx.20220301
Li, M.L., Gao, W.Y., Wang, H.J., Yang, J.Y., Zhang, Y., Guo, S.Y., et al. 2023. The grading quality markers identification of Panax notoginseng under the guidance of traditional experience using untargeted metabolomics and anti-myocardial ischemia evaluation of zebrafish. Phytomedicine (Elsevier GmbH) 111: 154674. 10.1016/j.phymed.2023.154674
Li, F., Sui, X., Zhang, R.W., Huang, Q.T. and Xie, Y., 2022b. Ginsenoside Rg3 attenuates fat accumulation in zebrafish with high-fat-diet-induced obesity. Pharmacological Research–Modern Chinese Medicine (Elsevier BV) 2: 100041. 10.1016/j.prmcm.2022.100041
Li, M., Zhao, X.Y., Xie, J., Tong, X., Shan, J., Shi, M., et al. 2022c. Dietary Inclusion of seabuckthorn (Hippophae rhamnoides) mitigates foodborne enteritis in zebrafish through the gut-liver immune axis. Frontiers in Physiology 13: 1–16. 10.3389/fphys.2022.831226
Lin, F.J., Li, H., Wu, D.T., Zhuang, Q.G., Li, H.B., Geng, F., et al 2021. Recent development in zebrafish model for bioactivity and safety evaluation of natural products. Critical Reviews in Food Science and Nutrition (Taylor & Francis) 62: 8646–8674. 10.1080/10408398.2021.1931023
Liu, H., Chen, X.C., Zhao, X., Zhao, B., Qian, K., Shi, Y., et al. 2018. Screening and identification of cardioprotective compounds from Wenxin Keli by activity index approach and in vivo zebrafish model. Frontiers in Pharmacology 9: 1–14. 10.3389/fphar.2018.01288
Liu, T.W., Guo, Y.H., Zhao, J.X., He, S.S., Bai, Y.J., Wang, N., et al. 2020a. Systems pharmacology and verification of Shen Fu Huang Formula in zebrafish model reveal multi-scale treatment strategy for septic syndrome in COVID-19. Frontiers in Pharmacology 11: 1–17. 10.3389/fphar.2020.584057
Liu, N.H., Huang, X.F., Fu, X.T., Wang, Z.F., Xue, S.R. and Yang, K., 2020b. Effects of ginsenoside Rgl and Rbl against Aβ vascular injury in transgenic zebrafish models. Guangdong Medical Journal 41: 9–13.
Liu, J.Z., Jiang, R., Zhou, J.Y., Xu, X.H., Sun, Z., Li, J., et al. 2021a. Salicylic acid in ginseng root alleviates skin hyperpigmentation disorders by inhibiting melanogenesis and melanosome transport. European Journal of Pharmacology (Elsevier BV) 910: 174458. 10.1016/j.ejphar.2021.174458
Liu, J.L., Liu, Y.H., Lin, H.Q., Zhou, B.S., Yu, H., Li, L., et al. 2021b. The effect of ginsenoside Rg5, isolated from black ginseng, on heart failure in zebrafish based on untargeted metabolomics. Journal of Functional Foods 76: 104325. 10.1016/j.jff.2020.104325
Liu, X.Y., Xiao, Y.K., Hwang, E., Haeng, J.J. and Yi, T.H., 2019. Antiphotoaging and antimelanogenesis properties of ginsenoside C-Y, a ginsenoside Rb2 metabolite from American ginseng PDD-ginsenoside. Photochemistry and Photobiology 95: 1412–1423. 10.1111/php.13116
Lv, J., Gao, Y., Li, C., Yang, L.F. and Zhao, B.N., 2020. Effect of American ginseng saponins on enhancing immunity based on zebrafish model organisms. Chinese Traditional and Herbal Drugs 51: 3728–3733.
Ma, L.N., Qi, Y.X., Wang, W.J. and Zhong, Q.Y.W., 2020. Anti-angiogenic effect of ginsenoside Rh2 by downregulation of VEGF in a zebrafish model. Pakistan J. Zool 52: 1–8. 10.17582/journal.pjz/2020.52
Ma, X.W., Chen, Y.Y., Jiang, S. and Zhao, X., 2021. A bioassay-based approach for the batch-to-batch consistency evaluation of Xuesaitong injection on a zebrafish thrombosis model. Frontiers in Pharmacology 12: 1–11. 10.3389/fphar.2021.623533
Mao, Y.M., Li, K.Q., Zhao, D.Q., Huang, B.T., Li, J.Q., Liu, L., et al. 2022. Study on the difference of ginsenosides in different parts of ginseng based on HPLC and chemometric analysis. Journal of Chinese Medicinal Materials 10: 2442–2447.
Nam, Y.H., Le, H.T., Rodriguez, I., Kim, E.Y., Kim, K., Jeong, S.Y., et al. 2017. Enhanced antidiabetic efficacy and safety of compound K⁄β-cyclodextrin inclusion complex in zebrafish. Journal of Ginseng Research 41: 103–112. 10.1016/j.jgr.2016.08.007
Nam, Y.H., Moon, H.W., Lee, Y.R., Kim, E.Y., Rodriguez, I., Jeong, S.Y., et al. 2019. Panax ginseng (Korea red ginseng) repairs diabetic sensorineural damage through promotion of the nerve growth factor pathway in diabetic zebrafish. Journal of Ginseng Research (Elsevier) 43: 272–281. 10.1016/j.jgr.2018.02.006
Ng, T.B., 2010. Pharmacological activity of sanchi ginseng (Panax notoginseng). Journal of Pharmacy and Pharmacology 58: 1007–1019. 10.1211/jpp.58.8.0001
Nguyen, A.T.T., 2017. Generation and characterization of novel zebrafish models for epileptogenesis (Master’s thesis).
Park, C.M., Kim, H.M., Kim, D.H., Han, H.J., Noh, H., Jang, J.H., et al. 2016. Ginsenoside Re inhibits osteoclast differentiation in mouse bone marrow-derived macrophages and zebrafish scale model. Molecules and Cells 39: 855–861. 10.14348/molcells.2016.0111
Patton, E.E., Zon, L.I. and Langenau, D.M., 2021. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nature Reviews Drug Discovery (Springer US) 20: 611–628. 10.1038/s41573-021-00210-8
Perumal, S., Gopal Samy, M.V. and Subramanian, D., 2021. Developmental toxicity, antioxidant, and marker enzyme assessment of swertiamarin in zebrafish (Danio rerio). Journal of Biochemical and Molecular Toxicology 35(9), e22843. 10.1002/jbt.22843
Renshaw, S.A., Loynes, C.A., Trushell, D.M.I., Elworthy, S., Ingham, P.W. and Whyte, M.K.B., 2006. A transgenic zebrafish model of neutrophilic inflammation. Blood 108: 3976–3978. 10.1182/blood-2006-05-024075
Ru, W.W., Wang, D.L., Xu, Y.P., He, X.X., Sun, Y.E., Qian, L.Y., et al. 2015. Chemical constituents and bioactivities of Panax ginseng (C.A. Mey). Drug Discoveries & Therapeutics 9: 23–32. 10.5582/ddt.2015.01004
Ryu, S.J., Choi, J., Lee, J.S., Choi, H.S., Yoon, K.Y., Hwang, J.H., et al. 2018. Compound K inhibits the lipopolysaccharide-induced inflammatory responses in raw 264.7 cell line and zebrafish. Applied Sciences 8: 924. 10.3390/app8060924
Seto, S.W., Ko, I.W.M., Lee, S.M.Y., Kiat, H., Bensoussan, A., Liu, J., et al. 2018. Pro-angiogenic effects of a standardised herbal formulation, Sailuotong, on EA. hy926 cells in vitro and zebrafish in vivo. Proceedings for Annual Meeting of the Japanese Pharmacological Society WCP2018: PO3-10-36.
Shen, W.W., Wei, Y.J., Tang, D.Q., Jia, X.B. and Chen, B., 2017. Metabolite profiles of ginsenosides Rk1 and Rg5 in zebrafish using ultraperformance liquid chromatography/quadrupole–time-of-flight MS. Journal of Ginseng Research 41: 78–84. 10.1016/j.jgr.2015.12.010
Shen, W.W., Zhang, H.X., Qiu, S.B., Wei, Y.J., Zhu, F.X., Wang, J., et al. 2018. Biotransformation of ginsenosides F4 and Rg6 in zebrafish. Journal of Asian Natural Products Research 20: 686–696. 10.1080/10286020.2017.1307184
Shi X.J., Qiu B.Y., Wei Y.H., Wu Q., Deng B., Tang N., et al. 2021a. Effect of red ginseng water decoction on angiogenesis in zebrafish. Chinese Journal of Integrative Medicine on Cardio-cerebrovascular Disease 19: 45–48.
Shi, X.J., Wei, Y.H., Wu, Q., Li, G.H., Deng, B., Shen, L., et al. 2021b. Effect of ginsenoside Rg1 on angiogenesis in zebrafish. LiaoNing Journal of Traditional Chinese Medicine 48(8): 193–195. 10.13192/j.issn
Siddiqi, M.H., Siddiqi, M.Z., Ahn, S., Kang, S., Kim, Y.J., Sathishkumar, N., et al. 2013. Ginseng saponins and the treatment of osteoporosis: mini literature review. Journal of Ginseng Research 37: 261–268. 10.5142/jgr.2013.37.261
Souza, G.C.D., Viana, M.D., Goés, L.D.M., Sanchez-Ortiz, B.L., Silva, G.A.D., Pinheiro, W.D.S., et al. 2020. Reproductive toxicity of the hydroethanolic extract of the flowers of Acmella oleracea and spilanthol in zebrafish: in vivo and in silico evaluation. Human & Experimental Toxicology 39: 127–146. 10.1177/0960327119878257
Sun, B.S., Gu, L.J., Fang, Z.M., Wang, C., Wang, Z., Lee, M.R., et al. 2009a. Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC–ELSD. Journal of Pharmaceutical and Biomedical Analysis 50: 15–22. 10.1016/j.jpba.2009.03.025
Sun, B.S., Gu, L.J., Fang, Z.M., Wang, C.Y., Wang, Z. and Sung, C.K., 2009b. Determination of 11 ginsenosides in black ginseng developed from Panax ginseng by high performance liquid chromatography. Food Science and Biotechnology 18: 561–564.
Sun, M.M., He, M., Korthout, H. and Halima, M., 2019. Characterization of ginsenoside extracts by delayed luminescence, high-performance liquid chromatography, and bioactivity tests. Photochem Sciences 2019(18): 1138–1146. 10.1039/C8PP00533H
Sun Y.H., Mao A.H and Wang Q., 2019. Panax notoginsenosides inhibit primitive and definitive hematopoiesis during the zebrafish embryonic development. Acta Laboratorium Animalis Scientia Sinica 2019(02): 4. 10.3969/j.issn.1005-4847
Sun, M.M., Wu, H.W., He, M., Jia, Y., Wang, L., Liu, T., et al. 2020. Integrated assessment of medicinal rhubarb by combination of delayed luminescence and HPLC fingerprint with emphasized on bioactivities based quality control. Chinese Medicine 15: 72. 10.1186/s13020-020-00352-8
Sung, W.N., Kwok, H.H., Rhee, M.H., Yue, P.Y.K. and Wong, R.N.S., 2017. Korean red ginseng extract induces angiogenesis through activation of glucocorticoid receptor. Journal of Ginseng Research (Elsevier) 41: 477–486. 10.1016/j.jgr.2016.08.011
Tao, X.Y., Wu, Y.X., Li, X., Li, F.T., Dai, Y.L., Zheng, F., et al. 2022. Investigation of the protection from liver injury and pharmacokinetics of baijiu with fermented ginseng in rat and zebrafish models. Chinese Journal of Analytical Chemistry (Elsevier) 50: 100068. 10.1016/j.cjac.2022.100068
Vajn, K., Suler, D., Plunkett, J.A. and Oudega, M., 2014. Temporal profile of endogenous anatomical repair and functional recovery following spinal cord injury in adult zebrafish. PLoS One 9: e105857. 10.1371/journal.pone.0105857
Wang, H.Y., Hua, H.Y., Liu, X.Y., Liu, J.H. and Yu, B.Y., 2014a. In vitro biotransformation of red ginseng extract by human intestinal microflora: metabolites identification and metabolic profile elucidation using LC–Q-TOF/MS. Journal of Pharmaceutical and Biomedical Analysis (Elsevier BV) 98: 296–306. 10.1016/j.jpba.2014.06.006
Wang, R.R., Li, T., Zhang, L., Hu, Z.Y., Zhou, L., Shan, L.T., et al. 2023a. Acute developmental toxicity of Panax notoginseng in zebrafish larvae. Chinese Journal of Integrative Medicine 29: 333–340. 10.1007/s11655-022-3302-8
Wang, L., Lu, A.P., Yu, Z.L., Wong, R.N.S., Bian, Z.X., Kwok, H.H., et al. 2014b. The melanogenesis-inhibitory effect and the percutaneous formulation of ginsenoside Rb1. AAPS PharmSciTech 15: 1252–1262. 10.1208/s12249-014-0138-3
Wang, C.Z., Yao, H.Q., Zhang, C.F., Chen, L., Wan, J.Y., Huang, W.H., et al. 2018. American ginseng microbial metabolites attenuate DSS-induced colitis and abdominal pain. International Immunopharmacology 64: 246–251. 10.1016/j.intimp.2018.09.005
Wang, X.X., Zou, H.Y., Cao, Y.N., Zhang, X.M., Sun, M., Tu, P.F., et al. 2023b. Radix Panacis quinquefolii root extract ameliorates inflammatory bowel disease through inhibiting inflammation. Chinese Journal of Integrative Medicine 29: 825–831. 10.1007/s11655-022-3543-6
Wei, Y.J., Li, P., Fan, H.W., Peng, Y., Liu, W., Wang, C., et al. 2011. Metabolism study of notoginsenoside R1, ginsenoside Rg1 and ginsenoside Rb1 of radix Panax notoginseng in zebrafish. Molecules 16: 6621–6633. 10.3390/molecules16086621
Wei, Y.H., Zhou, Z.Y., Zhu, L.Y., Wang, S.F., Zhao, H.Z., et al. 2017. Effect of ginseng water decoction on angiogenesis in zebrafish. Journal of LiaoNing University of TCM 19(4): 8–10. 10.13194/i.issn.1673-842x.2017.04.002
Xiao, D., Xiu, Y., Yue, H., Sun, X.L., Zhao, H.X. and Liu, S.Y., 2017. A comparative study on chemical composition of total saponins extracted from fermented and white ginseng under the effect of macrophage phagocytotic function. Journal of Ginseng Research (Elsevier) 41: 379–385. 10.1016/j.jgr.2017.03.009
Xie, Y.F., Meijer, A.H. and Schaaf, M.J., 2021. Modeling inflammation in zebrafish for the development of anti-inflammatory drugs. Frontiers in Cell and Developmental Biology 8: 620984. 10.3389/fcell.2020.620984
Xie, R.F., Yang, B.R., Cheng, P.P., Wu, S., Li, Z.C., Tang, J.Y., et al. 2015. Study on the HPLC chromatograms and pro-angiogenesis activities of the flowers of Panax notoginseng. Journal of Liquid Chromatography & Related Technologies 38: 1286–1295. 10.1080/10826076.2015.1037451
Xiong, G.H., Deng, Y.Y., Cao, Z.G., Liao, X., Zhang, J. and Lu, H., 2019. The hepatoprotective effects of Salvia plebeia R. Br. extract in zebrafish (Danio rerio). Fish & Shellfish Immunology (Elsevier) 95: 399–410. 10.1016/j.fsi.2019.10.040
Xu, L.N., Yin, L.H., Jin, Y., Qi, Y., Han, X., Xu, Y.W., et al. 2020. Effect and possible mechanisms of dioscin on ameliorating metabolic glycolipid metabolic disorder in type-2 diabetes. Phytomedicine 67: 153139. 10.1016/j.phymed.2019.153139
Yang, B.R., Cheung, K.K., Zhou, X., Xie, R.F., Cheng, P.P., Wu, S., et al. 2016a. Amelioration of acute myocardial infarction by saponins from flower buds of Panax notoginseng via pro-angiogenesis and anti-apoptosis. Journal of Ethnopharmacology (Elsevier) 181: 50–58. 10.1016/j.jep.2016.01.022
Yang, B.R., Hong, S.J., Lee, S.M.Y., Cong, W.H., Wan, J.B., Zhang, Z.R., et al. 2016b. Pro-angiogenic activity of notoginsenoside R1 in human umbilical vein endothelial cells in vitro and in a chemical-induced blood vessel loss model of zebrafish in vivo. Chinese Journal of Integrative Medicine 22: 420–429. 10.1007/s11655-014-1954-8
Yang, F., Hua, Y.Q., Lin, Z.W., Huang, T.Y., Cui J., Li, M.Y., et al. 2019. Establishment of ocular apoptosis model in zebrafish. Chinese Pharmacological Bulletin 35: 1320–1325.
Yang, Y., Ju, Z., Yang, Y., Zhang, Y., Yang, L. and Wang, Z., 2021b. Phytochemical analysis of Panax species: a review. Journal of Ginseng Research (Elsevier) 45: 1–21. 10.1016/j.jgr.2019.12.009
Yang, J.B., Li, W.F., Liu, Y., Wang, Q., Cheng, X.L., Wei, F., et al. 2018. Acute toxicity screening of different extractions, components and constituents of Polygonum multiflorum Thunb. on zebrafish (Danio rerio) embryos in vivo. Biomedicine & Pharmacotherapy 99: 205–213. 10.1016/j.biopha.2018.01.033
Yang, N.J., Liu, Y.R., Tang, Z.S., Duan, J.A., Yan, Y.F., Song, Z.X., et al. 2021c. Poria cum Radix Pini rescues barium chloride-induced arrhythmia by regulating the cGMP-PKG signalling pathway involving ADORA1 in zebrafish. Frontiers in Pharmacology 12: 1–13. 10.3389/fphar.2021.688746
Yin, S.J., Luo, Y.Q., Zhao, C.P., Chen, H., Zhong, Z.F., Wang, S., et al. 2020. Antithrombotic effect and action mechanism of Salvia miltiorrhiza and Panax notoginseng herbal pair on the zebrafish. Chinese Medicine BioMed Central 15: 35. 10.1186/s13020-020-00316-y
Yin, S.J., Zhao, C.P., Hu, G., Chen, H. and Yang, F., 2020. Investigation on the metabolism of salvianolic acid B, tanshinone IIA, ginsenoside Rg1 and ginsenoside Rb1 from Danshen-Sanqi herbal pair in zebrafish by liquid chromatography-tandem mass spectrometry analysis. Clinical Complementary Medicine and Pharmacology (Elsevier BV) 1: 100001. 10.1016/j.ccmp.2021.100001
Zang, L.Q., Maddison, L.A. and Chen, W.B., 2018. Zebrafish as a model for obesity and diabetes. Frontiers in Cell and Developmental Biology 6: 1–13. 10.3389/fcell.2018.00091
Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Jamil, K., Ashraf, A., et al. 2018. Proteomics approach reveals importance of herbal plants in curing diseases. International Journal of Molecular Microbiology 1: 23–28.
Zhang, C., 2004. Study on the chemical constituents from ginseng and American ginseng and notoginseng (Doctoral thesis).
Zhang, R.Z., Li, S., Wang, Y.H., Li, M.Y., Tang, J.Y., Liu, P., et al. 2013. Angiogenic effect of total saponins extracted from root and flower of Panax notoginseng in zebrafish model. Journal of Shanghai Universities of Traditional Chinese Medicine 27: 45–49.
Zhang, J.Y., Liu, M.Q., Huang, M.H., Chen, M.F., Zhang, D., Luo, L.P., et al. 2019. Ginsenoside F1 promotes angiogenesis by activating the IGF-1/IGF1R pathway. Pharmacological Research (Elsevier) 144: 292–305. 10.1016/j.phrs.2019.04.021
Zhao, C.J., Li, E., Wang, Z.Y., Tian, J.H., Dai, Y.H., Ni, Y.Y., et al. 2018, Dec. Nux vomica exposure triggered liver injury and metabolic disturbance in zebrafish larvae. Zebrafish 15(6): 610–628. 10.1089/zeb.2018.1632
Zheng, Y.R., Tian, C.Y., Fan, C.L., Xu, N.S., Xiao, J.J., Zhao, X.Y., et al. 2021. Sheng-Mai Yin exerts anti-inflammatory effects on RAW 264.7 cells and zebrafish. Journal of Ethnopharmacology (Elsevier BV) 267: 113497. 10.1016/j.jep.2020.113497
Zheng, M.M., Xu, F.X., Li, Y.J., Xi, X.Z., Cui, X.W., Han, C.C., et al. 2017. Study on transformation of ginsenosides in different methods. BioMed Research International 2017: 1–10. 10.1155/2017/8601027
Zhong, J.C., Lu, W.J., Zhang, J.Y., Huang, M.H., Lyu, W.Y., Ye, G.N., et al. 2020. Notoginsenoside R1 activates the Ang2/Tie2 pathway to promote angiogenesis. Phytomedicine (Elsevier) 78: 153302. 10.1016/j.phymed.2020.153302
Zhou, D.Y., Hu, X., Wu, T.C., Li, X., Yang, D., Tao, X.Y., et al. 2023. Glycopeptide from mountain-cultivated ginseng attenuates oxidant-induced cardiomyocyte and skeletal myoblast injury. 1–17.