Antimicrobial activities of polyphenol-based metabolites present in lettuce and recent methods for their estimation

Main Article Content

Jinghua Liu
Zhidi Chen
Fengbo Ma
Dongming Liu
Hongmei Li-Byarlay
Xuanzhe Chang
Yanyan Zhang
Xiangning Chen
Xiuzhi Gao https://orcid.org/0000-0002-1122-4742

Keywords

antibacterial activity, Escherichia coli, lettuce, metabolomics

Abstract

The tissue structure of fresh-cut lettuce is easy to be damaged during processing and transportation, which leads to the reduction of its edible quality and safety. Ultra-high-performance liquid chromatography (UHPLC) combined with time-of-flight tandem mass spectrometry (TMS) metabolomics was used to identify the differential metabolites related to the antibacterial activity in lettuce and explore their bacteriostatic mechanism. The experimental results revealed that the growth of Escherichia coli was quite different when different varieties of lettuce were used as the nutrient substrate. Between the varieties Beizisheng No. 3 (BZ3) and Shooter 101 (SS), 204 differential metabolites showed significant changes (P < 0.05), 86 metabolites showed changes between the varieties BZ3 and Beisansheng No. 1 (BS1). Among the metabolites, isoquercitrin was the upregulated differential metabolite in BZ3 compared to SS and BS1. The content of isoquercitrin in lettuce juice positively correlated with the antibacterial activity of polyphenol extract, but negatively correlated with the growth of E. coli. The bacteriostatic property of polyphenol extract destroys the morphological structure of E. coli. The higher the isoquercitrin content, the stronger the resistance of fresh-cut lettuce to E. coli.

Abstract 435 | PDF Downloads 481 HTML Downloads 0 XML Downloads 8

References

Assefa, A.D., Hur, O., Hahn, B., Kim, B., Ro, N.Y., and Rhee, J.H. 2021. Nutritional metabolites of red pigmented lettuce (Lactuca sativa) germplasm and correlations with selected phenotypic characters. Foods 10(10): 2504. 10.3390/foods10102504

Birru, R.L., Bein, K., Bondarchuk, N., Wells, H., Lin, Q., Di, Y.P., et al. 2021. Antimicrobial and anti-inflammatory activity of apple polyphenol phloretin on respiratory pathogens associated with chronic obstructive pulmonary disease. Frontiers in Cellular and Infection Microbiology 11: 652944. 10.3389/fcimb.2021.652944

Bonechi, C., Donati, A., Tamasi, G., Leone, G., Consumi, M., Rossi, C., et al. 2018. Protective effect of quercetin and rutin encapsulated liposomes on induced oxidative stress. Biophysical Chemistry 233: 55–63. 10.1016/j.bpc.2017.11.003

Chen, W., Gong, L., Guo, Z., Wang, W., Zhang, H., Liu, X., et al. 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Molecular Plant 6: 1769–1780. 10.1093/mp/sst080

Cheng, D.M., Pogrebnyak, N., Kuhn, P., Krueger, C.G., Johnson, W.D., and Raskin, I. 2014a. Development and phytochemical characterization of high polyphenol red lettuce with anti-diabetic properties. PLoS One 9(3): e91571. 10.1371/journal.pone.0091571

Cheng, D.M., Pogrebnyak, N., Kuhn, P., Poulev, A., Waterman, C., Rojas-Silva, P., et al. 2014b. Polyphenol-rich Rutgers Scarlet lettuce improves glucose metabolism and liver lipid accumulation in diet-induced obese C57BL/6 mice. Nutrition 30(7–8): S52–S58. 10.1016/j.nut.2014.02.022

Cuggino, S.G., Possas, A., Posada-Izquierdo, G.D., Theumer, M.G., and Pérez-Rodríguez, F. 2023. Unveiling fresh-cut lettuce processing in argentine industries: Evaluating salmonella levels using predictive microbiology models. Foods 12(21): 3999. 10.3390/foods12213999

Cui, H., Bai, M., Sun, Y., Abdel-Samie, M.A.S., and Lin, L. 2018. Antibacterial activity and mechanism of Chuzhou chrysanthemum essential oil. Journal of Functional Foods 48: 159–166. 10.1016/j.jff.2018.07.021

Dannehl, D., Becker, C., Suhl, J., Josuttis, M., and Schmidt, U. 2016. Reuse of organomineral substrate waste from hydroponic systems as fertilizer in open-field production increases yields, flavonoid glycosides, and caffeic acid derivatives of red oak leaf lettuce (Lactuca sativa L.) much more than synthetic fertilizer. Journal of Agricultural and Food Chemistry 64(38): 7068–7075. 10.1021/acs.jafc.6b02328

Doppler, M., Kluger, B., Bueschl, C., Schneider, C., Krska, R., Delcambre, S., et al. 2016. Stable isotope-assisted evaluation of different extraction solvents for untargeted metabolomics of plants. International Journal of Molecular Sciences 17(7): 1017. 10.3390/ijms17071017

El Moussaoui, A., Jawhari, F.Z., Almehdi, A.M., Elmsellem, H., Fikri Benbrahim, K., Bousta, D., et al. 2019. Antibacterial, antifungal and antioxidant activity of total polyphenols of Withania frutescens L. Bioorganic Chemistry 93: 103337. 10.1016/j.bioorg.2019.103337

Fei, Y., Xiaoyan, Z., Changyan, Z., Shiwei, W., Hengchao, E., and Xiaobei, L. 2023. Comparison and antioxidant activity of polyphenols and flavonoids in different varieties of lettuce. Food Science 13: 17–25.

Gauthier, L., Atanasova-Penichon, V., Chereau, S., and Richard-Forget, F. 2015. Metabolomics to decipher the chemical defense of cereals against Fusarium graminearum and deoxynivalenol accumulation. International Journal of Molecular Sciences 16(10): 24839–24872. 10.3390/ijms161024839

Hehuan, P., Meifeng, Z., Yangchen, Q., Yangchen, Q., and Qi, L. 2022. Research progress on pharmacological effects of polyphenolic compounds. China Pharmaceuticals. 23: 124–127.

Islam, M.Z., Lee, Y.T., Mele, M.A., Choi, I.L., Jang, D.C., Ko, Y.W., et al. 2019. Effect of modified atmosphere packaging on quality and shelf life of baby leaf lettuce. Quality Assurance and Safety of Crops & Foods 11(8): 749–756. 10.3920/QAS2019.1626

Jeyakumar, G.E., and Lawrence, R. 2021. Mechanisms of bactericidal action of eugenol against Escherichia coli. Journal of Herbal Medicine 26: 100406. 10.1016/j.hermed.2020.100406

Ketut Srie, M.J., and Purnawati, A. 2023. Phytochemical compounds and antibacterial activity to Escherichia coli of green macro algae. IOP Conference Series. Earth and Environmental Science 1131(1): 12012. 10.1088/1755-1315/1131/1/012012

Li, H., Sun, L., Mittapalli, O., Muir, W.M., Xie, J., Wu, J., et al. 2010. Bowman-birk inhibitor affects pathways associated with energy metabolism in Drosophila melanogaster. Insect Molecular Biology 19(3): 303-313. 10.1111/j.1365-2583.2009.00984.x

Li, L., Zhou, P., Wang, Y., Pan, Y., Chen, M., Tian, Y., et al. 2022. Antimicrobial activity of cyanidin-3-O-glucoside–lauric acid ester against Staphylococcus aureus and Escherichia coli. Food Chemistry 383: 132410. 10.1016/j.foodchem.2022.132410

Lin, Y., Hu, J., Li, S., Hamzah, S.S., Jiang, H., Zhou, A., et al. 2019. Curcumin-based photodynamic sterilization for preservation of fresh-cut Hami melon. Molecules 24(13): 2374. 10.3390/molecules24132374

Lindon, J.C., Holmes, E., and Nicholson, J.K. 2006. Metabonomics techniques and applications to pharmaceutical research & development. Pharmaceutical Research 23(6): 1075–1088. 10.1007/s11095-006-0025-z

Liu, Z., Sun, J., Teng, Z., Luo, Y., Yu, L., Simko, I., et al. 2021. Identification of marker compounds for predicting browning of fresh-cut lettuce using untargeted UHPLC-HRMS metabolomics. Postharvest Biology and Technology 180: 111626. 10.1016/j.postharvbio.2021.111626

Llorach, R., Martínez-Sánchez, A., Tomás-Barberán, F.A., Gil, M.I., and Ferreres, F. 2008. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem 108(3): 1028–1038. 10.1016/j.foodchem.2007.11.032

López, A., Javier, G., Fenoll, J., Hellín, P., and Flores, P. 2014. Chemical composition and antioxidant capacity of lettuce: Comparative study of regular-sized (Romaine) and baby-sized (Little Gem and Mini Romaine) types. Journal of Food Composition and Analysis 33(1): 39–48. 10.1016/j.jfca.2013.10.001

Min, S.C., Roh, S.H., Niemira, B.A., Sites, J.E., Boyd, G., and Lacombe, A. 2016. Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. International Journal of Food Microbiology 237: 114–120. 10.1016/j.ijfoodmicro.2016.08.025

Moodi, Z., Bagherzade, G., and Peters, J. 2021. Quercetin as a precursor for the synthesis of novel nanoscale Cu (II) complex as a catalyst for alcohol oxidation with high antibacterial activity. Bioinorganic Chemistry and Applications 2021: 8818452. 10.1155/2021/8818452

Muna, A.A., Famuyide, I., Wooding, M., McGaw, L.J., and Mühling, K.H. 2022. Secondary metabolite profile and pharmacological opportunities of lettuce plants following selenium and sulfur enhancement. Pharmaceutics 14(11): 2267. 10.3390/pharmaceutics14112267

Otify, A.M., ElBanna, S.A., Eltanany, B.M., Pont, L., Benavente, F., and Ibrahim, R.M. 2023. A comprehensive analytical framework integrating liquid chromatography-tandem mass spectrometry metabolomics with chemometrics for metabolite profiling of lettuce varieties and discovery of antibacterial agents. Food Research International 172: 113178. 10.1016/j.foodres.2023.113178

Pepe, G., Sommella, E., Manfra, M., De Nisco, M., Tenore, G.C., Scopa, A., et al. 2014. Evaluation of anti-inflammatory activity and fast UHPLC–DAD–IT-TOF profiling of polyphenolic compounds extracted from green lettuce (Lactuca sativa L.; var. Maravilla de Verano). Food Chem 167: 153–161. 10.1016/j.foodchem.2014.06.105

Sawada, Y., Akiyama, K., Sakata, A., Kuwahara, A., Otsuki, H., Sakurai, T., et al. 2009. Widely targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants. Plant & Cell Physiology 50(1): 37–47. 10.1093/pcp/pcn183

Shenoy, A.G., Oliver, H.F., and Deering, A.J. 2017. Listeria monocytogenes internalizes in romaine lettuce grown in greenhouse conditions. Journal of Food Protection 80(4): 573–581. 10.4315/0362-028X.JFP-16-095

Shi, M., Gu, J., Wu, H., Rauf, A., Talha, B.E., Khan, Z., et al. 2022. Phytochemicals, nutrition, metabolism, bioavailability, and health benefits in Lettuce—A comprehensive review. Antioxidants 11(6): 1158. 10.3390/antiox11061158

Soberón, J.R., Sgariglia, M.A., Carabajal Torrez, J.A., Aguilar, F.A., Pero, E.J.I., Sampietro, D.A., et al. 2020. Antifungal activity and toxicity studies of flavanones isolated from Tessaria dodoneifolia aerial parts. Heliyon 6(10): e05174. 10.1016/j.heliyon.2020.e05174

Steinmeyer, S., Lee, K., Jayaraman, A., and Alaniz, R.C. 2015. Microbiota metabolite regulation of host immune homeostasis: A mechanistic missing link. Current Allergy and Asthma Reports 15(5): 24. 10.1007/s11882-015-0524-2

Sularz, O., Koronowicz, A., Smoleń, S., Kowalska, I., Skoczylas, Ł., Liszka-Skoczylas, M., et al. 2021. Anti-and pro-oxidant potential of lettuce (Lactuca sativa L.) biofortified with iodine by KIO 3, 5-iodo-and 3, 5-diiodosalicylic acid in human gastrointestinal cancer cell lines. RSC Advances 11(44): 27547–27560. 10.1039/D1RA04679A

Sun, L., Li, H.M., Seufferheld, M.J., Walters, K.R. Jr., Margam, V.M., Jannasch, A., et al. 2011. Systems-scale analysis reveals pathways involved in cellular response to methamphetamine. PLoS One 6(4): e18215. 10.1371/journal.pone.0018215

Tahir, U., Zameer, M., Zahra, N., Mazhar, M., Rafique, A., Alyas, S., et al. 2022. Isolation and characterization of Shiga-toxigenic Escherichia coli isolated from various food samples. Journal of Food and Nutrition Research 10(1): 19–25. 10.12691/jfnr-10-1-3

Taleb, H., Maddocks, S.E., Morris, R.K., and Kanekanian, A.D. 2016. The antibacterial activity of date syrup polyphenols against S. aureus and E. coli. Frontiers in Microbiology 7: 198. 10.3389/fmicb.2016.00198

Tang, C., Xie, B., and Sun, Z., 2017. Antibacterial activity and mechanism of B-type oligomeric procyanidins from lotus seedpod on enterotoxigenic Escherichia coli. Journal of Functional Foods 38: 454–463. 10.1016/j.jff.2017.09.046

Tang, Y., Pan, Y., and Chen, L. 2023. Identification of antibacterial components and modes in the methanol-phase extract from a herbal plant Potentilla kleiniana wight et arn. Foods 12(8): 1640. 10.3390/foods12081640

van Hoek, A.H.A.M., van Veldhuizen, J.N.J., Friesema, I., Coipan, C., Rossen, J.W.A., Bergval, I.L., et al. 2019. Comparative genomics reveals a lack of evidence for pigeons as a main source of stx2f-carrying Escherichia coli causing disease in humans and the common existence of hybrid Shiga toxin-producing and enteropathogenic E. coli pathotypes. BMC Genomics 20(1): 271. 10.1186/s12864-019-5635-z

van Treuren, R., van Eekelen, H.D.L.M., Wehrens, R., and de Vos, R.C.H. 2018. Metabolite variation in the lettuce gene pool: Towards healthier crop varieties and food. Metabolomics 14(11): 1–14. 10.1007/s11306-018-1443-8

Viacava, G.E., Roura, S.I., Berrueta, L.A., Iriondo, C., Gallo, B., and Alonso-Salces, R.M. 2017. Characterization of phenolic compounds in green and red oak-leaf lettuce cultivars by UHPLC-DAD-ESI-QToF/MS using MSE scan mode. Journal of Mass Spectrometry 52(12): 873–902. 10.1002/jms.4021

Xiao, L., Daodong, P., Xuan, W., and Yongfang, Z. 2023. Study on the antibacterial activity and mechanism of bamboo leaf flavonoids on E. coli. China Food Additives. 12: 197–204. 10.19804/j.issn1006-2513.2023.12.026

Xiao, Y., Zhi, Y., Li-wei, G., and Dan-feng, H. 2015. Research progress of antioxidants and its bioactivity in lettuces. China Vegetables 02: 17–24.

Xu, Z., Li, H., Qin, X., Wang, T., Hao, J., Zhao, J., et al. 2019. Antibacterial evaluation of plants extracts against ampicillin-resistant Escherichia coli (E. coli) by microcalorimetry and principal component analysis. AMB Express 9(1): 1–10. 10.1186/s13568-019-0829-y

Xue, W., Yang, C., Liu, M., Lin, X., Wang, M., and Wang, X. 2022. Metabolomics approach on non-targeted screening of 50 PPCPs in lettuce and maize. Molecules 27(15): 4711. 10.3390/molecules27154711

Yang, X., Gil, M.I., Yang, Q., and Tomás-Barberán, F.A. 2022. Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Comprehensive Reviews in Food Science and Food Safety 21(4–45): 4–45. 10.1111/1541-4337.12877

Yang, X., Wei, S., Liu, B., Guo, D., Zheng, B., Feng, L., et al. 2018. A novel integrated non-targeted metabolomic analysis reveals significant metabolite variations between different lettuce (Lactuca sativa. L) varieties. Horticulture Research 5: 1–14. 10.1038/s41438-018-0050-1

Yu, L. 2021. Study on the preservation effect of mulberry leaf polyphenols on fresh-cut fruits and vegetables and the mechanism of controlling the adhesion of food-borne pathogenic bacteria. Doctoral dissertation, Southwest University.

Yun, J., Woo, E.-R., and Lee, D.G. 2018. Effect of isoquercitrin on membrane dynamics and apoptosis-like death in Escherichia coli. Biochimica et Biophysica Acta–Biomembranes 1860(2): 357–363. 10.1016/j.bbamem.2017.11.008

Zaman, S., Aziz, A., Siddique, M.A., Khaleque, M.A., and Bari, M.L. 2024. Use of non-chlorine sanitizers in improving quality and safety of marketed fresh salad vegetables. Processes 12(5): 1011. 10.3390/pr12051011

Zeng, W., Vorst, K., Brown, W., Marks, B.P., Jeong, S., Pérez-Rodríguez, F., et al. 2014. Growth of Escherichia coli O157:H7 and Listeria monocytogenes in packaged fresh-cut romaine mix at fluctuating temperatures during commercial transport, retail storage, and display. Journal of Food Protection 77(2): 197–206. 10.4315/0362-028X.JFP-13-117

Zhang, K., Cao, F., Zhao, Y., Wang, H., and Chen, L. 2024. Antibacterial ingredients and modes of the methanol-phase extract from the fruit of Amomum villosum Lour. Plants 13(6): 834. 10.3390/plants13060834

Zhaoyong, L., Xiaoli, Y., Jinglei, L., Boning, L., Keying, Z., and Shuling, W. 2024. Research progress on the chemical composition and pharmacological effects of volatile oil from Atractylodes macrocephala. Chinese Archives of Traditional Chinese Medicine 03: 881–889. https://link.cnki.net/urlid/21.1546.r.20240122.1416.027

Zhidi, C., Sinning, Z., Fan, X., Lianquan, Z., Xinxin, Y., and Xiuzhi, G. 2022. Optimization of extraction technology of polyphenols in leaf lettuce. Journal of Beijing University of Agriculture 1: 111–116. 10.13473/j.cnki.issn.1002-3186.2022.0119

Zhong, L.Q., Wang, L.F., and Qi, C.H. 2009. Talking about the propagation technology of strawberry seedlings. Strawberry Research Progress 3: 269–272.

Zhu, H.L., Chen, G., Chen, S.N., Wang, Q.R., Wan, L., and Jian, S.P. 2019. Characterization of polyphenolic constituents from Sanguisorba officinalis L., and its antibacterial activity. European Food Research and Technology 245(7): 1487–1498. 10.1007/s00217-019-03276-2