Optimization of perilla seed oil extraction using supercritical CO2

Main Article Content

Suwajee Pothinam
Thanyaporn Siriwoharn
Wachira Jirarattanarangsri

Keywords

Perilla frutescens; Linolenic acid; Tocopherol

Abstract

This work studied the extraction of perilla oil from perilla seeds using supercritical carbon dioxide, which is valued for its high omega-3 content. Response surface methodology was used to investigate the optimum conditions of perilla oil extraction at pressures of 200, 225, and 250 bar and temperatures of 40°C, 50°C, and 60°C. The fatty acid composition was also investigated. The optimal condition was obtained at 60°C under a pressure of 218 bar. Under this extraction condition, the predicted measures of oil yield (%), acid value, peroxide value, iodine value, saponification value, total phenolic content, DPPH (IC50), ABTS (IC50), and tocopherol were: 37.00%, 1.22 mg KOH/g, 0.94 mEq O2/kg, 205.00 g I2/100 g, 196.90 mg KOH/g, 12.14 mg GAE/100 g, 10.93 mg/mL, 154.86 mg/mL, and 604.58 mg/kg, respectively. In addition, gas chromatography analysis indicated that perilla seed oil was primarily composed of linolenic acid (56.94–58.02%), with a total polyunsaturated fatty acid content of 75.49–76.47%, while saturated fatty acids and monounsaturated fatty acids constituted 10.53–11.11% and 13.00–13.52% of the total fatty acids, respectively.

Abstract 402 | PDF Downloads 140 XML Downloads 5 HTML Downloads 0

References

Adil, İ. H., Yener, M. E., & Bayındırlı, A. (2008). Extraction of Total Phenolics of Sour Cherry Pomace by High Pressure Solvent and Subcritical Fluid and Determination of the Antioxidant Activities of the Extracts. Separation Science and Technology, 43(5), 1091-1110. https://doi.org/10.1080/01496390801888243
Ahmed, A. F., Attia, F. A. K., Liu, Z., Li, C., Wei, J., & Kang, W. (2019). Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Science and Human Wellness, 8(3), 299-305. https://doi.org/https://doi.org/10.1016/j.fshw.2019.07.004
Amaral, G. V., Silva, E. K., Cavalcanti, R. N., Cappato, L. P., Guimaraes, J. T., Alvarenga, V. O., Esmerino, E. A., Portela, J. B., Sant’ Ana, A. S., Freitas, M. Q., Silva, M. C., Raices, R. S. L., Meireles, M. A. A., & Cruz, A. G. (2017). Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects. Trends in Food Science & Technology, 64, 94-101. https://doi.org/https://doi.org/10.1016/j.tifs.2017.04.004
AOAC. (2000). Official Methods of Analysis of AOAC International (17th ed.). Gaithersburg, MD, USA.
Asif, M. (2011). Health effects of omega-3,6,9 fatty acids: Perilla frutescens is a good example of plant oils. Orient Pharm Exp Med, 11(1), 51-59. https://doi.org/10.1007/s13596-011-0002-x
Bae, S. J., Kim, J. E., Choi, H. J., Choi, Y. J., Lee, S. J., Gong, J. E., Seo, S., Yang, S. Y., An, B.-S., Lee, H. S., Kim, D. S., Lee, C. Y., & Hwang, D. Y. (2020). α-Linolenic Acid-Enriched Cold-Pressed Perilla Oil Suppress High-Fat Diet-Induced Hepatic Steatosis through Amelioration of the ER Stress-Mediated Autophagy. Molecules, 25(11).
Chopra, R., & Sambaiah, K. (2009). Effects of Rice Bran Oil Enriched with n-3 PUFA on Liver and Serum Lipids in Rats [https://doi.org/10.1007/s11745-008-3240-z]. Lipids, 44(1), 37-46. https://doi.org/https://doi.org/10.1007/s11745-008-3240-z
Cruz, M. C., García, A. B., Lafarga, T., Melgosa, M., & Bermejo, R. (2022). Color of extra virgin olive oils enriched with carotenoids from microalgae: influence of ultraviolet exposure and heating. Grasas y Aceites, 73, e455. https://doi.org/10.3989/gya.0104211
Cundiff, D. K., Lanou, A. J., & Nigg, C. R. (2007). Relation of Omega-3 Fatty Acid Intake to Other Dietary Factors Known to Reduce Coronary Heart Disease Risk. The American Journal of Cardiology, 99(9), 1230-1233. https://doi.org/https://doi.org/10.1016/j.amjcard.2006.12.032
Cvjetko Bubalo, M., Jokic, S., Lepojević, Ž., Vidovic, S., Marić, B., & Radojcic Redovnikovic, I. (2012). Optimization of the Supercritical CO2 Extraction of Oil from Rapeseed Using Response Surface Methodology. Food Technology and Biotechnology, 50, 208-215.
Devittori, C., Gumy, D., Kusy, A., Colarow, L., Bertoli, C., & Lambelet, P. (2000). Supercritical fluid extraction of oil from millet bran. Journal of the American Oil Chemists' Society, 77(6), 573-579. https://doi.org/10.1007/s11746-000-0092-7
Döker, O., Salgin, U., Yildiz, N., Aydoğmuş, M., & Çalimli, A. (2010). Extraction of sesame seed oil using supercritical CO2 and mathematical modeling. Journal of Food Engineering, 97(3), 360-366. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2009.10.030
FAO, W. (2009). Report of the 21st session of the codex alimentarius committee on fats and oils. Malaysia: Kola kinabala.[Google Scholar].
Fuhua, F., Zhaoping, P., Qiutao, X., & Xuebo, S. (2016). Supercritical fluid extraction and quality analysis of perilla seed oil. Food and Machinery, 32(7), 166-170.
Garcia, V. A., Lemos, C. O., Mantovani, D., Corazza, M., Zanoelo, E., Silva, C., & Filho, L. (2015). EFFECT OF OIL EXTRACTION WITH SUPERCRITICAL CO2 AND ORGANIC SOLVENTS ON ANTIOXIDANT CAPACITY AND TOTAL PHENOLIC CONTENT OF Mucuna MEAL. Latin American Applied Research - An international journal, 45, 125-131. https://doi.org/10.52292/j.laar.2015.386
Gokbulut, I., Bilenler, T., & Karabulut, I. (2013). Determination of Chemical Composition, Total Phenolic, Antimicrobial, and Antioxidant Activities of Echinophora tenuifolia Essential Oil. International Journal of Food Properties, 16(7), 1442-1451. https://doi.org/10.1080/10942912.2011.593281
Hao, L., Lv, C., Cui, X., Yi, F., & Su, C. (2021). Study on biological activity of perilla seed oil extracted by supercritical carbon dioxide. LWT, 146, 111457. https://doi.org/https://doi.org/10.1016/j.lwt.2021.111457
Ivanova, M., Hanganu, A., Dumitriu, R., Tociu, M., Ivanov, G., Stavarache, C., Popescu, L., Ghendov-Mosanu, A., Sturza, R., Deleanu, C., & Chira, N. A. (2022). Saponification Value of Fats and Oils as Determined from (1)H-NMR Data: The Case of Dairy Fats. Foods, 11(10). https://doi.org/10.3390/foods11101466
Jang, H., & Park, K. (2020). Omega-3 and omega-6 polyunsaturated fatty acids and metabolic syndrome: A systematic review and meta-analysis. Clinical Nutrition, 39(3), 765-773. https://doi.org/https://doi.org/10.1016/j.clnu.2019.03.032
Jiao, Z., Ruan, N., Wang, W., Guo, M., Han, S., & Cheng, J. (2021). Supercritical carbon dioxide co-extraction of perilla seeds and perilla leaves: experiments and optimization. Separation Science and Technology, 56(3), 617-630. https://doi.org/10.1080/01496395.2020.1728320
Joshi, A., Sharma, A., Pandey, D. P., & Bachheti, R. (2015). Physico-chemical properties of Perilla frutescens seeds. Der Pharma Chemica, 7, 35-41.
Jung, D. M., Yoon, S. H., & Jung, M. Y. (2012). Chemical Properties and Oxidative Stability of Perilla Oils Obtained From Roasted Perilla Seeds As Affected by Extraction Methods [https://doi.org/10.1111/j.1750-3841.2012.02965.x]. Journal of Food Science, 77(12), C1249-C1255. https://doi.org/https://doi.org/10.1111/j.1750-3841.2012.02965.x
Lavenburg, V., Rosentrater, K., & Jung, S. (2021). Extraction Methods of Oils and Phytochemicals from Seeds and Their Environmental and Economic Impacts. Processes, 9, 1839. https://doi.org/10.3390/pr9101839
Lee, K.-Y., Rahman, M. S., Kim, A.-N., Jeong, E.-J., Kim, B.-G., Lee, M.-H., Kim, H.-J., & Choi, S.-G. (2021). Effect of superheated steam treatment on yield, physicochemical properties and volatile profiles of perilla seed oil. LWT, 135, 110240. https://doi.org/https://doi.org/10.1016/j.lwt.2020.110240
Ling, J., Sam, J. H., Jeevanandam, J., Chan, Y. S. S., & Nandong, J. (2022). Thermal Degradation of Antioxidant Compounds: Effects of Parameters, Thermal Degradation Kinetics, and Formulation Strategies. Food and Bioprocess Technology, 15. https://doi.org/10.1007/s11947-022-02797-1
Lu, S., Yang, Z., Tang, H., Sun, X., Wang, B., Qu, J., Wang, Y., Yang, P., & Rao, B. (2022). Associations between omega-3 polyunsaturated fatty acids supplementation and surgical prognosis in patients with gastrointestinal cancer: A systematic review and meta-analysis. Food Chemistry: Molecular Sciences, 4, 100099. https://doi.org/https://doi.org/10.1016/j.fochms.2022.100099
M’hiri, N., Ioannou, I., Mihoubi Boudhrioua, N., & Ghoul, M. (2015). Effect of different operating conditions on the extraction of phenolic compounds in orange peel. Food and Bioproducts Processing, 96, 161-170. https://doi.org/https://doi.org/10.1016/j.fbp.2015.07.010
Majid, A., Naz, F., Phull, A., Abbasi, S., Khaskheli, A., Ahmed, I., Ahmed, W., Fareed, G., Latif, S., & Sirohi, M. (2019). Extraction and quantification of tocopherols from edible oils using high performance liquid chromatography. 14, 181-187. https://doi.org/10.12692/ijb/14.4.181-187
Majid, A., Phull, A. R., Khaskheli, A. H., Abbasi, S., Sirohi, M. H., Ahmed, I., Ujjan, S. H., Jokhio, I. A., & Ahmed, W. (2019). Applications and opportunities of supercritical fluid extraction in food processing technologies: A review. Int J Adv Appl Sci, 6(7), 99-103.
Morrison, W. R., & Smith, L. M. (1964). Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. Journal of Lipid Research, 5(4), 600-608. https://doi.org/https://doi.org/10.1016/S0022-2275(20)40190-7
Muangrat, R., & Jirarattanarangsri, W. (2020). Physicochemical properties and antioxidant activity of oil extracted from Assam tea seeds (Camellia sinensis var. assamica) by supercritical CO2 extraction [https://doi.org/10.1111/jfpp.14364]. Journal of Food Processing and Preservation, 44(3), e14364. https://doi.org/https://doi.org/10.1111/jfpp.14364
Muangrat, R., & Pongsirikul, I. (2019). Recovery of spent coffee grounds oil using supercritical CO2: Extraction optimisation and physicochemical properties of oil. CyTA - Journal of Food, 17(1), 334-346. https://doi.org/10.1080/19476337.2019.1580771
Oppedisano, F., Macrì, R., Gliozzi, M., Musolino, V., Carresi, C., Maiuolo, J., Bosco, F., Nucera, S., Caterina Zito, M., Guarnieri, L., Scarano, F., Nicita, C., Coppoletta, A. R., Ruga, S., Scicchitano, M., Mollace, R., Palma, E., & Mollace, V. (2020). The Anti-Inflammatory and Antioxidant Properties of n-3 PUFAs: Their Role in Cardiovascular Protection. Biomedicines, 8(9). https://doi.org/10.3390/biomedicines8090306
Özkal, S. G. (2009). Response Surface Analysis and Modeling of Flaxseed Oil Yield in Supercritical Carbon Dioxide. Journal of the American Oil Chemists' Society, 86, 1129-1135. https://doi.org/10.1007/s11746-009-1448-6
Özkal, S. G., Yener, E., Salgın, U., & Mehmetoglu, Ü. (2005). Response surfaces of hazelnut oil yield in supercritical carbon dioxide. European Food Research and Technology, 220, 74-78. https://doi.org/10.1007/s00217-004-1013-3
Pan, F., Wen, B., Luo, X., Wang, C., Wang, X., Guan, X., Xu, Y., Dang, W., & Zhang, M. (2020). Influence of refining processes on the bioactive composition, in vitro antioxidant capacity, and their correlation of perilla seed oil. Journal of Food Science, 85(4), 1160-1166. https://doi.org/https://doi.org/10.1111/1750-3841.15070
Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. Int J Biomed Sci, 4(2), 89-96.
Priyadarsani, S., Patel, A. S., Kar, A., & Dash, S. (2021). Process optimization for the supercritical carbondioxide extraction of lycopene from ripe grapefruit (Citrus paradisi) endocarp. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-89772-6
Salgin, S., & Salgın, U. (2006). Supercritical fluid extraction of walnut kernel oil. European Journal of Lipid Science and Technology, 108, 577-582. https://doi.org/10.1002/ejlt.200600046
Salgın, U., Döker, O., & Çalımlı, A. (2006). Extraction of sunflower oil with supercritical CO2: Experiments and modeling. The Journal of Supercritical Fluids, 38, 326-331. https://doi.org/10.1016/j.supflu.2005.11.015
Sarker, M. Z., Norulaini, N., Kadir, M., & Smithjr, R. (2007). Supercritical carbon dioxide (SC-CO 2) extraction of palm kernel oil from palm kernel. Journal of Food Engineering - J FOOD ENG, 79, 1007-1014. https://doi.org/10.1016/j.jfoodeng.2006.03.021
Scapin, G., Abaide, E. R., Martins, R. F., Vendruscolo, R. G., Mazutti, M. A., Wagner, R., & da Rosa, C. S. (2017). Quality of perilla oil (Perilla frutescens) extracted with compressed CO2 and LPG. The Journal of Supercritical Fluids, 130, 176-182. https://doi.org/https://doi.org/10.1016/j.supflu.2017.08.007
Semiz, G., Semiz, A., & Mercan-Doğan, N. (2018). Essential oil composition, total phenolic content, antioxidant and antibiofilm activities of four Origanum species from southeastern Turkey. International Journal of Food Properties, 21(1), 194-204. https://doi.org/10.1080/10942912.2018.1440240
Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods, 18, 820-897. https://doi.org/https://doi.org/10.1016/j.jff.2015.06.018
Sharan, P., & Madan, V. K. (2018). Supercritical Carbon Dioxide as Greener Solvent of 21st Century. Asian Journal of Chemistry, 30, 719-723. https://doi.org/10.14233/ajchem.2018.21150A
Sirilun, S., Sivamaruthi, B., Pengkumsri, N., Saelee, M., Chaiyasut, K., Juntarachot, N., Suttajit, M., Peerajan, S., & Chaiyasut, C. (2016). Impact of different pre-treatment strategies on the quality of fatty acid composition, tocols content and metabolic syndrome related activities of Perilla frutescens seed oil. Journal of Applied Pharmaceutical Science, 6, 001-008. https://doi.org/10.7324/JAPS.2016.60201
Sodeifian, G., Ardestani, N. S., Sajadian, S. A., & Moghadamian, K. (2018). Properties of Portulaca oleracea seed oil via supercritical fluid extraction: Experimental and optimization. The Journal of Supercritical Fluids, 135, 34-44. https://doi.org/https://doi.org/10.1016/j.supflu.2017.12.026
Song, X., Tian, S., Liu, Y., & Shan, Y. (2020). Effects of Omega-3 PUFA Supplementation on Insulin Resistance and Lipid Metabolism in Patients with T2DM: A Systematic Review and Meta-Analysis. Current Developments in Nutrition, 4(Supplement_2), 77-77. https://doi.org/10.1093/cdn/nzaa040_077
Tabee, E., Azadmard-Damirchi, S., Jägerstad, M., & Dutta, P. (2008). Effects of α-Tocopherol on Oxidative Stability and Phytosterol Oxidation During Heating in Some Regular and High-Oleic Vegetable Oils. Journal of Oil & Fat Industries, 85, 857-867. https://doi.org/10.1007/s11746-008-1274-2
Taribak, C., Casas, L., Mantell, C., Elfadli, Z., Metni, R. E., & Martínez de la Ossa, E. J. (2013). Quality of Cosmetic Argan Oil Extracted by Supercritical Fluid Extraction from Argania spinosa L. Journal of Chemistry, 2013, 408194. https://doi.org/10.1155/2013/408194
Valencia, A., Muñoz, A. M., Ramos-Escudero, M., Chavez, K. C., & Ramos-Escudero, F. (2024). Carotenoid, Tocopherol, and Volatile Aroma Compounds in Eight Sacha Inchi Seed (Plukenetia volubilis L.) Oil Accessions. Journal of Oleo Science, 73(5), 665-674.
Wei, M.-C., Wang, C.-S., Wei, D.-H., & Yang, Y.-C. (2021). Insights into the Supercritical CO2 Extraction of Perilla Oil and Its Theoretical Solubility. Processes, 9(2), 239. https://doi.org/10.3390/pr9020239
Yang, L., Zhou, Y., Geng, S., Liu, M., & Lei, H. (2017). Extraction of Perilla Seed Oil Using Supercritical Carbon Dioxide and GC-MS Analysis. Agricultural Science & Technology, 18(8), 1509-1512.
Zepka, L. Q., & Mercadante, A. Z. (2009). Degradation compounds of carotenoids formed during heating of a simulated cashew apple juice. Food Chemistry, 117(1), 28-34. https://doi.org/https://doi.org/10.1016/j.foodchem.2009.03.071
Zhang, Z.-s., Liu, Y.-l., & Che, L.-m. (2018). Optimization of Supercritical Carbon Dioxide Extraction of Eucommia ulmoides Seed Oil and Quality Evaluation of the Oil. Journal of Oleo Science, 67(3), 255-263. https://doi.org/10.5650/jos.ess17153
Zhao, B., Fu, S., Li, H., & Chen, Z. (2021). Chemical Characterization of Chinese Perilla Seed Oil. J Oleo Sci, 70(11), 1575-1583. https://doi.org/10.5650/jos.ess21076
Zhao, S., & Zhang, D. (2014). Supercritical CO2 extraction of Eucalyptus leaves oil and comparison with Soxhlet extraction and hydro-distillation methods. Separation and Purification Technology, 133, 443-451. https://doi.org/https://doi.org/10.1016/j.seppur.2014.07.018