A comprehensive review: Advancements in nanomaterials on the risk prevention, detection, and elimination of mycotoxin contamination
Main Article Content
Keywords
mycotoxin types, mycotoxin detection, nanomaterials, mycotoxin control, mycotoxin risk elimination
Abstract
Mycotoxins are poison that filamentous fungi generate under specific conditions. Mycotoxins in food and feed have a detrimental effect on both human and animal health, resulting in significant financial losses for agriculture sector. Despite the continuing advancement of traditional approaches, modern research trends favor novel alternatives. Therefore, it is crucial to prevent mycotoxin contamination, which has raised concerns around the globe. Recent advancements in the management of mycotoxin contamination have been possible by the application of promising new nanomaterials. Mycotoxins have negative impacts on human health, but nanotechnology methods appear to be viable, efficient, and affordable solutions. This review elucidates information on the incidence and toxicology of mycotoxins. Nanotechnology’s potential for removal of mycotoxins is mentioned briefly. Then, attention is directed on using newly developed nanomaterials to regulate mycotoxin contamination, such as testing, production, inhibition, adsorption, and removal of mycotoxins. The issues regarding the toxicity, incidence, and management of mycotoxins are tentatively presented along with potential prospects for using nanotechnology to remove mycotoxins from food and feed.
References
Abdel-Hadi, A. M., Awad, M. F., Abo-Dahab, N. F., & ElKady, M. F. (2014). Extracellular synthesis of silver nanoparticles by Aspergillus terreus: biosynthesis, characterization and biological activity. Biosci. Biotechnol. Res. Asia, 11(3), 1179–1186.10.13005/bbra/1503
Abdel-Hafez, S. I., Nafady, N. A., Abdel-Rahim, I. R., Shaltout, A. M., Daròs, J. A., & Mohamed, M. A. (2016). Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech, 6, 1–12. 10.1007/s13205-016-0515-6
Abd-Elsalam, K.A., Hashim, A.F., Alghuthaymi, M.A., and Said-Galiev, E., 2017. Nanobiotechnological strategies for toxigenic fungi and mycotoxin control. In: Food preservation. Alexandru Mihai Grumezescu (Ed.), Elsevier, Amsterdam, the Netherlands, pp. 337–364. 10.1016/B978-0-12-804303-5.00010-9
Adelere, I.A., and Lateef, A., 2016. A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotechnology Reviews 5 : 567–587. 10.1515/ntrev-2016-0024
Adunphatcharaphon, S., Elliott, C.T., Sooksimuang, T., Charlermroj, R., Petchkongkaew, A., and Karoonuthaisiri, N., 2022. The evolution of multiplex detection of mycotoxins using immunoassay platform technologies. Journal of Hazardous Materials 432 : 128706. 10.1016/j.jhazmat.2022.128706
Agriopoulou, S., Stamatelopoulou, E., and Varzakas, T., 2020. Advances in occurrence, importance, and mycotoxin control strategies: prevention and detoxification in foods. Foods 9(2): 137. 10.3390/foods9020137
Alberts, J.F., van Zyl, W.H., and Gelderblom, W.C.A., 2016. Biologically based methods for control of fumonisin-producing fusarium species and reduction of the fumonisins. Frontiers in Microbiology 7(548): 548. 10.3389/fmicb.2016.00548
Alhamoud, Y., Yang, D., Fiati Kenston, S.S., Liu, G., Liu, L., Zhou, H., et al., 2019. Advances in biosensors for the detection of ochratoxin A: bioreceptors, nanomaterials, and their applications. Biosensors and Bioelectronics 141 : 111418. 10.1016/j.bios.2019.111418
Alshannaq, A., and Yu, J.-H., 2017. Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health 14(6): 632. 10.3390/ijerph14060632
An, N.N., Shang, N., Zhao, X., Tie, X.Y., Guo, W.B., Li, D., et al., 2024. Occurrence, regulation, and emerging detoxification techniques of aflatoxins in maize: a review. Food Reviews International 40(1): 92 –114. 10.1080/87559129.2022.2158339
Anfossi, L., Giovannoli, C., and Baggiani, C., 2016. Mycotoxin detection. Current Opinion in Biotechnology 37: 120–126. 10.1016/j.copbio.2015.11.005
Aqai, P., Peters, J., Gerssen, A., Haasnoot, W., and Nielen, M.W.F., 2011. Immunomagnetic microbeads for screening with flow cytometry and identification with nano-liquid chromatography mass spectrometry of ochratoxins in wheat and cereal. Analytical and Bioanalytical Chemistry 400 : 3085–3096. 10.1007/s00216-011-4974-7
Ashley, J., Shahbazi, M.-A., Kant, K., Chidambara, V. A., Wolff, A., Bang, D. D., and Sun, Y., 2017. Molecular lyim printed polymers for sample preparation and biosensing in food analysis: progress and perspectives. Biosensors and Bioelectronics 91: 606–615. 10.1016/j.bios.2017.01.018
Aslam, N., Rodrigues, I., McGill, D.M., Warriach, H.M., Cowling, A., Haque, A., and Wynn, P.C., 2016. Transfer of aflatoxins from naturally contaminated feed to milk of Nili-Ravi buffaloes fed a mycotoxin binder. Animal Production Science 56 : 1637–1642. 10.1071/AN14909
Babaei, E., Dehnad, A., Hajizadeh, N., Valizadeh, H., & Reihani, S. F. S. (2016). A study on Inhibitory Effects of Titanium Dioxide Nanoparticles and its Photocatalytic Type on Staphylococcus aureus, Escherichia coli and Aspergillus flavus. Applied Food Biotechnology, 3(2), 115–123. 10.22037/afb.v3i2.10571
Bagheri, N., Khataee, A., Habibi, B., and Hassanzadeh, J., 2018. Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta 179 : 710–718. 10.1016/j.talanta.2017.12.009
Bai, X., Sun, C., Liu, D., Luo, X., Li, D., Wang, J., et al., 2017. Photocatalytic degradation of deoxynivalenol using graphene/ZnO hybrids in aqueous suspension. Applied Catalysis B: Environmental 204: 11–20. 10.1016/j.apcatb.2016.11.010
Bennett, J., 1987. Mycotoxins, mycotoxicoses, mycotoxicology and mycopathologia. Springer, Cham, Switzerland. 10.1007/BF00769561
Ben Taheur, F., Kouidhi, B., Al Qurashi, Y.M.A., Ben Salah-Abbes, J., and Chaieb, K., 2019. Review: biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 160: 12–22. 10.1016/j.toxicon.2019.02.001
Berthiller, F., Brera, C., Iha, M.H., Krska, R., Lattanzio, V.M.T., MacDonald, S., et al., 2017. Developments in mycotoxin analysis: an update for 2015–2016. World Mycotoxin J. 10: 5–29. 10.3920/WMJ2016.2138
Berthiller, F., Crews, C., Dallasta, C., De Saeger, S., Haesaert, G., Karlovsky, P., et al., 2013. Masked mycotoxins: a review. Molecular Nutrition & Food Research 57: 165–18. 10.1002/mnfr.201100764
Berthiller, F., Maragos, C.M., and Dallasta, C., 2016. Introduction to masked mycotoxins. In : Dallasta, C., and Berthiller, F. (eds.) Masked mycotoxins in food: formation, occurrence and toxicological relevance, vol. 24. Royal Society of Chemistry, London, pp. 1–13. 10.1039/9781782622574-00001
Beyki, M., Zhaveh, S., Khalili, S. T., Rahmani-Cherati, T., Abollahi, A., Bayat, M., et al., 2014. Encapsulation of Mentha piperita essential oils in chitosan-cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial Crops and Products 54: 310–319. 10.1016/j.indcrop.2014.01.033
Bhatnagar, D., Yu, J., and Ehrlich, K.C., 2002. Toxins of filamentous fungi. Chemical Immunology 81: 167–206. 10.1159/000058867
Brown, K.A., Mays, T., Romoser, A., Marroquin-Cardona, A., Mitchell, N.J., Elmore, S.E., and Phillips, T.D., 2014. Modified hydra bioassay to evaluate the toxicity of multiple mycotoxins and predict the detoxification efficacy of a clay-based sorbent. Journal of Applied Toxicology 34: 40–48. 10.1002/jat.2824
Bu, T., Yao, X., Huang, L., Dou, L., Zhao, B., Yang, B., et al., 2020. Dual recognition strategy and magnetic enrichment based lateral flow assay toward Salmonella enteritidis detection. Talanta 206: 120204. 10.1016/j.talanta.2019.120204
Bulbul, G., Hayat, A., and Andreescu, S., 2015. A generic amplification strategy for electrochemical aptasensors using a non-enzymatic nanoceria tag. Nanoscale 7(31): 13230–13238. 10.1039/C5NR02628H
Capriotti, A.L., Cavaliere, C., La Barbera, G., Montone, C.M., Piovesana, S., and Lagana A., 2019. Recent applications of magnetic solid-phase extraction for sample preparation. Chromatographia 82: 1251–1274. 10.1007/s10337-019-03721-0
Castelo, M.M., Sumner, S.S., and Bullerman, L.B., 1998. Stability of fumonisins in thermally processed corn products. Journal of Food Protection 61(8): 1030–1033. 10.4315/0362-028X-61.8.1030
Chatterjee, B., Das, S.J., Anand, A., and Sharma, T.K., 2020. Nanozymes and aptamer-based biosensing. Materials Science for Energy Technologies, 3: 127–135. 10.1016/j.mset.2019.08.007
Chauhan, R., Singh, J., Sachdev, T., Basu, T., and Malhotra, B. 2016. Recent advances in mycotoxins detection. Biosensors and Bioelectronics 81: 532–545. 10.1016/j.bios.2016.03.004
Cheat, S., and Oswald, I.P., 2016. Kolf-clauw, M. mycotoxin outbreak in animal feed. CRC Press-Taylor & Francis, Boca Raton, FL, pp. 257–286.
Chen, C., Yu, X., Han, D., Ai, J., Ke, Y., Wang, Z., and Meng, G. 2020. Non-CTAB synthesized gold nanorods-based immunochromatographic assay for dual color and on-site detection of aflatoxins and zearalenones in maize. Food Control 118: 107418. 10.1016/j.foodcont.2020.107418
Cieplak, M., and Kutner, W., 2016. Artificial biosensors: how can molecular imprinting mimic biorecognition? Trends in Biotechnology 34(11): 922–941. 10.1016/j.tibtech.2016.05.011
Cortinovis, C., Pizzo, F., Spicer, L.J., and Caloni, F., 2013. Fusarium mycotoxins: effects on reproductive function in domestic animals—a review. Theriogenology 80: 557–564. 10.1016/j.theriogenology.2013.06.018
Cunha, S.C., Sa, S.V.M., and Fernandes, J.O., 2018. Multiple mycotoxin analysis in nut products: occurrence and risk characterization. Food and Chemical Toxicology 114: 260–269. 10.1016/j.fct.2018.02.039
Dallasta, C., Berthiller, F., Adam, G., Maragos, C., Suman, M., Jestoi, M., et al., 2015. Masked mycotoxins in food: Formation, occurrence and toxicological relevance. Royal Society of Chemistry, London.
Dal Pozzo, M., Viegas, J., Kozloski, G.V., Stefanello, C.M., da Silveira, A.M., Bayer, C., and Santurio, J.M., 2016. The effect of mycotoxins adsorbents beta glucans or montmorillonite on bovine ruminal fermentation in vitro. Acta Scientiae Veterinariae. 44: 6. 10.22456/1679-9216.80851
Dananjaya, S.H.S., Erandani, W., Kim, C.H., Nikapitiya, C., Lee, J., and De Zoysa, M., 2017. Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex. International Journal of Biological Macromolecules 105: 478–488. 10.1016/j.ijbiomac.2017.07.056
Da Silva, J.L., Oreste, E.Q., Dias, D., and Garda-Buffon, J., 2023. Electrochemistry applied to mycotoxin determination in food and beverages. Food Analytical Methods 16(3): 541–566. 10.1007/s12161-022-02434-9
De Girolamo, A., Ciasca, B., Pascale, M., and Lattanzio, V.M., 2020. Determination of zearalenone and trichothecenes, including deoxynivalenol and its acetylated derivatives, nivalenol, T-2 and HT-2 toxins in wheat and wheat products by LC-MS/MS: a collaborative study. Toxins 12: 786. 10.3390/toxins12120786
Dellafiora, L., Dall’Asta, C., & Galaverna, G. (2018). Toxicodynamics of mycotoxins in the framework of food risk assessment—an in silico perspective. Toxins, 10(2), 52. 10.3390/toxins10020052
Dellorto, V., Baldi, G., and Cheli, F., 2015. Mycotoxins in silage: checkpoints for effective management and control. World Mycotoxin Journal 8: 603–617. 10.3920/WMJ2014.1866
Ding, L., Han, M., Wang, X., and Guo, Y. 2023. Ochratoxin A: overview of prevention, removal, and detoxification methods. Toxins 15(9): 565. 10.3390/toxins15090565
Dong, M., Si, W., Wang, W., Bai, B., Nie, D., Song, W., et al., 2016. Determination of type A trichothecenes in coix seed by magnetic solid-phase extraction based on magnetic multi-walled carbon nanotubes coupled with ultra-high performance liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry 408(24): 6823–6831. 10.1007/s00216-016-9809-0
Douanla, M.M.N., 2019. Photocatalytic disinfection of patulin using titania in apple juice. Cape Peninsula University of Technology, Cape Town, South Africa.
Durmus, Z., Zengin Kurt, B., Gazioglu, I., Sevgi, E., and Kizilarslan Hancer, C., 2020. Spectrofluorimetric determination of aflatoxin B1 in winter herbal teas via magnetic solid phase extraction method by using metal-organic framework (MOF) hybrid structures anchored with magnetic nanoparticles. Applied Organometallic Chemistry 34(3): e5375. 10.1002/aoc.5375
Edite Bezerra da Rocha, M., Freire, F.D.C.O., Erlan Feitosa Maia, F., Izabel Florindo Guedes, M., and Rondina, D., 2014. Mycotoxins and their effects on human and animal health. Food Control 36(1): 159–165. 10.1016/j.foodcont.2013.08.021
Edwards, S.G., 2004. Influence of agricultural practices on fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicology Letters 153: 29–35. 10.1016/j.toxlet.2004.04.022
El Golli Bennour, E., Bouaziz, C., Ladjimi, M., Renaud, F., and Bacha, H., 2009. Comparative mechanisms of zearalenone and ochratoxin A toxicities on cultured HepG2 cells: is oxidative stress a common process? Environmental Toxicology: An International Journal 24(6): 538–548. 10.1002/tox.20449
Enyiukwu, D., Awurum, A., and Nwaneri, J., 2014. Mycotoxins in stored agricultural products: implications to food safety and health and prospects of plant-derived pesticides as novel approach to their management. Greener Journal of Microbiology and Antimicrobials 2(3): 32–48. 10.15580/GJMA.2014.3.0521014241
Esan, O.O., Okanlawon, A.A., Ogunro, B.N., Abiola, J.O., Olaogun, S.C., and Aliyu, V.A. 2024. Seasonal variation of mycotoxin levels in poultry feeds and feed ingredients in Oyo State, Nigeria. Mycotoxin Research 40(2): 319–325. 10.1007/s12550-024-00530-9
Eskola, M., Kos, G., Elliott, C.T., Hajslova, J., Mayar, S., and Krska, R., 2019. Worldwide contamination of food-crops with mycotoxins: validity of the widely cited ‘FAO estimate’ of 25%. Critical Reviews in Food Science and Nutrition 60(16): 2773–2789. 10.1080/10408398.2019.1658570
Fang, L., Zhao, B., Zhang, R., Wu, P., Zhao, D., Chen, J., et al., 2022. Occurrence and exposure assessment of aflatoxins in Zhejiang province, China. Environmental Toxicology and Pharmacology 92: 103847. 10.1016/j.etap.2022.103847
Ferin Fathima, A., Jothi Mani, R., Sakthipandi, K., Manimala, K., and Hossain, A., 2020. Enhanced antifungal activity of pure and iron-doped ZnO nanoparticles prepared in the absence of reducing agents. Journal of Inorganic and Organometallic Polymers and Materials, 30: 2397–2405. 10.1007/s10904-019-01400-z
Ferrigo, D., Raiola, A., and Causin, R., 2016. Fusarium toxins in cereals: occurrence, legislation, factors promoting the appearance and their management. Molecules 21(5): 627. 10.3390/molecules21050627
Freire, L., and Santana, A.S., 2018. Modified mycotoxins: an updated review on their formation, detection, occurrence, and toxic effects. Food and Chemical Toxicology 111: 189–205. 10.1016/j.fct.2017.11.021
Gaber, S.E., Hashem, A.H., El-Sayyad, G.S., and Attia, M.S., 2023. Antifungal activity of myco-synthesized bimetallic ZnO-CuO nanoparticles against fungal plant pathogen Fusarium oxysporum. Biomass Conversion and Biorefinery 14(15): 1–15. 10.1007/s13399-023-04550-w
Ganesan, A.R., Mohan, K., Rajan, D.K., Pillay, A.A., Palanisami, T., Sathishkumar, P., and Conterno, L., 2022. Distribution, toxicity, interactive effects, and detection of ochratoxin and deoxynivalenol in food: a review. Food Chemistry 378: 131978. 10.1016/j.foodchem.2021.131978
Gao, S., Wu, Y., Xie, S., Shao, Z., Bao, X., Yan, Y., et al., 2019. Determination of aflatoxins in milk sample with ionic liquid modified magnetic zeoliticimidazolate frameworks. Journal of Chromatography B 1128: 121778. 10.1016/j.jchromb.2019.121778
Ghasemian, E., Naghoni, A., Tabaraie, B., & Tabaraie, T. (2012). In vitro susceptibility of filamentous fungi to copper nanoparticles assessed by rapid XTT colorimetry and agar dilution method. Journal de mycologie medicale, 22(4), 322-328. 10.1016/j.mycmed.2012.09.006
Gontero, D., Lessard-Viger, M., Brouard, D., Bracamonte, A.G., Boudreau, D., and Veglia, A.V., 2017. Smart multifunctional nanoparticles design as sensors and drug delivery systems based on supramolecular chemistry. Microchemical Journal 130: 316–328. 10.1016/j.microc.2016.10.007
Gonzalez-Jartín, J.M., de Castro Alves, L., Alfonso, A., Pineiro, Y., Vilar, S.Y., Gomez, M.G., et al., 2019. Detoxification agents based on magnetic nanostructured particles as a novel strategy for mycotoxin mitigation in food. Food Chemistry 294: 60–66. 10.1016/j.foodchem.2019.05.013
Goryacheva, I.Y., and De Saeger, S., 2012. Immunochemical detection of masked mycotoxins: a short review. World Mycotoxin Journal 5: 281–287. 10.3920/WMJ2012.1423
Goud, K.Y., Kailasa, S.K., Kumar, V., Tsang, Y.F., Gobi, K.V., and Kim, K.-H., 2018. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: a review. Biosensors and Bioelectronics 121: 205–222. 10.1016/j.bios.2018.08.029
Goud, K.Y., Reddy, K.K., Satyanarayana, M., Kummari, S., and Gobi, K.V., 2019. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxin susing advanced nanomaterials. Microchimica Acta 187(1): 2–9. 10.1007/s00604-019-4034-0
Grusie, T., Cowan, V., Singh, J., McKinnon, J., and Blakley, B., 2018. Proportions of predominant Ergot alkaloids (Claviceps purpurea) detected in western Canadian grains from 2014 to 2016. World Mycotoxin Journal 11(2): 259–264. 10.3920/WMJ2017.2241
Guo, L.J., Feng, J.S., Fang, Z.C., Xu, J., and Lu, X.N., 2015. Application of microfluidic ‘lab-on-a-chip’ for the detection of mycotoxins in foods. Trends in Food Science and Technology 46: 252–263. 10.1016/j.tifs.2015.09.005
Hamad, G.M., Mehany, T., Simal-Gandara, J., Abou-Alella, S., Esua, O.J., Abdel-Wahhab, M.A., and Hafez, E.E., 2022. A review of recent innovative strategies for controlling mycotoxins in foods. Food Control 144: 109350. 10.1016/j.foodcont.2022.109350
Han, X., Huangfu, B., Xu, T., Xu, W., Asakiya, C., Huang, K., and He, X., 2022. Research progress of safety of zearalenone: a review. Toxins 14(6): 386. 10.3390/toxins14060386
Han, Z., Jiang, K., Fan, Z., Diana Di Mavungu, J., Dong, M., Guo, W., et al., 2017. Multi-walled carbon nanotubes-based magnetic solid-phase extraction for the determination of zearalenone and its derivatives in maize by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Control 79: 177–184. 10.1016/j.foodcont.2017.03.044
Haque, M.A., Wang, Y., Shen, Z., Li, X., Saleemi, M.K., and He, C., 2020. Mycotoxin contamination and control strategy in human, domestic animal and poultry: a review. Microbial Pathogenesis 142: 104095. 10.1016/j.micpath.2020.104095
Hashem, A.H., Abdelaziz, A.M., Askar, A.A., Fouda, H.M., Khalil, A.M., Abd-Elsalam, K.A., and Khaleil, M.M., 2021. Bacillus megaterium-mediated synthesis of selenium nanoparticles and their antifungal activity against Rhizoctonia solaniin faba bean plants. Journal of Fungi 7(3): 195. 10.3390/jof7030195
Hassanzadeh Davarani, F., Ashrafizadeh, M., Saberi Riseh, R., Ghasemipour Afshar, E., Mohammadi, H., Razavi, S.H., et al., 2018. Antifungal nanoparticles reduce aflatoxin contamination in pistachio. Journal of Pistachio and Health 1(2): 26–33.
Hawar, S.N., Al-Shmgani, H.S., Al-Kubaisi, Z.A., Sulaiman, G.M., Dewir, Y.H., and Rikisahedew, J.J., 2022. Green synthesis of silver nanoparticles from Alhagi graecorum leaf extract and evaluation of their cytotoxicity and antifungal activity. Journal of Nanomaterials 2022: 1–8. 10.1155/2022/1058119
He, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological research, 166(3), 207-215. 10.1016/j.micres.2010.03.003
Henam, S.D., Ahmad, F., Shah, M.A., Parveen, S., and Wani, A.H., 2019. Microwave synthesis of nanoparticles and their antifungal activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 213: 337–341. 10.1016/j.saa.2019.01.071
Horky, P., Skalickova, S., Baholet, D., and Skladanka, J., 2018. Nanoparticles as a solution for eliminating the risk of mycotoxins. Nanomaterials 8(9): 727. 10.3390/nano8090727
Huang, L., Chen, K., Zhang, W., Zhu, W., Liu, X., and Wang, J., 2018. ssDNA-tailorable oxidase-mimicking activity of spinel MnCo2O4 for sensitive biomolecular detection in food sample. Sensors and Actuators B: Chemical 269: 79–87. 10.1016/j.snb.2018.04.150
Huang, Z., He, J., Li, Y., Wu, C., You, L., Wei, H., et al., 2019. Preparation of dummy molecularly imprinted polymers for extraction of Zearalenonein grain samples. Journal of Chromatography A 1602: 11–18. 10.1016/j.chroma.2019.05.022
Hulvova, H., Galuszka, P., Frebortova, J., and Frebort, I., 2013. Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids. Biotechnology Advances 31(1): 79–89. 10.1016/j.biotechadv.2012.01.005
Hussain, A., Rahman, Z., and Khan, M. 2021. Detection of aflatoxins in peanut oils marketed in Peshawar, Pakistan using thin layer chromatography. Journal of Food Quality and Hazards Control, 8: 87–91. 10.18502/jfqhc.8.2.6473
Hussein, H.S., and Brasel, J.M., 2001. Toxicity, metabolism and impact of mycotoxins on humans and animals. Toxicology 167(2): 101–134. 10.1016/S0300-483X(01)00471-1
Huybrechts, B., Martins, J.C., Debongnie, P., Uhlig, S., and Callebaut, A., 2015. Fast and sensitive LC-MS/MS method measuring human mycotoxin exposure using biomarkers in urine. Archives of Toxicology 89: 1993–2005. 10.1007/s00204-014-1358-8
Ismail, A., Gonçalves, B.L., de Neeff, D.V., Ponzilacqua, B., Coppa, C.F.S.C., Hintzsche, H., et al., 2018. Aflatoxin in foodstuffs: occurrence and recent advances in decontamination. Food Research International 113: 74–85. 10.1016/j.foodres.2018.06.067
Jamil, T.S., Abbas, H.A., Nasr, R.A., El-Kady, A.A., and Ibrahim, M.I.M., 2017. Detoxification of aflatoxin B1 using nano-sized Sc-doped SrTi0.7Fe0.3O3 under visible light. Journal of Photochemistry and Photo Biology A: Chemistry 341: 127–135. 10.1016/j.jphotochem.2017.03.023
Jard, G., Liboz, T., Mathieu, F., Guyonvarch, A., and Lebrihi, A., 2011. Review of mycotoxin reduction in food and feed: from prevention in the field to detoxification by adsorption or transformation. Food Additives & Contaminants: Part A 28(11): 1590–1609. 10.1080/19440049.2011.595377
Jestoi, M. (2008). Emerging Fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin—A review. Critical reviews in food science and nutrition, 48(1), 21-49. 10.1080/10408390601062021
Jian, Y., Chen, X., Ahmed, T., Shang, Q., Zhang, S., Ma, Z., and Yin, Y., 2022. Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum. Journal of Advanced Research 38: 1–12. 10.1016/j.jare.2021.09.006
Jiang, M., Braiek, M., Florea, A., Chrouda, A., Farre, C., Bonhomme, A., et al., 2015. Aflatoxin B1 detection using a highly-sensitive molecularly-imprinted electrochemical sensor based on an electro polymerized metal organic framework. Toxins 7(9): 3540–3553. 10.3390/toxins7093540
Jiang, C., Lan, L., Yao, Y., Zhao, F., and Ping, J., 2018. Recent progress in application of nanomaterial-enabled biosensors for ochratoxin A detection. TrAC Trends in Analytical Chemistry 102: 236–249. 10.1016/j.trac.2018.02.007
Jing, G., Wang, Y., Wu, M., Liu, W., Xiong, S., Yu, J., et al., 2023. Photocatalytic degradation and pathway from mycotoxins in food: a review. Food Reviews International ,40(1): 276–292. 10.1080/87559129.2023.2166062
Kamle, M., Mahato, D.K., Gupta, A., Pandhi, S., Sharma, N., Sharma, B., et al., 2022. Citrinin mycotoxin contamination in food and feed: impact on agriculture, human health, and detection and management strategies. Toxins 14(2): 85. 10.3390/toxins14020085
Kanhed, P., Birla, S., Gaikwad, S., Gade, A., Seabra, A.B., Rubilar, O., et al., 2014. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Materials Letters 115: 13–17. 10.1016/j.matlet.2013.10.011
Karami-Osboo, R., Maham, M., and Mirabolfathy, M., 2015. Magnetic nanoparticle solid phase extraction-HPLC-UV for determination of deoxynivalenolin wheat flour. Analytical Methods 7(24): 10266–10271. 10.1039/C5AY02502H
Karami-Osboo, R., and Mirabolfathi, M., 2017. A novel dispersive nanomagnetic particle solid-phase extraction method to determine aflatoxins in nut and cereal samples. Food Analytical Methods10(12): 4086–4093. 10.1007/s12161-017-0975-2
Kaushik, A., Solanki, P. R., Ansari, A. A., Ahmad, S., & Malhotra, B. D. (2009). A nanostructured cerium oxide film-based immunosensor for mycotoxin detection. Nanotechnology, 20(5), 55105. 10.1088/0957-4484/20/5/055105
Khalil, O.A.A., Hammad, A.A., and Sebaei, A.S., 2021. Aspergillus flavus and Aspergillus ochraceus inhibition and reduction of aflatoxins and ochratoxin A in maize by irradiation. Toxicon 198: 111–120. 10.1016/j.toxicon.2021.04.029
Khalili, S.T., Mohsenifar, A., Beyki, M., Zhaveh, S., Rahmani-Cherati, T., Abdollahi, A., et al., 2015. Encapsulation of thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. LWT–Food Science and Technology 60(1): 502–508. 10.1016/j.lwt.2014.07.054
Khamis, Y., Hashim, A.F., Margarita, R., Alghuthaymi, M.A., and Abd-Elsalam, K.A. 2017. Fungicidal efficacy of chemically produced copper nanoparticles against penicillium digitatum and fusarium solanion citrus fruit. Philippine Agricultural Scientist 100: 69–78.
Khaneghah, A.M., Fakhri, Y., Gahruie, H.H., Niakousari, M., and Santana, A.S., 2019. Mycotoxins in cereal-based products during 24 years (1983–2017): a global systematic review. Trends in Food Science & Technology 91: 95–105. 10.1016/j.tifs.2019.06.007
Koka, J.A., Wani, A.H., and Bhat, M.Y., 2019. Evaluation of antifungal activity of magnesium oxide (MgO) and iron oxide (FeO) nanoparticles on rot causing fungi. Journal of Drug Delivery and Therapeutics 9(2-s): 173–178.
Kong, D., Liu, L., Song, S., Suryoprabowo, S., Li, A., Kuang, H., Wang, L., and Xu, C., 2016. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale 8: 5245–5253. 10.1039/C5NR09171C
Kotzybik, K., Gräf, V., Kugler, L., Stoll, D. A., Greiner, R., Geisen, R., & Schmidt-Heydt, M. (2016). Influence of different nanomaterials on growth and mycotoxin production of Penicillium verrucosum. PLoS One, 11(3), e0150855. 10.1371/journal.pone.0150855
Krstanovic, V., Šarkanj, B., Velic, N., Mastanjevic, K., Šantek, B., & Mastanjevic, K. (2017). Mycotoxins in malting and brewing by-products used for animal feed. In European Biotechnology Congress 2017 (pp. S68-S69). 10.1016/j.jbiotec.2017.06.1033
Kumar, P., Mahato, D.K., Kamle, M., Mohanta, T.K., and Kang, S.G., 2017. Aflatoxins: a global concern for food safety, human health and their management. Frontiers in Microbiology 7: 2170. 10.3389/fmicb.2016.02170
Laan, T.T., Bull, S., Pirie, R., and Fink-Gremmels, J., 2006. The role of alveolar macrophages in the pathogenesis of recurrent airway obstruction in horses. Journal of Veterinary Internal Medicine 20(1): 167–174. 10.1111/j.1939-1676.2006.tb02837.x
Li, N., Wu, D., Hu, N., Fan, G., Li, X., Sun, J., et al., 2018. Effective enrichment and detection of trace polycyclic aromatic hydrocarbons in food samples based on magnetic covalent organic framework hybrid microspheres. Journal of Agricultural and Food Chemistry 66(13): 3572–3580. 10.1021/acs.jafc.8b00869
Li, G., Zhang, X., Zheng, F., Liu, J., and Wu, D., 2020. Emerging nanosensing technologies for the detection of β-agonists. Food Chemistry 332: 127431. 10.1016/j.foodchem.2020.127431
Liang, H., Xu, H., Zhao, Y., Zheng, J., Zhao, H., Li, G., and Li, C. P. (2019). Ultrasensitive electrochemical sensor for prostate specific antigen detection with a phosphorene platform and magnetic covalent organic framework signal amplifier. Biosensors and Bioelectronics, 144, 111691. 10.1016/j.bios.2019.111691
Liew, W.P.P., and Mohd-Redzwan, S., 2018. Mycotoxin: its impact on gut health and microbiota. Frontiers in Cellular and Infection Microbiology 8: 60. 10.3389/fcimb.2018.00060
Lin, X., Yu, W., Tong, X., Li, C., Duan, N., Wang, Z., and Wu, S. 2024. Application of nanomaterials for coping with mycotoxin contamination in food safety: from detection to control. Critical Reviews in Analytical Chemistry 54(2): 355–388. 10.1080/10408347.2022.2076063
Liu, Z., Hua, Q., Wang, J., Liang, Z., Li, J., Wu, J., et al., 2020. A smart phone based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals. Biosensors and Bioelectronics 158: 112178. 10.1016/j.bios.2020.112178
Loi, M., Logrieco, A.F., Pusztahelyi, T., Leiter, E., Hornok, L., and Pocsi, I. 2023. Advanced mycotoxin control and decontamination techniques in view of an increased aflatoxin risk in Europe due to climate change. Frontiers in Microbiology 13: 1085891. 10.3389/fmicb.2022.1085891
Loi, M., Renaud, J.B., Rosini, E., Pollegioni, L., Vignali, E., Haidukowski, M., et al., 2020. Enzymatic transformation of aflatoxin B1 by Rh_DypB peroxidase and characterization of the reaction products. Chemosphere 250: 126296. 10.1016/j.chemosphere.2020.126296
Luo, Y., Liu, X., and Li, J., 2018. Updating techniques on controlling mycotoxins—a review. Food Control 89: 123–132. 10.1016/j.foodcont.2018.01.016
Luo, L., Liu, X., Ma, S., Li, L., and You, T. 2020. Quantification of zearalenone in mildewing cereal crops using an innovative photoelectrochemical aptamer sensing strategy based on ZnO-NGQDs composites. Food Chemistry 322: 126778. 10.1016/j.foodchem.2020.126778
Luo, Y., Zhou, Z., and Yue, T., 2017. Synthesis and characterization of nontoxic chitosan-coated Fe3O4 particles for patulin adsorption in a juice-pH simulation aqueous. Food Chemistry 221: 317–323. 10.1016/j.foodchem.2016.09.008
Lv, M., Liu, Y., Geng, J., Kou, X., Xin, Z., and Yang, D., 2018. Engineering nanomaterials-based biosensors for food safety detection. Biosensors and Bioelectronics 106: 122–128. 10.1016/j.bios.2018.01.049
Madalena, M., Sobral, C., Faria, M. A., Cunha, S. C., & Ferreira, I. M. P. L. V. O. (2018). Toxicological interactions between mycotoxins from ubiquitous fungi: impact on hepatic and intestinal human epithelial cells. 202: 538–548. 10.1016/j.chemosphere.2018.03.122
Mahato, D.K., Pandhi, S., Kamle, M., Gupta, A., Sharma, B., Panda, B.K., et al., 2022. Trichothecenes in food and feed: occurrence, impact on human health and their detection and management strategies. Toxicon 208: 62–77. 10.1016/j.toxicon.2022.01.011
Mantle, P., 2002. Risk assessment and the importance of ochratoxins. International Biodeterioration & Biodegradation 50(3–4): 143–146. 10.1016/S0964-8305(02)00079-3
Mao, J., Zhang, Q., Li, P., Zhang, L., & Zhang, W. (2018). Geometric architecture design of ternary composites based on dispersive WO3 nanowires for enhanced visible-light-driven activity of refractory pollutant degradation. Chemical Engineering Journal, 334, 2568-2578. 10.1016/j.cej.2017.10.165
Marin, S., Ramos, A.J., Cano-Sancho, G., and Sanchis, V., 2013. Mycotoxins: occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology 60: 218–237. 10.1016/j.fct.2013.07.047
Massart, F., Meucci, V., Saggese, G., and Soldani, G. 2008. High growth rate of girls with precocious puberty exposed to estrogenic mycotoxins. Journal of Pediatrics 152(5): 690–695, e691. 10.1016/j.jpeds.2007.10.020
Meira, D.I., Barbosa, A.I., Borges, J., Reis, R.L., Correlo, V.M., and Vaz, F., 2023. Recent advances in nanomaterial-based optical biosensors for food safety applications: ochratoxin-A detection, as case study. Critical Reviews in Food Science and Nutrition 64(18): 6318–6360. 10.1080/10408398.2023.2168248
Mogensen, J.M., Frisvad, J.C., Thrane, U., and Nielsen, K.F., 2010. Production of fumonisin B2 and B4 by Aspergillus niger on grapes and raisins. Journal of Agricultural and Food Chemistry 58(2): 954–958. 10.1021/jf903116q
Mohammadi, X., Matinfar, G., Khaneghah, A.M., Singh, A., and Pratap-Singh, A, 2021. Emergence of cold plasma and electron beam irradiation as novel technologies to counter mycotoxins in food products. World Mycotoxin Journal 14: 75–83. 10.3920/WMJ2020.2586
Moreno, V., Zougagh, M., & Ríos, Á. (2016). Hybrid nanoparticles based on magnetic multiwalled carbon nanotube-nanoC 18 SiO 2 composites for solid phase extraction of mycotoxins prior to their determination by LC-MS. Microchimica Acta, 183, 871–880. 10.1007/s00604-015-1722-2
Moreno-Vargas, J.M., Echeverry-Cardona, L.M., Moreno-Montoya, L.E., and Restrepo-Parra, E., 2023. Evaluation of antifungal activity of Ag nanoparticles synthetized by green chemistry against Fusarium solani and Rhizopus stolonifera. Nanomaterials 13(3): 548. 10.3390/nano13030548
Mukherjee, K., Acharya, K., Biswas, A., and Jana, N.R., 2020. TiO2 nanoparticles co-doped with nitrogen and fluorine as visible-light activated antifungal agents. ACS Applied Nano Materials 3(2): 2016–2025. 10.1021/acsanm.0c00108
Mukunzi, D., Habimana, J.D.D., Li, Z., and Zou, X., 2022. Mycotoxins detection: view in the lens of molecularly imprinted polymer and nanoparticles. Critical Reviews in Food Science and Nutrition 63(23): 6034–6068. 10.1080/10408398.2022.2027338
Munkvold, G.P., 2017. Fusarium species and their associated mycotoxins. Mycotoxigenic fungi. Springer, Cham, Switzerland, pp. 51–106. 10.1007/978-1-4939-6707-0_4
Nabawy, G. A., Hassan, A. A., Sayed El-Ahl, R., & Refai, M. K. (2014). Effect of metal nanoparticles in comparison with commercial antifungal feed additives on the growth of Aspergillus flavus and aflatoxin b1 production. J. Glob. Biosci, 3(6), 954–971.
Nahle, S., El Khoury, A., Savvaidis, I., Chokr, A., Louka, N., and Atoui, A. 2022. Detoxification approaches of mycotoxins: by microorganisms, biofilms and enzymes. International Journal of Food Contamination 9: 1–14. 10.1186/s40550-022-00089-2
Nakagawa, H., Ohmichi, K., Sakamoto, S., Sago, Y., Kushiro, M., Nagashima, H., et al., 2011. Detection of a new fusarium masked mycotoxin in wheat grain by high-resolution LC-Orbit rap TM MS. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 28: 1447–1456. 10.1080/19440049.2011.597434
Niazi, S., Khan, I. M., Yan, L., Khan, M. I., Mohsin, A., Duan, N., ... & Wang, Z. (2019). Simultaneous detection of fumonisin B 1 and ochratoxin A using dual-color, time-resolved luminescent nanoparticles (NaYF 4: Ce, Tb and NH 2-Eu/DPA@ SiO 2) as labels. Analytical and bioanalytical chemistry, 411, 1453-1465. 10.1007/s00216-019-01580-0
Niemirowicz, K., & Bucki, R. (2017). Enhancing the fungicidal activity of antibiotics: are magnetic nanoparticles the key?. Nanomedicine, 12(15), 1747-1749. 10.2217/nnm-2017-0051
Niemirowicz, K., Durnaś, B., Piktel, E., & Bucki, R. (2017). Development of antifungal therapies using nanomaterials. Nanomedicine, 12(15), 1891-1905. 10.2217/nnm-2017-0052
Niu, X., Cheng, N., Ruan, X., Du, D., and Lin, Y., 2019. Review-nanozyme-based immunosensors and immunoassays: recent developments and future trends. Journal of the Electrochemical Society 167(3): 37508. 10.1149/2.0082003JES
Omotayo, O.P., Omotayo, A.O., Mwanza, M., and Babalola, O.O., 2019. Prevalence of mycotoxins and their consequences on human health. Toxicological Research 35: 1–7. 10.5487/TR.2019.35.1.001
Osweiler, G.D., 2000. Mycotoxins—contemporary issues of food animal health and productivity. Veterinary Clinics of North America–Food Animal Practice 16: 511–530. 10.1016/S0749-0720(15)30084-0
Pacheco, J.G., Castro, M., Machado, S., Barroso, M.F., Nouws, H.P., and Delerue-Matos, C., 2015. Molecularly imprinted electrochemical sensor for ochratoxin A detection in food samples. Sensors and Actuators B: Chemical 215: 107–112. 10.1016/j.snb.2015.03.046
Pandey, A.K., Shakya, S., Patyal, A., Ali, S.L., Bhonsle, D., Chandrakar, C., Kumar, A., Khan, R., and Hattimare, D. 2021. Detection of aflatoxin M1 in bovine milk from different agro-climatic zones of Chhattisgarh, India, using HPLC-FLD and assessment of human health risks. Mycotoxin Research 37: 265–273. 10.1007/s12550-021-00437-9
Pandiselvam, R., Sunoj, S., Manikantan, M.R., Kothakota, A., and Hebbar, K.B., 2017. Application and kinetics of ozone in food preservation. Ozone: Science & Engineering 39(2): 115–126. 10.1080/01919512.2016.1268947
Pankaj, S. K., Shi, H., and and Keener, K. M., 2018. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends in Food Science & Technology, 71:, 73–83. 10.1016/j.tifs.2017.11.007
Parveen, S., Wani, A. H., Shah, M. A., Devi, H. S., Bhat, M. Y., & Koka, J. A. (2018). Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microbial pathogenesis, 115, 287-292. 10.1016/j.micpath.2017.12.068
Petrakova, A.V., Urusov, A.E., Zherdev, A.V., Liu, L., Xu, C., and Dzantiev, B.B., 2017. Application of magnetite nanoparticles for the development of highly sensitive immuno chromatographic test systems for mycotoxin detection. Applied Biochemistry and Microbiology 53: 470–475. 10.1134/S0003683817040111
Pfeiffer, C., Rehbock, C., Hühn, D., Carrillo-Carrion, C., de Aberasturi, D. J., Merk, V., ... & Parak, W. J. (2014). Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. Journal of The Royal Society Interface, 11(96), 20130931. 10.1098/rsif.2013.0931
Pitt, J., 2000. Toxigenic fungi: which are important. Sabouraudia 38(Supplement 1): 17–22. 10.1080/744118728
Piotrowska, M. 2021. Microbiological decontamination of mycotoxins: opportunities and limitations. Toxins 13: 819. 10.3390/toxins13110819
Qu, L., Wang, L., Ji, H., Fang, Y., Lei, P., Zhang, X., et al., 2022. Toxic mechanism and biological detoxification of fumonisins. Toxins 14(3): 182. 10.3390/toxins14030182
Quintela, S., Villaran, M.C., Lopez de Armentia, I., and Elejalde, E. 2013. Ochratoxin A removal in wine: a review. Food Control 30: 439–445. 10.1016/j.foodcont.2012.08.014
Rai, M., Jogee, P.S., and Ingle, A.P., 2015. Emerging nanotechnology for detection of mycotoxins in food and feed. International Journal of Food Sciences and Nutrition 66(4): 363–370. 10.3109/09637486.2015.1034251
Ramadan, M.M., Mohamed, M.A., Almoammar, H., and Abd-Elsalam, K.A., 2020. Magnetic nanomaterials for purification, detection, and control of mycotoxins. In: Rai, M., and Abd-Elsalam, K.A. (eds.), Nanomycotoxicology. Elsevier, Amsterdam, the Netherlands, Chap. 5, pp. 87–114. 10.1016/B978-0-12-817998-7.00005-7
Rashed, A. O. M., Mohamed, A. E. A. A. R., & Abobakr, M. M. (2016). Wheat Protection from Root Rot Caused by Fusarium culmorum Using Silver Nanoparticles. Journal of the Chemical Society of Pakistan, 38(5), 898–903.
Rheeder, J.P., Marasas, W.F., and Vismer, H.F., 2002. Production of fumonisin analogs by Fusarium species. Applied and Environmental Microbiology 68(5): 2101–2105. 10.1128/AEM.68.5.2101-2105.2002
Rhouati, A., Bulbul, G., Latif, U., Hayat, A., Li, Z.-H., and Marty, J.L., 2017. Nano-aptasensing in mycotoxin analysis: recent updates and progress. Toxins 9(11): 349. 10.3390/toxins9110349
Rodrigues, I., 2014. A review on the effects of mycotoxins in dairy ruminants. Animal Production Science 54: 1155–1165. 10.1071/AN13492
Romero Bernal, A.R., Reynoso, C.M., Garcia Londono, V.A., Broggi, L.E., and Resnik, S.L., 2019. Alternaria toxins in Argentinean wheat, bran, and flour. Food Additives & Contaminants: Part B 12(1): 24–30. 10.1080/19393210.2018.1509900
Roque, L., Molpeceres, J., Reis, C., Rijo, P., and Pinto Reis, C., 2017. Past, recent progresses and future perspectives of nanotechnology applied to antifungal agents. Current Drug Metabolism 18(4): 280–290. 10.2174/1389200218666170201152000
Sadhasivam, S., Britzi, M., Zakin, V., Kostyukovsky, M., Trostanetsky, A., Quinn, E., and Sionov, E., 2017 Rapid detection and identification of mycotoxigenic fungi and mycotoxins in stored wheat grain. Toxins 9: 302. 10.3390/toxins9100302
Sadrabadi, N.R., Ensafi, A.A., Heydari-Bafrooei, E., and Fazilati, M., 2016. Screening of food samples for zearalenone toxin using an electrochemical bioassay based on DNA–zearalenon interaction. Food Analytical Methods 9: 2463–2470. 10.1007/s12161-016-0437-2
Samuel, M.S., Jeyaram, K., Datta, S., Chandrasekar, N., Balaji, R., and Selvarajan, E. 2021. Detection, contamination, toxicity, and prevention methods of ochratoxins: an update review. Journal of Agricultural and Food Chemistry 69: 13974–13989. 10.1021/acs.jafc.1c05994
Santana-Mayor, A., Rodríguez-Ramos, R., Socas-Rodríguez, B., AsensioRamos, M., and Rodríguez-Delgado, M.A., 2020. Carbon-based adsorbents. In: Solid-phase extraction: handbooks in separation science. Colin F. Poole (Ed.), Elsevier, Amsterdam, the Netherlands, Chap. 4, pp. 83–127. 10.1016/B978-0-12-816906-3.00004-2
Santini, A., Meca, G., Uhlig, S., & Ritieni, A. (2012). Fusaproliferin, beauvericin and enniatins: occurrence in food–a review. World Mycotoxin Journal, 5(1), 71–81. 10.3920/WMJ2011.1331
Savi, G.D., Torres Zanoni, E., Scussel, R., Corneo, E.D.S., Guimaraes Furtado, B., Macuvele, D.L.P., et al., 2023. Mesoporous silica nanoparticles adsorb aflatoxin B1 and reduce mycotoxin-induced cell damage. Journal of Environmental Science and Health, Part B 58(1): 1–9. 10.1080/03601234.2022.2161251
Selvaraj, J.N., Zhou, L., Wang, Y., Zhao, Y.J., Xing, F.G., Dai, X.F., and Liu, Y., 2015. Mycotoxin detection—recent trends at global level. Journal of Integrative Agriculture 14: 2265–2281. 10.1016/S2095-3119(15)61120-0
Shahbaz, M., Akram, A., Raja, N.I., Mukhtar, T., Mehak, A., Fatima, N., et al., 2023. Antifungal activity of green synthesized selenium nanoparticles and their effect on physiological, biochemical, and antioxidant defense system of mango under mango malformation disease. PLoS One 18(2): e0274679. 10.1371/journal.pone.0274679
Sharma, A., Matharu, Z., Sumana, G., Solanki, P.R., Kim, C.G., and Malhotra, B.D., 2010. Antibody immobilized cysteamine functionalized-gold nanoparticles for aflatoxin detection. Thin Solid Films 519(3): 1213–1218. 10.1016/j.tsf.2010.08.071
Sharma, R., Ragavan, K.V., Thakur, M.S., and Raghavarao, K.S.M.S., 2015. Recent advances in nanoparticle based apta sensors for food contaminants. Biosensors and Bioelectronics 74: 612–627. 10.1016/j.bios.2015.07.017
Shenashen, M., Derbalah, A., Hamza, A., Mohamed, A., and El Safty, S., 2017. Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot disease of tomato caused by fusarium oxysporium. Pest Management Science 73: 1121–1126. 10.1002/ps.4420
Shende, S., Ingle, A. P., Gade, A., & Rai, M. (2015). Green synthesis of copper nanoparticles by Citrus medica Linn.(Idilimbu) juice and its antimicrobial activity. World Journal of Microbiology and Biotechnology, 31, 865–873. 10.1007/s11274-015-1840-3
Shoala, T., 2020. Carbon nanostructures: detection, controlling plant diseases and mycotoxins. In Abd-Elsalam, K.A. (ed.), Carbon nanomaterials for agri-food and environmental applications. Elsevier, Amsterdam, the Netherlands, Chap. 13, pp. 261–277. 10.1016/B978-0-12-819786-8.00013-X
Simpson, D.R., Weston, G.E., Turner, J.A., Jennings, P., and Nicholson, P., 2001. Differential control of head blight pathogens of wheat by fungicides and consequences for mycotoxin contamination of grain. European Journal of Plant Pathology 107: 421–431. 10.1023/A:1011225817707
Santana-Mayor, A., Rodríguez-Ramos, R., Socas-Rodriguez, B., Asensio-Ramos, M., & Rodriguez-Delgado, M. A. (2020). Carbon-based adsorbents. In Solid-phase extraction (pp. 83-127). Elsevier. 10.21203/rs.3.rs-1908427/v1
Solanki, P.R., Singh, J., Rupavali, B., Tiwari, S., and Malhotra, B.D., 2017. Bismuth oxide nanorods based immunosensor for mycotoxin detection. Materials Science & Engineering, Materials for Biological Applications 70: 564–571. 10.1016/j.msec.2016.09.027
Stanford, K., Schwartzkopf-Genswein, K.S., Melendez, D.M., Ngo, S., Harding, M., McAllister, T.A., et al., 2022. Effects of heating, pelleting, and feed matrix on apparent concentrations of cereal ergot alkaloids in relation to growth performance and welfare parameters of backgrounding beef steers. Toxins 14(9): 580. 10.3390/toxins14090580
Stroka, J., and Maragos, C., 2016. Challenges in the analysis of multiple mycotoxins. World Mycotoxin Journal 9(5): 847–861. 10.3920/WMJ2016.2038
Su, Y., Wu, D., Chen, J., Chen, G., Hu, N., Wang, H., et al., 2019. Ratiometric surface enhanced raman scattering immunosorbent assay of allergenic proteins via covalentorganic frame work composite material based nanozyme tag triggered raman signal “turn-on” and amplification. Analytical Chemistry 91(18): 11687–11695. 10.1021/acs.analchem.9b02233
Suliman Maashi, M., 2023. CRISPR/CAS-based aptasensor as an innovative sensing approaches for food safety analysis: recent progresses and new horizons. Critical Reviews in Analytical Chemistry 53(1): 1–19. 10.1080/10408347.2023.2188955
Sun, Y., Xing, G., Yang, J., Wang, F., Deng, R., Zhang, G., et al., 2016. Development of an immunochromatographic test strip for simultaneous qualitative and quantitative detection of ochratoxin A and zearalenone in cereal. Journal of the Science of Food and Agriculture 96: 3673–3678. 10.1002/jsfa.7550
Sun, S., Zhao, R., Feng, S., and Xie, Y., 2018. Colorimetric zearalenone assay based on the use of an aptamer and of gold nanoparticles with peroxidase-like activity. Microchimica Acta 185(12): 535. 10.1007/s00604-018-3078-x
Sun, S., Zhao, R., Xie, Y., and Liu, Y., 2019. Photocatalytic degradation of aflatoxin B1 by activated carbon supported TiO2 catalyst. Food Control 100: 183–188. 10.1016/j.foodcont.2019.01.014
Sun, Y., Huang, K., Long, M., Yang, S., & Zhang, Y. (2022). An update on immunotoxicity and mechanisms of action of six environmental mycotoxins. Food and Chemical Toxicology, 163, 112895. 10.1016/j.fct.2022.112895
Sureka, S., Chalcravorty, A., Holmes, E.C., Spassibojko, O., Bhatt, N., et al., 2014. Standardization of functional reporter and antibiotic resistance cassettes to facilitate the genetic engineering of filamentous fungi. ACS Synthetic Biology 3: 960–962. 10.1021/sb5000143
Taghdisi, S.M., Danesh, N.M., Beheshti, H.R., Ramezani, M., and Abnous, K., 2016. A novel fluorescent aptasensor based on gold and silica nanoparticles for the ultrasensitive detection of ochratoxin A. Nanoscale 8(6): 3439–3446. 10.1039/C5NR08234J
Tanaka, K., Sago, Y., Zheng, Y., Nakagawa, H., and Kushiro, M., 2007. Mycotoxins in rice. International Journal of Food Microbiology 119(1): 59–66. 10.1016/j.ijfoodmicro.2007.08.002
Thongprapai, P., Cheewasedtham, W., Chong, K. F., & Rujiralai, T. (2018). Selective magnetic nanographene oxide solid-phase extraction with high-performance liquid chromatography and fluorescence detection for the determination of zearalenone in corn samples. Journal of separation science, 41(23), 4348-4354. 10.1002/jssc.201800441
Tian, F., Zhou, J., Jiao, B., and He, Y., 2019. A nanozyme-based cascade colorimetric aptasensor for amplified detection of ochratoxin A. Nanoscale 11(19): 9547–9555. 10.1039/C9NR02872B
Tian, M., Feng, Y., He, X., Zhang, D., Wang, W., & Liu, D. (2022). Mycotoxins in livestock feed in China-Current status and future challenges. Toxicon, 214, 112-120.
10.1016/j.toxicon.2022.05.041
Tittlemier, S.A., Drul, D., Roscoe, M., and McKendry, T., 2015. Occurrence of ergot and ergot alkaloids in western Canadian wheat and other cereals. Journal of Agricultural and Food Chemistry 63(29): 6644–6650. 10.1021/acs.jafc.5b02977
Tola, M., and Kebede, B., 2016. Occurrence, importance and control of mycotoxins: a review. Cogent Food & Agriculture 2(1): 1191103. 10.1080/23311932.2016.1191103
Topi, D., Jakovac-Strajn, B., Pavsic-Vrtac, K., and Tavcar-Kalcher, G., 2017. Occurrence of ergot alkaloids in wheat from Albania. Food Additives & Contaminants: Part A 34(8): 1333–1343. 10.1080/19440049.2017.1307528
Turan, E., and ¸Sahin, F., 2016. Molecularly imprinted biocompatible magnetic nanoparticles for specific recognition of ochratoxin A. Sensors and Actuators B: Chemical 227: 668–676. 10.1016/j.snb.2015.12.087
Turner, N.W., Bramhmbhatt, H., Szabo-Vezse, M., Poma, A., Coker, R., and Piletsky, S.A., 2015. Analytical methods for determination of mycotoxins: an update (2009–2014). Analytica Chimica Acta 901: 12–33. 10.1016/j.aca.2015.10.013
Udovicki, B., Audenaert, K., De Saeger, S., and Rajkovic, A., 2018. Overview on the mycotoxins incidence in Serbia in the period 2004–2016. Toxins 10(7): 279. 10.3390/toxins10070279
Vidal, A., Ouhibi, S., Gali, R., Hedhili, A., De Saeger, S., and De Boevre, M., 2019. The mycotoxin patulin: an updated short review on occurrence, toxicity and analytical challenges. Food and Chemical Toxicology 129: 249–256. 10.1016/j.fct.2019.04.048
Vijayabharathi, R., Sathya, A., and Gopalakrishnan, S., 2018. Extracellular biosynthesis of silver nanoparticles using streptomyces griseoplanus SAI-25 and its antifungal activity against macrophominaphaseolina, the charcoal rot pathogen of sorghum. Biocatalysis and Agricultural Biotechnology 14: 166–171. 10.1016/j.bcab.2018.03.006
Walravens, J., Mikula, H., Rychlik, M., Asam, S., Ediage, E.N., Di Mavungu, J.D., et al., 2014. Development and validation of an ultra-high-performance liquid chromatography tandem mass spectrometric method for the simultaneous determination of free and conjugated alternaria toxins in cereal-based foodstuffs. Journal of Chromatography A 1372: 91–101. 10.1016/j.chroma.2014.10.083
Wan, H., Zhang, B., Bai, X. L., Zhao, Y., Xiao, M. W., & Liao, X. (2017). Extraction of ochratoxin A in red wine with dopamine-coated magnetic multi-walled carbon nanotubes. Journal of separation science, 40(20), 4022-4031. 10.1002/jssc.201700697
Wang, L., Chen, W., Ma, W., Liu, L., Ma, W., Zhao, Y., et al., 2011. Fluorescent strip sensor for rapid determination of toxins. Chemical Communications 47(5): 1574–1576. 10.1039/C0CC04032K
Wang, X., Niessner, R., Tang, D., and Knopp, D., 2016. Nanoparticle-based immunosensors and immunoassays for aflatoxins. Analytica Chimica Acta 912: 10–23. 10.1016/j.aca.2016.01.048
Wang, Y., Zhao, C., Zhang, D., Zhao, M., Zheng, D., Peng, M., et al., 2018. Simultaneous degradation of aflatoxin B1 and zearalenone by a microbial consortium. Toxicon 146: 69–76. 10.1016/j.toxicon.2018.04.007
Wen, A., Li, G., Wu, D., Yu, Y., Yang, Y., Hu, N., et al., 2020. Sulphonate functionalized covalent organic framework-based magnetic sorbent for effective solid phase extraction and determination of fluoroquinolones. Journal of Chromatography A 1612: 4606. 10.1016/j.chroma.2019.460651
Wen, H., Shi, H., Jiang, N., Qiu, J., Lin, F., and Kou, Y., 2023. Antifungal mechanisms of silver nanoparticles on mycotoxin producing rice false smut fungus. I Science 26(1): 105763. 10.1016/j.isci.2022.105763
Win, T.T., Khan, S., and Fu, P., 2020. Fungus-(Alternaria sp.)-mediated silver nanoparticles synthesis, characterization, and screening of antifungal activity against some phytopathogens. Journal of Nanotechnology 36(4): 1–9. 10.1155/2020/8828878
Winter, G., and Pereg, L., 2019. A review on the relation between soil and mycotoxins: effect of aflatoxin on field, food and finance. European Journal of Soil Science 70(4): 882–897. 10.1111/ejss.12813
Wu, C., He, J., Li, Y., Chen, N., Huang, Z., You, L., et al., 2018. Solid phase extraction of aflatoxins using an anosorbent consisting of a magnetized nanoporous carbon core coated with a molecularly imprinted polymer. Microchimica Acta 185(11): 515. 10.1007/s00604-018-3051-8
Wu, H.-C., and Santella, R., 2012. The role of aflatoxins in hepatocellular carcinoma. Hepatitis Monthly 12: e7238. 10.5812/hepatmon.7238
Wu, S., Wang, F., Li, Q., Wang, J., Zhou, Y., Duan, N., et al., 2020. Photocatalysis and degradation products identification of deoxynivalenol in wheat using upconversion nanoparticles@TiO2 composite. Food Chemistry 323(1): 126823. 10.1016/j.foodchem.2020.126823
Xie, Y.J., Yang, Y., Kong, W.J., Yang, S.H., and Yang, M.H., 2015. Application of nanoparticle probe-based lateral flow immunochromatographic assay in mycotoxins detection. Chinese Journal of Analytical Chemistry 43: 617–628. 10.1016/S1872-2040(15)60821-0
Xue, Z., Zhang, Y., Yu, W., Zhang, J., Wang, J., Wan, F., et al., 2019. Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials–a review. Analytica Chimica Acta 1069: 1–27. 10.1016/j.aca.2019.04.032
Yang, Y., Li, G., Wu, D., Liu, J., Li, X., Luo, P., et al., 2020a. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends in Food Science & Technology 96: 233–252. 10.1016/j.tifs.2019.12.021
Yang, Y., Li, G., Wu, D., Wen, A., Wu, Y., and Zhou, X., 2020b. β-Cyclodextrin/AuNPs-functionalized covalent organic framework-based magnetic sorbent for solid phase extraction and determination of sulfonamides. Microchimica Acta 187(5): 278. 10.1007/s00604-020-04257-z
Yang, C., & Peng, B. (2023). Biodegradation characteristics of patulin by Saccharomyces cerevisiae during fermentation. Food Control, 145, 109463. 10.1016/j.foodcont.2022.109463
Yang, X., Sun, Z., He, Z., Xie, X., and Liu, X., 2023. Combination of nanobody and peptidomimetic to develop novel immunoassay platforms for detecting ochratoxin A in cereals. Food Chemistry 429(15): 137018. 10.1016/j.foodchem.2023.137018
Yu, L., Ma, F., Zhang, L., & Li, P. (2019). Determination of aflatoxin B1 and B2 in vegetable oils using Fe3O4/rGO magnetic solid phase extraction coupled with high-performance liquid chromatography fluorescence with post-column photochemical derivatization. Toxins, 11(11), 621. 10.3390/toxins11110621
Zeng, X., Zhang, F., He, N., Zhang, B., Liu, X., & Li, X. (2016). ZnO nanoparticles of different shapes and their antimycotic property against penicillium and mucor. Nanoscience and Nanotechnology Letters, 8(8), 688-694. 10.1166/nnl.2016.2206
Zhai, W., Wei, D., Cao, M., Wang, Z., and Wang, M., 2023. Biosensors based on core–shell nanoparticles for detecting mycotoxins in food: a review. Food Chemistry 429(15): 136944. 10.1016/j.foodchem.2023.136944
Zhan, S., Hu, J., Li, Y., Huang, X., and Xiong, Y. 2021. Direct competitive ELISA enhanced by dynamic light scattering for the ultrasensitive detection of aflatoxin B1 in corn samples. Food Chemistry 342: 128327. 10.1016/j.foodchem.2020.128327
Zhang, W.J., and Li, G.X., 2004. Third-generation biosensors based on the direct electron transfer of proteins. Analytical Sciences 20: 603–609. 10.2116/analsci.20.603
Zhang, X., Li, G., Chen, G., Wu, D., Zhou, X., and Wu, Y., 2020. Single atom nanozymes: arising star for biosensing and biomedicine. Coordination Chemistry Reviews 418: 213376. 10.1016/j.ccr.2020.213376
Zhang, J., Liu, Y., Li, Q., Zhang, X., and Shang, J.K., 2013. Antifungal activity and mechanism of palladium-modified nitrogen-doped titanium oxide photocatalyst on agricultural pathogenic fungi fusarium graminearum. ACS Applied Materials & Interfaces 5(21): 10953–10959. 10.1021/am4031196
Zhang, Y., Ouyang, B., Zhang, W., Guang, C., Xu, W., and Mu, W., 2023. An overview of chemical, physical and biological methods for zearalenone elimination: recent advances and future prospective. Food Control 154, 110011. 10.1016/j.foodcont.2023.110011
Zhang, W., Xiong, H., Chen, M., Zhang, X., and Wang, S., 2017a. Surface enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO2 for ultrasensitive detection of fumonisin B1. Biosensors and Bioelectronics 96: 55–61. 10.1016/j.bios.2017.04.035
Zhang, X., Li, G., Wu, D., Li, X., Hu, N., Chen, J., . . . Wu, Y. (2019). Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosensors and Bioelectronics, 137, 178–198. 10.1016/j.bios.2019.04.061
Zhang, X., Yu, X., Wen, K., Li, C., Mujtaba Mari, G., Jiang, H., ... & Wang, Z. (2017). Multiplex lateral flow immunoassays based on amorphous carbon nanoparticles for detecting three fusarium mycotoxins in maize. Journal of agricultural and food chemistry, 65(36), 8063-8071. 10.1021/acs.jafc.7b02827
Zhao, Z., Liu, N., Yang, L., Wang, J., Song, S., Nie, D., et al., 2015b. Crosslinked chitosan polymers as generic adsorbents for simultaneous adsorption of multiple mycotoxins. Food Control 57: 362–369. 10.1016/j.foodcont.2015.05.014
Zhao, Y., Wan, L.-H., Bai, X.-L., Liu, Y.-M., Zhang, F.-P., Liu, Y.-M., and Liao, X., 2017b. Quantification of mycotoxins in vegetable oil by UPLC-MS/MS after magnetic solid-phase extraction. Food Additives & Contaminants: Part A 34(7): 1201–1210. 10.1080/19440049.2017.1319074
Zhao, J., Wang, L., Xu, D., and Lu, Z., 2017a. Involvement of ROS in nano silver caused suppression of aflatoxin production from Aspergillus flavus. RSC Advances 7(37): 23021–23026. 10.1039/C7RA02312J
Zhao, Y., Yang, Y., Luo, Y., Yang, X., Li, M., and Song, Q., 2015a. Double detection of mycotoxins based on sers labels embedded Ag@Au core-shell nanoparticles. ACS Applied Materials and Interfaces 7: 21780–21786. 10.1021/acsami.5b07804
Zhao, Z., Zhang, Z., Zhang, H., and Liang, Z., 2022. Small peptides in the detection of mycotoxins and their potential applications in mycotoxin removal. Toxins 14(11): 795. 10.3390/toxins14110795
Zhaveh, S., Mohsenifar, A., Beiki, M., Khalili, S. T., Abdollahi, A., Rahmani-Cherati, T., & Tabatabaei, M. (2015). Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial Crops and Products, 69, 251-256. 10.1016/j.indcrop.2015.02.028
Zheng, F., Ke, W., Shi, L., Liu, H., & Zhao, Y. (2019). Plasmonic Au–Ag janus nanoparticle engineered ratiometric surface-enhanced raman scattering aptasensor for Ochratoxin A detection. Analytical Chemistry, 91(18), 11812-11820. 10.1021/acs.analchem.9b02469
Zhong, W., 2009. Nanomaterials in fluorescence-based biosensing. Analytical and Bioanalytical Chemistry, 394(1): 47–59. 10.1007/s00216-009-2643-x
Zhong, L., Carere, J., Lu, Z., Lu, F., and Zhou, T., 2018. Patulin in apples and apple-based food products: the burdens and the mitigation strategies. Toxins 10(11): 475. 10.3390/toxins10110475
Zhou, Y, Wu, S, Wang, F., Li, Q., He, C., Duan, N., and Wang, Z., 2020. Assessing the toxicity in vitro of degradation products from deoxynivalenol photocatalytic degradation by using up conversion nanoparticles@TiO2 composite. Chemosphere 238: 124648. 10.1016/j.chemosphere.2019.124648