Artificial intelligence-based model for evaluating the inhibition of Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli in kefir matrix
Main Article Content
Keywords
Listeria monocytogenes; Staphylococcus aureus; Escherichia coli; kefir; probiotic; lactic acid bacteria
Abstract
The present study aimed to inhibit the activity of some foodborne pathogens by probiotic lactic acid bacteria (LAB) in kefir. The antimicrobial effect of probiotic LAB was evaluated by using Artificial Intelligence (AI)-based models, Artificial Neural Network (ANN), and Adaptive Network-based Fuzzy Inference System (ANFIS). The experiment was performed on fermentation day 0, 1, and 2, and storage day 1, 3, 7, and 10 of kefir. The average inhibition results obtained for Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli at the training stage were 2.4 log10 CFU/g, 2.0 log10 CFU/g, and 2.4 log10 CFU/g in Artificial Neural Network, respectively, and 2.33 log10 CFU/g, 2.04 log10 CFU/g, and 2.03 log10 CFU/g in Adaptive Network-based Fuzzy Inference System, respectively. The average result obtained in the case of tested LAB was 4.9 log10 CFU/g, 4.8 log10 CFU/g, and 4.9 log10 CFU/g, respectively, in Artificial Neural Network in each organism; while similar result was observed in Adaptive Network-based Fuzzy Inference System. The results indicate that the activity of all targeted foodborne pathogens was reduced during fermentation and storage days by the potential probiotic LAB present in kefir. Based on the experiment, it was concluded that the activity of foodborne pathogens can be inhibited by probiotic LAB in kefir. In addition, it was suggested that probiotic bacteria in kefir are promising bio-controlling agents that can be used in the food industry.
References
Abouloifa, H., Gaamouche, S., Idrissi Yahyaoui, M., Moumnassi, S., Hasnaoui, I., Bellaouchi, R. and Asehraou, A., 2023. The efficiency of Lactiplantibacillus plantarum S61 strain as protective cultures in ground beef against foodborne pathogen Escherichia coli. World Journal of Microbiology and Biotechnology 39(12): 327. https://doi.org/10.1007/s11274-023-03763-5
Ağagündüz, D., Şahin, T.Ö., Ayten, Ş., Yılmaz, B., Güneşliol, B.E., Russo, P. and Özogul, F., 2022. Lactic acid bacteria as pro-technological, bioprotective and health-promoting cultures in the dairy food industry. Food Bioscience 47: 101617. https://doi.org/10.1016/j.fbio.2022.101617
Angelidis, A.S., Komodromos, D., Giannakou, R., Arsenos, G., Gelasakis, A.I., Kyritsi, M. and Sergelidis, D., 2020. Isolation and characterization of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) from milk of dairy goats under low-input farm management in Greece. Veterinary Microbiology 247: 108749. https://doi.org/10.1016/j.vetmic.2020.108749
Anokyewaa, M.A., Amoah, K., Li, Y., Lu, Y., Kuebutornye, F.K., Asiedu, B. and Seidu, I., 2021. Prevalence of virulence genes and antibiotic susceptibility of Bacillus used in commercial aquaculture probiotics in China. Aquaculture Reports 21: 100784. https://doi.org/10.1016/j.aqrep.2021.100784
Behbahani, B.A., Noshad, M. and Falah, F., 2019. Inhibition of Escherichia coli adhesion to human intestinal Caco-2 cells by probiotic candidate Lactobacillus plantarum strain L15. Microbial Pathogenesis 136: 103677. https://doi.org/10.1016/j.micpath.2019.103677
Chen, Y., Chen, M., Wang, J., Wu, Q., Cheng, J., Zhang, J. and Kou, X., 2020. Heterogeneity, characteristics, and public health implications of Listeria monocytogenes in ready-to-eat foods and pasteurized milk in China. Frontiers in Microbiology 11: 642. https://doi.org/10.3389/fmicb.2020.00642
Choi, H., Hwang, B.K., Kim, B.S. and Choi, S.H., 2020. Influence of pathogen contamination on beef microbiota under different storage temperatures. Food Research International 132: 109118. https://doi.org/10.1016/j.foodres.2020.109118
Choi, S.J., Yang, S.Y. and Yoon, K.S., 2021. Lactic acid bacteria starter in combination with sodium chloride controls pathogenic Escherichia coli (EPEC, ETEC, and EHEC) in kimchi. Food Microbiology 100: 103868. https://doi.org/10.1016/j.fm.2021.103868
Colombo, M., Castilho, N.P., Todorov, S.D. and Nero, L.A., 2018. Beneficial properties of lactic acid bacteria naturally present in dairy production. BMC Microbiology 18(1): Article No. 219. https://doi.org/10.1186/s12866-018-1356-8
Cufaoglu, G., Ambarcioglu, P. and Ayaz, N.D., 2021. Meta-analysis of the prevalence of Listeria spp. and antibiotic resistant L. monocytogenes isolates from foods in Turkey. Lebensmittel-Wissenschaft & Technologie (LWT) 144: 111210. https://doi.org/10.1016/j.lwt.2021.111210
Darvishi, N., Fard, N.A. and Sadrnia, M., 2021. Genomic and proteomic comparisons of bacteriocins in probiotic species Lactobacillus and Bifidobacterium and inhibitory ability of Escherichia coli MG 1655. Biotechnology Reports 31: e00654. https://doi.org/10.1016/j.btre.2021.e00654
de Amorim Trindade, D.P., Barbosa, J.P., Martins, E.M.F. and Tette, P.A.S., 2022. Isolation and identification of lactic acid bacteria in fruit processing residues Fromm te Brazilian Cerrado and its probiotic potential. Food Bioscience 48: 101739. https://doi.org/10.1016/j.fbio.2022.101739
Deng, F., Chen, Y., Sun, T., Wu, Y., Su, Y., Liu, C. and Wen, J., 2021. Antimicrobial resistance, virulence characteristics and genotypes of Bacillus spp. from probiotic products of diverse origins. Food Research International 139: 109949. https://doi.org/10.1016/j.foodres.2020.109949
Dimitreli, G. and Antoniou, K.D., 2011. Effect of incubation temperature and caseinates on the rheological behaviour of Kefir. Procedia Food Science 1: 583–588. https://doi.org/10.1016/j.profoo.2011.09.088
Duze, S.T., Marimani, M. and Patel, M., 2021. Tolerance of Listeria monocytogenes to biocides used in food processing environments. Food Microbiology 97: 103758. https://doi.org/10.1016/j.fm.2021.103758
El Hag, M.M., El Zubeir, I.E.M. and Mustafa, N.E., 2021. Prevalence of Listeria species in dairy farms in Khartoum State (Sudan). Food Control 123: 107699. https://doi.org/10.1016/j.foodcont.2020.107699
Esfandiari, Z., Vakili, B., Ahangarzadeh, S., Esfahani, S.N. and Shoaei, P., 2024. Impact of selenium nanoparticle-enriched Lactobacilli feeding against Escherichia coli O157: H7 infection of BALB/c mice. Probiotics and Antimicrobial Proteins 16: 784–795. https://doi.org/10.1007.s12602-023-10081-7
Fagerlund, A., Langsrud, S. and Møretrø, T., 2020. Microbial diversity and ecology of biofilms in food industry environments associated with Listeria monocytogenes persistence. Current Opinion in Food Science 38: 171–178. https://doi.org/10.1016/j.cofs.2020.10.015
Farha, A.K., Yang, Q.Q., Kim, G., Zhang, D., Mavumengwana, V., Habimana, O. and Gan, R.Y., 2020. Inhibition of multidrug-resistant foodborne Staphylococcus aureus biofilms by a natural terpenoid (+)-nootkatone and related molecular mechanism. Food Control 112: 107154. https://doi.org/10.1016/j.foodcont.2020.107154
Flora, M., Perrotta, F., Nicolai, A., Maffucci, R., Pratillo, A., Mollica, M. and Calabrese, C., 2019. Staphylococcus aureus in chronic airway diseases: an overview. Respiratory Medicine 155: 66–71. https://doi.org/10.1016/j.rmed.2019.07.008
Folliero, V., Lama, S., Franci, G., Giugliano, R., D'Auria, G., Ferranti, P and Stiuso, P., 2022. Casein-derived peptides Fromm te dairy product kashk exhibit wound healing properties and antibacterial activity against Staphylococcus aureus: structural and functional characterization. Food Research International 153: 110949. https://doi.org/10.1016/j.foodres.2022.110949
Gökmen, G.G., Kowalik, J. and Kışla, D., 2022. Survival of some food-borne bacteria in kefir produced by microbial levan and pullulan. Food Bioscience 47: 101675. https://doi.org/10.1016/j.fbio.2022.101675
González-Orozco, B.D., García-Cano, I., Jiménez-Flores, R. and Alvárez, V.B., 2022. Invited review: milk kefir microbiota-direct and indirect antimicrobial effects. Journal of Dairy Science 105: 2021–21382. https://doi.org/10.3168/jds.2021-21382
Gu, T., Luo, Y., Jia, Z., Meesrison, A., Lin, S., Ventresca, I.J. and Zhang, B., 2024. Surface topography and chemistry of food contact substances, and microbial nutrition affect pathogen persistence and symbiosis in cocktail Listeria monocytogenes biofilms. Food Control 161: 110391. https://doi.org/10.1016/j.foodcont.2024.110391
Gut, A.M., Vasiljevic, T., Yeager, T. and Donkor, O.N., 2022. Anti-salmonella properties of kefir yeast isolates: an in vitro screening for potential infection control. Saudi Journal of Biological Sciences 29(1): 550–563.
Hansen, L.H.B., Nielsen, B., Boll, E.J., Skjøt-Rasmussen, L., Wellejus, A., Jørgensen, L. and Canibe, N., 2021. Functional in vitro screening of probiotic strains for inoculation of piglets as a prophylactic measure towards enterotoxigenic Escherichia coli infection. Journal of Microbiological Methods 180: 106126. https://doi.org/10.1016/j.mimet.2020.106126
Hojjati, M., Behabahani, B.A. and Falah, F., 2020. Aggregation, adherence, anti-adhesion and antagonistic activity properties relating to surface charge of probiotic Lactobacillus brevis gp104 against Staphylococcus aureus. Microbial Pathogenesis 147: 104420. https://doi.org/10.1016/j.micpath.2020.104420
Hossain, M.I., Mizan, M.F.R., Ashrafudoulla, M., Nahar, S., Joo, H.J., Jahid, I.K. and Ha, S.D., 2020. Inhibitory effects of probiotic potential lactic acid bacteria isolated from kimchi against Listeria monocytogenes biofilm on lettuce, stainless steel surfaces, and MBEC™ biofilm device. Lebensmittel-Wissenschaft & Technologie (LWT) 118: 108864. https://doi.org/10.1016/j.lwt.2019.108864
Jara, J., Pérez-Ramos, A., Del Solar, G., Rodríguez, J.M., Fernández, L. and Orgaz, B., 2020. Role of lactobacillus biofilms in Listeria monocytogenes adhesion to glass surfaces. International Journal of Food Microbiology 334: 108804. https://doi.org/10.1016/j.ijfoodmicro.2020.108804
Jiang, X., Ren, S., Geng, Y., Jiang, C., Liu, G., Wang, H. and Liang, Y., 2021. Role of te VirSR-VirAB system in biofilm formation of Listeria monocytogenes EGD-e. Food Research International 145: 110394. https://doi.org/10.1016/j.foodres.2021.110394
Jiang, Y.H., Xin, W.G., Yang, L.Y., Ying, J.P., Zhao, Z.S., Lin, L.B., ... and Zhang, Q.L., 2022. A novel bacteriocin against Staphylococcus aureus Fromm Lactobacillus paracasei isolated Fromm Yunnan traditional fermented yogurt: purification, antibacterial characterization, and antibiofilm activity. Journal of Dairy Science 105(3): 2094–2107. https://doi.org/10.3168/jds.2021-21126
John, S.M. and S. Deeseenthum., 2015. Properties and benefits of kefir—a review. Songklanakarin Journal of Science and Technology (SJST) 37: 275–282.
Kallipolitis, B., Gahan, C.G. and Piveteau, P., 2020. Factors contributing to Listeria monocytogenes transmission and impact on food safety. Current Opinion in Food Science 36: 9–17. https://doi.org/10.1016/j.cofs.2020.09.009
Kamal, R.M., Alnakip, M.E., Abd El Aal, S.F. and Bayoumi, M.A., 2018. Bio-controlling capability of probiotic strain Lactobacillus rhamnosus against some common foodborne pathogens in yoghurt. International Dairy Journal 85: 1–7. https://doi.org/10.1016/j.idairyj.2018.04.007
Kannan, S., Balakrishnan, J. and Govindasamy, A., 2020. Listeria monocytogens-amended understanding of its pathogenesis with a complete picture of its membrane vesicles, quorum sensing, biofilm and invasion. Microbial Pathogenesis 149: 104575. https://doi.org/10.1016/j.micpath.2020.104575
Kaya, H.I. and Simsek, O., 2019. Characterization of pathogen-specific bacteriocins from lactic acid bacteria and their application within cocktail against pathogens in milk. Lebensmittel-Wissenschaft & Technologie (LWT) 115: 108464. https://doi.org/10.1016/j.lwt.2019.108464
Keba, A., Rolon, M.L., Tamene, A., Dessie, K., Vipham, J., Kovac, J. and Zewdu, A., 2020. Review of the prevalence of foodborne pathogens in milk and dairy products in Ethiopia. International Dairy Journal 109: 104762. https://doi.org/10.1016/j.idairyj.2020.104762
Kefyalew, B.C., Ulusoy, B.H., Metekia, W.A. and Kaya Yıldırım, F., 2021. In vitro probiotic and industrial properties of bacteria isolated from fermented food products. International Food Research Journal, 28(4): 638–653. https://doi.org/10.47836/ifrj.28.4.01
Khaneghah, A.M., Abhari, K., Eş, I., Soares, M.B., Oliveira, R.B., Hosseini, H. and Sant’Ana, A.S., 2020. Interactions between probiotics and pathogenic microorganisms in hosts and foods: a review. Trends in Food Science and Technology 95: 205–218. https://doi.org/10.1016/j.tifs.2019.11.022
Kim, J.A., Bayo, J., Cha, J., Choi, Y.J., Jung, M.Y., Kim, D.H. and Kim, Y., 2019. Investigating the probiotic characteristics of four microbial strains with potential application in the feed industry. PLoS ONE, 14(6): e0218922. https://doi.org/10.1371/journal.pone.0218922
Klimko, A.I., Cherdyntseva, T.A., Brioukhanov, A.L. and Netrusov, A.I., 2020. In vitro evaluation of probiotic potential of selected lactic acid bacteria strains. Probiotics and Antimicrobial Proteins 12(3): 1139–1148. https://doi.org/10.1007/s12602-019-09599-6
Kouhi, F., Mirzaei, H., Nami, Y., Khandaghi, J. and Javadi, A., 2022. Potential probiotic and safety characterisation of Enterococcus bacteria isolated from indigenous fermented Motal cheese. International Dairy Journal 126: 105247. https://doi.org/10.1016/j.idairyj.2021.105247
Lim, J.Y., Lee, C.L., Kim, G.H., Bang, Y.J., Rhim, J.W. and Yoon, K.S., 2020. Using lactic acid bacteria and packaging with grapefruit seed extract for controlling Listeria monocytogenes growth in fresh soft cheese. Journal of Dairy Science 103(10): 8761–8770. https://doi.org/10.3168/jds.2020-18349
Ly, V., Parreira, V.R. and Farber, J.M., 2019. Current understanding and perspectives on Listeria monocytogenes in low-moisture foods. Current Opinion in Food Science 26: 18–24. https://doi.org/10.1016/j.cofs.2019.02.012
Martín, I., Rodríguez, A., Alía, A., Martínez-Blanco, M., Lozano-Ojalvo, D. and Córdoba, J.J., 2022. Control of Listeria monocytogenes growth and virulence in a traditional soft cheese model system based on lactic acid bacteria and a whey protein hydrolysate with antimicrobial activity. International Journal of Food Microbiology 361: 109444. https://doi.org/10.1016/j.ijfoodmicro.2021.109444
Mkadem, W., Belguith, K., Oussaief, O., ElHatmi, H., Indio, V., Savini, F. and Boudhrioua, N., 2023. Systematic approach to select lactic acid bacteria from spontaneously fermented milk able to fight Listeria monocytogenes and Staphylococcus aureus. Food Bioscience 51: 102275. https://doi.org/10.1016/j.fbio.2022.102275
Morandi, S., Silvetti, T., Vezzini, V., Morozzo, E. and Brasca, M., 2020. How we can improve the antimicrobial performances of lactic acid bacteria? A new strategy to control Listeria monocytogenes in Gorgonzola cheese. Food Microbiology 90: 103488. https://doi.org/10.1016/j.fm.2020.103488
Mulaw, G., Tessema, T.S., Muleta, D. and Tesfaye, A., 2019. In vitro evaluation of probiotic properties of lactic acid bacteria isolated from some traditionally fermented Ethiopian food products. International Journal of Microbiology 2019: 7179514. https://doi.org/10.1155/2019/7179514
Muñoz, N., Sonar, C.R., Bhunia, K., Tang, J., Barbosa-Cánovas, G.V. and Sablani, S.S., 2019. Use of protective culture to control the growth of Listeria monocytogenes and Salmonella typhimurium in ready-to-eat cook-chill products. Food Control 102: 81–86. https://doi.org/10.1016/j.foodcont.2019.03.009
Nataraj, B.H., Ramesh, C. and Mallappa, R.H., 2021. Characterization of biosurfactants derived from probiotic lactic acid bacteria against methicillin-resistant and sensitive Staphylococcus aureus isolates. Lebensmittel-Wissenschaft & Technologie (LWT) 151: 112195. https://doi.org/10.1016/j.lwt.2021.112195
Niaz, T., Shabbir, S., Noor, T. and Imran, M., 2019. Antimicrobial and antibiofilm potential of bacteriocin loaded nano-vesicles functionalized with rhamnolipids against foodborne pathogens. Lebensmittel-Wissenschaft & Technologie (LWT) 116: 108583. https://doi.org/10.1016/j.lwt.2019.108583
Olaimat, A.N., Ghoush, M.A., Al-Holy, M., Hilal, H.A., Al-Nabulsi, A.A., Osaili, T.M. and Holley, R.A., 2021. Survival and growth of Listeria monocytogenes and Staphylococcus aureus in ready-to-eat Mediterranean vegetable salads: impact of storage temperature and food matrix. International Journal of Food Microbiology 346: 109149. https://doi.org/10.1016/j.ijfoodmicro.2021.109149
Özkan, E.R., Demirci, T. and Akın, N., 2021. In vitro assessment of probiotic and virulence potential of Enterococcus faecium strains derived from artisanal goatskin casing Tulum cheeses produced in central Taurus Mountains of Turkey. Lebensmittel-Wissenschaft & Technologie (LWT) 141: 110908. https://doi.org/10.1016/j.lwt.2021.110908
Paongphan, P., Ditudompo, S., Vitheejongjaroen, P., Pachekrepapol, U. and Taweechotipatr, M. 2023. Selected lactobacilli isolated from Thai foods for production of fermented dairy products with cholesterol lowering potential. NFS Journal 33: 100151. https://doi.org/10.1016/j.nfs.2023.100151
Prezzi, L.E., Lee, S.H., Nunes, V.M., Corassin, C.H., Pimentel, T.C., Rocha, R.S. and Oliveira, C.A., 2020. Effect of Lactobacillus rhamnosus on growth of Listeria monocytogenes and Staphylococcus aureus in a probiotic Minas Frescal cheese. Food Microbiology 92: 103557. https://doi.org/10.1016/j.fm.2020.103557
Rajabi, S., Darban, D., Tabatabaei, R.R. and Hosseini, F., 2020. Antimicrobial effect of spore-forming probiotics Bacillus laterosporus and Bacillus megaterium against Listeria monocytogenes. Archives of Microbiology 202(10): 2791–2797. https://doi.org/10.1007/s00203-020-02004-9
Ranjbar, R. and Halaji, M., 2018. Epidemiology of Listeria monocytogenes prevalence in foods, animals and human origin from Iran: a systematic review and meta-analysis. BMC Public Health 18(1): 1–12. https://doi.org/10.1186/s12889-018-5966-8
Rivas-Macho, A., Eletxigerra, U., Diez-Ahedo, R., Merino, S., Goñi-de-Cerio, F. and Olabarria, G., 2024. LAMP-based electrochemical sensor for extraction-free detection of Listeria monocytogenes in food samples. Food Control 163(11): 110546. https://doi.org/10.1016/j.foodcont.2024.110546
Rodríguez-Sánchez, S., Ramos, I.M., Rodríguez-Pérez, M., Poveda, J.M., Seseña, S. and Palop, M.L., 2022. Lactic acid bacteria as biocontrol agents to reduce Staphylococcus aureus growth, enterotoxin production and virulence gene expression. Lebensmittel-Wissenschaft & Technologie (LWT) 170: 114025. https://doi.org/10.1016/j.lwt.2022.114025
Roldán-Pérez, S., Rodríguez, S.L.G., Sepúlveda-Valencia, J.U., Villadiego, O.S.R., Fernández, M.E.M., Campuzano, O.I.M. and Durango-Zuleta, M.M., 2023. Assessment of probiotic properties of lactic acid bacteria isolated from an artisanal Colombian cheese. Heliyon 9(11): e21558. https://doi.org/10.1016/j.heliyon.2023.e21558
Rosario, A.I., Castro, V.S., Santos, L.F., Lisboa, R.C., Vallim, D.C., Silva, M.C. and Costa, M.P., 2021. Shiga toxin-producing Escherichia coli isolated from pasteurized dairy products from Bahia, Brazil. Journal of Dairy Science 104(6): 6535–6547. https://doi.org/10.3168/jds.2020-19511
Rosengren, Å., Fabricius, A., Guss, B., Sylvén, S. and Lindqvist, R., 2010. Occurrence of foodborne pathogens and characterization of Staphylococcus aureus in cheese produced on farm dairies. International Journal of Food Microbiology 144(2): 263–269. https://doi.org/10.1016/j.ijfoodmicro.2010.10.004
Rosa, D.D., Dias, M.M.S., Grześkowiak, Ł.M., Reis, S.A., Conceição, L.L. and Peluzio, M.D.C.G., 2017. Milk kefir: nutritional, microbiological and health benefits. Nutrition Research Reviews 30: 82–96. https: //doi.org/10.1017/S0954422416000275
Rubab, M., Shahbaz, H.M., Olaimat, A.N. and Oh, D.H., 2018. Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosensors and Bioelectronics 105: 49–57. https://doi.org/10.1016/j.bios.2018.01.023
Selover, B., Johnson, J. and Waite-Cusic, J.G., 2021. Population dynamics of coliforms in a commercial Cheddar cheese production facility. Journal of Dairy Science 104(7): 7480–7488. https://doi.org/10.3168/jds.2020-19808
Shahverdi, S., Barzegari, A.A., Bakhshayesh, R.V. and Nami, Y., 2023. In vitro and in vivo antibacterial activity of potential probiotic Lactobacillus paracasei against Staphylococcus aureus and Escherichia coli. Heliyon 9(4): e14641. https://doi.org/10.1016/j.heliyon.2023.e14641
Soares, M.B., Almada, C.N., Pereira, E.P., Ferreira, B.M., Balthazar, C.F., Khorshidian, N. and Sant’Ana, A.S., 2023. Sporeforming probiotic bacteria: characteristics, health benefits, and technological aspects for their applications in foods and beverages. Trends in Food Science & Technology 138: 453–469. https://doi.org/10.1016/j.tifs.2023.06.029
Steinbrecher, M., Wolfert, C., Maurer, C., Messmann, H., Shiban, E., Sommer, B. and Fuchs, A., 2023. Cerebral abscess due to Listeria monocytogenes infection in silent diabetes mellitus: case presentation, treatment and patient outcome. ID Cases 33: e01864. https://doi.org/10.1016/j.idcr.2023.e01864
Tarique, M., Abdalla, A., Masad, R., Al-Sbiei, A., Kizhakkayil, J., Osaili, T., ... and Ayyash, M., 2022. Potential probiotics and postbiotic characteristics including immunomodulatory effects of lactic acid bacteria isolated from traditional yogurt-like products. Lebensmittel-Wissenschaft & Technologie (LWT) 159: 113207. https://doi.org/10.1016/j.lwt.2022.113207
Taylor, M.H. and Zhu, M.J., 2021. Control of Listeria monocytogenes in low-moisture foods. Trends in Food Science & Technology, 116: 802–814. https://doi.org/10.1016/j.tifs.2021.07.019
Titouche, Y., Hakem, A., Houali, K., Meheut, T., Vingadassalon, N., Ruiz-Ripa, L. and Auvray, F., 2019. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) ST8 in raw milk and traditional dairy products in te Tizi Ouzou area of Algeria. Journal of Dairy Science 102(8): 6876–6884. https://doi.org/10.3168/jds.2018-16208
Ulusoy, B.H., Çolak, H. Hampikyan, H. and Erkan, M.E., 2007. An in vitro study on the antibacterial effect of kefir against some foodborne pathogens. Turkish Society of Microbiology 37:103–107.
Vahdat, F., Mehdizadeh, T., Kazemeini, H., Reale, A. and Kaboudari, A., 2024. Physicochemical, microbial, and sensory characteristics of yogurt with Persian shallot (Allium B Boiss) and probiotic bacteria. Food Science & Nutrition Corpus ID: 267693677. https://doi.org/10.1002/fsn3.4036
Wang, Y., Li, A., Zhang, L., Waqas, M., Mehmood, K., Iqbal, M. and Li, J., 2019. Probiotic potential of Lactobacillus on the intestinal microflora against Escherichia coli induced mice model through high-throughput sequencing. Microbial Pathogenesis 137: 103760. https://doi.org/10.1016/j.micpath.2019.103760
Wang, H., Ma, K., Shen, J., Fang, M., Pei, H., Li, Y. and Xue, T., 2023. Genes associated with desiccation stress in foodborne Staphylococcus aureus as revealed by transposon insertion mutagenesis. Food Research International 163: 112271. https://doi.org/10.1016/j.foodres.2022.112271
Wu, M., Dong, Q., Ma, Y., Yang, S., Aslam, M.Z., Liu, Y. and Li, Z., 2022. Potential antimicrobial activities of probiotics and their derivatives against Listeria monocytogenes in food field: a review. Food Research International 160: 111733. https://doi.org/10.1016/j.foodres.2022.111733
Yan, X., Gu, S., Cui, X., Shi, Y., Wen, S., Chen, H. and Ge, J., 2019. Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated Fromm Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microbial Pathogenesis 127: 12–20. https://doi.org/10.1016/j.micpath.2018.11.039
Yang, Q., Chen, J., Dai, J., He, Y., Wei, K., Gong, M. and Yang, B., 2024a. Total coliforms, microbial diversity and multiple characteristics of Salmonella in soil-irrigation water-fresh vegetable system in Shaanxi, China. Science of te Total Environment 924: 171657. https://doi.org/10.1016/j.scitotenv.2024.171657
Yang, X., Peng, Z., He, M., Li, Z., Fu, G., Li, S. and Zhang, J., 2024b. Screening, probiotic properties, and inhibition mechanism of a Lactobacillus antagonistic to Listeria monocytogenes. Science of The Total Environment 906: 167587. https://doi.org/10.1016/j.scitotenv.2023.167587
Yilmaz, B., Sharma, H., Melekoglu, E. and Ozogul, F., 2022. Recent developments in dairy kefir-derived lactic acid bacteria and their health benefits. Food Bioscience 46: 101592. https://doi.org/10.1016/j.fbio.2022.101592
Zhao, Y., Xia, D., Ma, P., Gao, X., Kang, W. and Wei, J., 2020. Advances in the detection of virulence genes of Staphylococcus aureus originate from food. Food Science and Human Wellness 9(1): 40–44. https://doi.org/10.1016/j.fshw.2019.12.004
Zhao, X., Yuan, X., Hu, M., Zhang, Y., Li, L., Zhang, Q. and Liu, Y., 2021. Prevalence and characterization of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus isolated Fromm bulk tank milk in Shandong dairy farms. Food Control 125: 107836. https://doi.org/10.1016/j.foodcont.2020.107836