Effect of lactic acid bacterial starter KUB-G2 on grass silage quality and its microbial community performed using 140-ton plastic bag silos: a large-scale study
Main Article Content
Keywords
silage, large-scale silage production, signal grass, lactic acid bacteria, organic acids, microbial community
Abstract
This study investigated the effectiveness of lactic acid bacteria (LAB) starters in 140 tons of signal grass silage. We compared a locally developed starter, a combination of Lactiplantibacillus plantarum KUB-SP1-3 and Pediococcus acidilactici KUB-M6 (KUB-G2) with a commercial starter. We monitored the chemical and microbiological properties of silage at ensiling (day 0) and after 21 days. The results indicated that KUB-G2 produced high-quality silage. There were no significant differences in total viable microbes, lactic acid, or propionic acid contents between the starters. However, the silage produced with KUB-G2 had a lower acetic acid content than that produced with the commercial starter. KUB-G2 also resulted in a narrower microbiome profile dominated by Pediococci whereas the control group displayed a broader range of bacterial taxa with colonization by Lactiplantibacillus and Lentilactobacillus. These findings suggested that KUB-G2, with its distinct microbial profile, is a suitable replacement for imported commercial starters in large-scale signal grass silage production.
References
Adrangi, S., Faramarzi, M.A., Shahverdi, A.R., and Sepehrizadeh, Z. 2010. Purification and characterization of two extracellular endochitinases from Massilia timonae. Carbohydrate Research 345(3):402–407. 10.1016/j.carres.2009.11.015
Association of Official Analytical Chemists (AOAC) (2000). Official methods of analysis, 17th edition. AOAC, Gaithersburg, MD.
Bao, W., Mi, Z., Xu, H., Zheng, Y., Kwok, L.Y., Zhang, H. et al. 2016. Assessing quality of Medicago sativa silage by monitoring bacterial composition with single molecule, real-time sequencing technology and various physiological parameters. Scientific Reports 6: 28358. 10.1038/srep28358
Benjamim da Silva, É., Polukis, S.A., Smith, M.L., Voshell, R.S., Leggett, M.J., Jones, P.B., et al. 2023. The use of Lentilactobacillus buchneri PJB1 and Lactiplantibacillus plantarum MTD1 on the ensiling of whole-plant corn silage, snaplage, and high-moisture corn. Journal of Dairy Science 107(2): 883–901. 10.3168/jds.2023-23672
Boubekri, K., Soumare, A., Mardad, I., Lyamlouli, K., Ouhdouch, Y., Hafidi, M., et al. 2022. Multifunctional role of Actinobacteria in agricultural production sustainability: a review. Microbiological Research 261: 127059. 10.1016/j.micres.2022.127059
Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., and Schulze-Lefert, P. 2013. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology 64: 807–838. 10.1146/annurev-arplant-050312-120106
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J., and Holmes, S.P. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods. 13(7): 581–583. 10.1038/nmeth.3869
Carrizo, N.I., Carabajal Torrez, J.A., Molina, F.R.E., Fornaguera, M.J., Martos, G.I., Bustos, A.Y., and Gerez, C.L. 2021. Selection and performance of antifungal lactic acid bacteria in corn mini-silos. Arabian Journal for Science and Engineering 47: 119–130. 10.1007/s13369-021-05511-z
Danner, H., Holzer, M., Mayrhuber, E., and Braun R. 2003. Acetic acid increases stability of silage under aerobic conditions. Applied and Environmental Microbiology 69(1): 562–567. 10.1128/AEM.69.1.562-567.2003
Du, C., Li, C., Cao, P., Li, T., Du, D., Wang, X., et al. 2021. Massilia cellulosiltytica sp. nov., a novel cellulose-degrading bacterium isolated from rhizosphere soil of rice (Oryza sativa L.) and its whole genome analysis. Antonie Van Leeuwenhoek 114(10): 1529–1540. 10.1007/s10482-021-01618-3
Fonseca, H.C., Melo, D.S., Ramos, C.L., Dias, D.R., and Schwan, R.F. 2021. Lactiplantibacillus plantarum CCMA 0743 and Lacticaseibacillus paracasei subsp. paracasei LBC-81 metabolism during the single and mixed fermentation of tropical fruit juices. Brazilian Journal of Microbiology 52(4): 2307–2317. 10.1007/s42770-021-00628-7
Franco, R.T., Buffiere, P., and Bayard R. 2017. Optimizing storage of a catch crop before biogas production: impact of ensiling and wilting under unsuitable weather conditions. Biomass and Bioenergy 100: 84–91. 10.1016/j.biombioe.2017.03.017
García-Núñez, I.M., Santacruz, A., Serna-Saldívar, S.O., Hernandez, S.L.C., and Amaya Guerra, C.A. 2022. Assessment of potential probiotic and synbiotic properties of lactic acid bacteria grown in vitro with starch-based soluble corn fiber or inulin. Foods 11(24): 4020. 10.3390/foods11244020
Gerlach, K., Daniel, J.L.P., Jobim, C.C., and Nussio, L.G. 2021. A data analysis on the effect of acetic acid on dry matter intake in dairy cattle. Animal Feed Science and Technology 272: 114782. 10.1016/j.anifeedsci.2020.114782
Guo, X., Xu, D., Li, F., Bai, J., and Su, R. 2023. Current approaches on the roles of lactic acid bacteria in crop silage. Microbial Biotechnology 16(1): 67–87. 10.1111/1751-7915.14184
Herlemann, D.P., Labrenz, M., Jürgens, K., Bertilsson, S. Waniek, J.J., and Andersson, A.F. 2011. Transitions in bacterial communities along the 2000- km salinity gradient of the Baltic Sea. ISME Journal 5(10): 1571–1579. 10.1038/ismej.2011.41
Heuzé, V., Tran, G., Boval, M., and Lebas, F. 2021. Signal grass (Brachiaria decumbens). Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. Available at: https://www.feedipedia.org/node/489 (Accessed: April 30, 2024).
Hothorn, T., Bretz, F., and Westfall, P. 2008. Simultaneous inference in general parametric models. Biometrical Journal 50(3): 346–363. 10.1002/bimj.200810425
Jaipolsaen, N., Sangsritavong, S., Uengwetwanit, T., Angthong, P., Plengvidhya, V., Rungrassamee, W., et al. 2022. Comparison of the effects of microbial inoculants on fermentation quality and microbiota in Napier grass (Pennisetum purpureum) and corn (Zea mays L.) silage. Frontiers in Microbiology 12: 784535. 10.3389/fmicb.2021.784535
Keady, T.W.J., Kilpatrick, D.J., Mayne and Gordon, F.J. 2008. Effects of replacing grass silage with maize silages, differing in maturity, on performance and potential concentrate spring effect of dairy cows offered two feed value grass silages. Livestock Science 119: 1–11. 10.1016/j.livsci.2008.02.006
Krizsan, S.J., and Randby, A.T. 2007. The effect of fermentation quality on the voluntary intake of grass silage by growing cattle fed silage as the sole feed. Journal of Animal Science 85(4): 984–996. 10.2527/jas.2005-587
Kung, L., Jr., Shaver, R.D., Grant, R.J., and Schmidt, R.J. 2018. Silage review: interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science 101(5): 4020–4033. 10.3168/jds.2017-13909
Lee, M.A. 2018. A global comparison of the nutritive values of forage plants grown in contrasting environments. Journal of Plant Research 131(4): 641–654. 10.1007/s10265-018-1024-y
Li, J., Wang, W., Chen, S., Shao, T., Tao, X., and Yuan, X. 2021. Effect of lactic acid bacteria on the fermentation quality and mycotoxins concentrations of corn silage infested with mycotoxigenic fungi. Toxins (Basel) 13(10): 699. 10.3390/toxins13100699
Lu, Q., Wang, Z., Sa, D., Hou, M., Ge, G., Wang, Z., and Jia Y. 2021. The potential effects on microbiota and silage fermentation of Alfalfa under salt stress. Frontiers in Microbiology 12: 688695. 10.3389/fmicb.2021.688695
Manzocchi, E., Ferlay, A., Farizon, Y., Enjalbert, F., Bouchon, M., Giller, K., et al. 2022. Herbage utilisation method affects rumen fluid and milk fatty acid profile in Holstein and Montbéliarde cows. Animal 16(12): 100674. 10.1016/j.animal.2022.100674
Muck, R.E. 2010. Silage microbiology and its control through additives. Revista Brasileira de Zootecnia 39: 183–191. 10.1590/S1516-35982010001300021
Muck, R.E., Moser, L.E., and Pitts, R.E. 2003. Postharvest factors affecting ensiling. In Buxton D.R. Muck R. E., and Harrison J.H. (eds.) Silage science and technology. ASA, CSSA, and SSSA, Madison, WI, pp. 251–304. 10.2134/agronmonogr42.c6
Nakphaichit, M., Phraephaisarn, C., Keawsompong, S., Sukpiriyagul, O., and Nitisinprasert, S. 2014. Effect of increasing dietary protein from soybean meal on intestinal microbiota and their fatty acids production in broiler chicken. Advances in Animal and Veterinary Sciences 2(6): 337–343. 10.14737/journal.aavs/2014/2.6.337.343
Nascimento, M.C.N., Pereira, O.G., da Silva, L.D., da Silva, V.P., de Paula, R.A., Fonseca e Silva, F., et al. 2022. Effect of various strains of Lactobacillus buchneri on the fermentation quality and aerobic stability of corn silage. Agriculture 12(1): 95. 10.3390/agriculture12010095
Nishino, N., Yoshida, M., Shiota, H., and Sakaguchi, E. 2003. Accumulation of 1,2 propanediol and enhancement of aerobic stability in whole crop maize silage inoculated with Lactobacillus buchneri. Journal of Applied Microbiology 94: 800–807. 10.1046/j.1365-2672.2003.01810.x
Nitisinprasert, S., Buajum, T., Saelao, S., Tabtong, T., Chatthong, R., and Jareerat, A. 2000. Screening of lactic acid bacteria local strains as biocatalysts for silage fermentation. Journal of Science of Khonkaen University. 28: 31–43.
Ohmomo, S., Nitisinprasert, S., Kraykaw, D., Pholsen, P., Tanomwongwattana, S., Tanaka, O., Suzuki, T., and Nishida, T. 2007. Attempt to practical use of Lactobacillus plantarum SP 1-3 in spray dried granule form for making good quality silage in Thailand. Kasetsart Journal (Natural Science) 41: 34–42.
Ohmomo, S., Odai, M., Pholsen, P., Nitisinprasert, S., Kraykaw, D., and Hiranpradit, S. 2004. Effect of a commercial inoculant on the fermentation quality of ABP silage in Thailand. Japan Agricultural Research Quarterly 38(2): 125–128. 10.6090/jarq.38.125
Okoye, C.O., Wang, Y., Gao, L., Wu, Y., Li, X., Sun, J., and Jiang, J. 2023. The performance of lactic acid bacteria in silage production: a review of modern biotechnology for silage improvement. Microbiological Research 266: 127212. 10.1016/j.micres.2022.127212
Patterson, J.D., Sahle, B., Gordon, A.W., Archer, J.E., Yan, T., Grant, N., et al. 2021. Grass silage composition and nutritive value on Northern Ireland farms between 1998 and 2017. Grass and Forage Science 76: 300–308. 10.1111/gfs.12534
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41: D590–D596. 10.1093/nar/gks1219
Romero, J.J., Zhao, Y., Balseca-Paredes, M.A., Tiezzi, F., Gutierrez-Rodriguez, E., and Castillo, M.S. 2017. Laboratory silo type and inoculation effects on nutritional composition, fermentation, and bacterial and fungal communities of oat silage. Journal of Dairy Science 100: 1812–1828. 10.3168/jds.2016-11642
Schmidt, R.J., and Kung L. Jr. 2010. The effects of Lactobacillus buchneri with or without a homolactic bacterium on the fermentation and aerobic stability of corn silages made at different locations. Journal of Dairy Science 93(4): 1616–1624. 10.3168/jds.2009-2555
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biology 12(6): R60. 10.1186/gb-2011-12-6-r60
Tian, R., Ning, D., He, Z., Zhang, P., Spencer, S.J., Gao, S., et al.. 2020. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome. 8(1): 51. 10.1186/s40168-020-00825-w
Vacca, M., Celano, G., Calabrese, F.M., Portincasa, P., Gobbetti, M., and De Angelis, M. 2020. The controversial role of human gut Lachnospiraceae. Microorganisms. 8(4): 573. 10.3390/microorganisms8040573
Vandana, U.K., Rajkumari, J., Singha, L.P., Satish, L., Alavilli, H., Sudheer, P.D.V.N., et al. 2021. The endophytic microbiome as a hotspot of synergistic interactions, with prospects of plant growth promotion. Biology (Basel) 10(2): 101. 10.3390/biology10020101
Ward, R.T. 2009. Fermentation analysis of silage: use and interpretation. Cumberland Valley Analytical Services, Hagerstown, MD.
Wickham, H. 2016. ggplot2: elegant graphics for data analysis. Springer-Verlag, New York, NY. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.
Wilhelm, R.C., Singh, R., Eltis, L.D., and Mohn, W.W. 2019. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME Journal 13(2): 413–429. 10.1038/s41396-018-0279-6
Wilkinson, J.M., and Davies, D.R. 2012. The aerobic stability of silage: key findings and recent developments. Grass and Forage Science 68: 1–19. 10.1111/j.1365-2494.2012.00891.x
Wu, T., Li, X.B., Xu, J., Liu, L.X., Ren, L.L., Dong, B., et al. 2021. Diversity and functional characteristics of endophytic bacteria from two grass species growing on an oil-contaminated site in the Yellow River Delta, China. Science of the Total Environment 767: 144340. 10.1016/j.scitotenv.2020.144340
Yan, J., Huang, Y., Gao, Z., Zhang, Z., Gu, Q., and Li, P. 2023. Probiotic potential of Lactiplantibacillus plantarum ZFM4 isolated from pickles and its effects on human intestinal microecology. Food Science and Technology (LWT) 148: 114954. 10.1016/j.lwt.2023.114954
Yin, H., Zhao, M., Pan, G., Zhang, H., Yang, R., Sun, J., et al. 2023. Effects of Bacillus subtilis or Lentilactobacillus buchneri on aerobic stability, and the microbial community in aerobic exposure of whole plant corn silage. Frontiers in Microbiology 14: 1177031. 10.3389/fmicb.2023.1177031
Yeager, C.M., Gallegos-Graves, V., Dunbar, J., Hesse, C.N., Daligault, H., and Kuske C.R. 2017. Polysaccharide degradation capability of actinomycetales soil isolates from a semiarid grassland of the Colorado Plateau. Applied and Environmental Microbiology 83(6): e03020–e030216. 10.1128/AEM.03020-16
Yu, Z., and Morrison, M. 2004. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Bio Techniques 36: 808–812. 10.2144/04365ST04
Zhang, Z., Li, Y., Zhang, J., Peng, N., Liang, Y., and Zhao, S. 2020. High-titer lactic acid production by Pediococcus acidilactici PA204 from corn stover through fed-batch simultaneous saccharification and fermentation. Microorganisms 8(10): 1491. 10.3390/microorganisms8101491