The antimicrobial and antioxidant properties of garagurt: Traditional Cornelian cherry (Cornus mas) marmalade

Main Article Content

E. Savaş
H. Tavşanlı
G. Çatalkaya
E. Çapanoğlu
C. E. Tamer

Keywords

Cornus mas, marmalade, antioxidant activity, antimicrobial activity

Abstract

The traditional cornelian cherry marmalade named as “Garagurt” usually consumed for nutritional purpose as well as health benefits. The objective of this study was determination of antimicrobial and antioxidant activity of cornelian cherry marmalade. Antioxidant activites of the sample as determined by ABTS, CUPRAC and DPPH assays were 8428±1206 mg TE/100 g, 1599±41.4 mg TE/100g and 773±206 mg TE/100g, respectively. The antimicrobial activity of the sample was determined by the disc diffusion method in minimum inhibitory concentration (MIC) against Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli Escherichia coli O157:H7, Salmonella typhimurium, Pseudomonas fluorescens, Yersinia enterocolitica. The MIC values of garagurt (0.66 mg phenol compound/g) are ≥ 256 mg/mL for L. monocytogenes, S. aureus, Y. enterocolitica, E. coli and P. fluorescens when Gentamicin (10 µg) used as positive control. Total phenolic content, which is regarded as responsible of antimicrobial and antioxidant activity, was determined as 195±6.35 mg GAE/100 g in aqueous methanolic extract of garagurt. This product can also be used for its antimicrobial effect in order to increase shelf life of different foods.

Abstract 265 | PDF Downloads 155 HTML Downloads 17 XML Downloads 0

References

Alavian, S.M., Banihabib, N., Haghi, M.Es., and Panahi, F., 2014. Protective Effect of Cornus mas Fruits Extract on Serum Biomarkers in CCl4-Induced Hepatotoxicity in Male Rats. Hepatitis Montly 14 (4): e10330. https://doi.org/10.5812/hepatmon.10330.
Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E., 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry 52(26), 7970-7981. https://doi.org/ 10.1021/jf048741x.
Arıkan, A.Ö., and Uysal, S., 2005. Evaluation of disk diffusion test for carbapenem sensitivity in Acinetobacter baumannii and Pseudomonas aeruginosa strains. Mikrobiyol Bulten 39: 273-279. PMID:16358486.
Bauer, R.W., M.D.K. Kirby, J.C. Sherris and Turck, M., 1966. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology 45: 493-496. PMID: 5325707
Bernal, J. Mendiola, E. Ibáñez, A., 2011. Cifuentes Advanced analysis of nutraceuticals Journal of Pharmaceutical and Biomedical Analysis 55: 758-774. https://doi.org/ 10.1016/j.jpba.2010.11.033.
Bozdogan, A., 2017. Viscosity and physicochemical properties of cornelian cherry (Cornus mas L.) concentrate. Food Measure 11:1326–1332. https://doi.org/ 10.1007/s11694-017-9510-9.
Bijelić, S.M., Gološin, B.R., Todorović, J.I.N., Cerović, S.B., Popović, B.M., 2011. Physicochemical fruit characteristics of cornelian cherry (Cornus mas L.) genotypes from Serbia. Hortscience 46(6):849–853. https://doi.org/ 10.15835/nsb9410161.
Caillet, S., Côté, J., Sylvain, J.F., Lacroix, M., 2012. Antimicrobial effects of fractions from cranberry products on the growth of seven pathogenic bacteria. Food Control 23: 419-428. https://doi.org/10.1016/j.foodcont.2011.08.010.
Caillet, S., Lorenzo, G., Côté, J., Sylvain, J.F., Lacroix, M., 2012. Free Radical-Scavenging Properties and Antioxidant Activity of Fractions from Cranberry Products. Food and Nutrition Sciences 3:337-347. https://doi.org/10.4236/fns.2012.33049
Capanoglu, E., Boyacioglu, D., de Vos R.C.H., Hall R.D., and Beekwilder, J., 2011. Procyanidins in fruit from Sour cherry (Prunus cerasus) differ strongly in chainlength from those in Laurel cherry (Prunus lauracerasus) and Cornelian cherry (Cornus mas). Journal of Berry Research 1:137–146. https://doi.org/10.3233/BR-2011-015.
Cetkovska, J., Divis, P., Vespalcova, M., Porizka, J., Reznicek, V., 2015. Basic nutritional properties of cornelian cherry (Cornus mas L.) cultivars grown in the Czech Republic. Acta alimentaria 44:549–557. https://doi.org/10.1556/AAlim.2014.0013.
Clinical and Laboratory Standards Institute (CLSI), 2012. Antimicrobial susceptibility testing standards. Available at: https://clsi.org/media/2663/m100ed29_sample.pdf
Côté, J., Caillet, S., Doyon, G., Dussault, D., Sylvain, J.-F., Lacroix, M., 2011. Antimicrobial effect of cranberry juice and extracts. Food Control. 22: 1413-1418. https://doi.org/10.1016/ j.foodcont.2011.02.024.
Celik, S., Bakirci, I., and Suat, I.G., 2006. Physicochemical and organoleptic properties of yogurt with cornelian cherry paste, International Journal of Food Properties 9: 401–408.
Cosmulescu, S., Trandafır, I., Cornescu, F., 2019. Antioxidant Capacity, Total Phenols, Total Flavonoids and Colour Component of Cornelian Cherry (Cornus mas L.) Wild Genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47(2):390-394. https://doi.org/10.15835/nbha47111375.
Coşkun, F., 2006. Gıdalarda bulunan doğal koruyucular. Gıda teknolojileri elektronik dergisi, (2) 27- 33, ISSN:1306-7648.
Czerwin´ska, M.E., and Melzig, M.F., 2018. Cornus mas and Cornus officinalis—Analogies and Differences of Two Medicinal Plants Traditionally Used. Frontiers in Pharmacology 9:894. https://doi.org/10.3389/fphar.2018.00894.
Çakmakcı, S.; Tosun M., 2010. Characteristics of mulberry pekmez with cornelian cherry. International Journal of Food Properties 13: 713–722. https://doi.org/10,1080 / 10942910902804459.
Çelik, F., 2009. Kızılcığın (Cornus mas L) ekstraksiyonu ve antioksidan bileşenlerinin analizi Selçuk Üniversitesi Fen BilimLeri Enstitüsü Kimya Anabilim Dalı, Konya, 88s.
David, L., and Moldovan, B., 2015. Extraction, characterization and potential health benefits of bioactive compounds from selected Cornus fruits, in: Fruits and pomace extracts: biological activity, potential applications and beneficial health effects. Nova Science Publishers, Inc. New-York, USA, pp 157-188.
Demir, F., and Kalyoncu, I.H., 2003. Some Nutritional, Pomological and Physical Properties of Cornelian Cherry (Cornus mas L.). Journal of Food Engineering 60: 335-341. https://doi.org/10.1016/S0260-8774(03)00056-6.
Deng, S., West, B.J. and Jensen, C.J., 2013. UPLC–TOF–MS characterization and identification of bioactive iridoids in Cornus mas fruit. Journal of Analytical Methods in Chemistry http://dx.doi.org/10.1155/2013/710972, 7s.
Dinda, B., Kyriakopoulosb A.M., Dinda S., Zoumpourlis V., Thomaidis N.S., Velegraki A., Markopoulos C., and Dinda, M., 2016. Cornus mas L. (cornelian cherry), an important European and Asian traditional food and medicine: Ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. Journal of Ethnopharmacology 193:670–690. http://dx.doi.org/10.1016/j.jep.2016.09.042.
Drkenda, P., Spahić, A., Begić-Akagić, A., Gaši, F., Vranac, A., Hudina, M., and Blanke, M., 2014. Pomological characteristics of some autochthonous genotypes of cornelian cherry (Cornus mas L.) in Bosnia and Herzegovina. Erwerbs-obstbau 56:59–66. https://doi.org/10.1007/s10341-014-0203-9.
Ercisli, S., Yılmaz, S.O., Gadze, J., Dzubur, A., Hadziabulic, S., and Aliman, J., 2011. Some fruit characteristics of Cornelian cherries (Cornus mas L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39: 255–259. https://doi.org/10.15835/nbha3915875.
Gniewosz, M. and Stobnicka, A., 2018. Bioactive components content, antimicrobial activity, and foodborne pathogen control in minced pork by cranberry pomace extracts. Journal of Food Safety. 2018;38:e12398, https://doi.org/10.1111/jfs.12398.
Gunduz, K., Saracoglu, O., Ozgen, M., Serce, S., 2013. Antioxidant, physical and chemical characteristics of cornelian cherry fruits (Cornus mas L.) at different stages of ripeness, ACTA Scientiarum Polonorum Horticulture 12, 59–66.
Güneş, N.T., Özüpek, Ö., and Bakoglu, N., 2016. Amasya’da Doğal Olarak Yetişen Kızılcık (Cornus mas L.) Meyvelerinin Raf Ömrü Sürecinde Bazı Fizikokimyasal Özelliklerindeki DeğişimLer. Bahçe, Yalova Atatürk Bahçe Kültürleri Merkez Araştırma Enstitüsü Dergisi, 45(1), 680-684.
Harich, M., Maherani, B., Salmieri, S., & Lacroix, M., 2017. Antibacterial activity of cranberry juice concentrate on freshness and sensory quality of ready to eat (RTE) foods. Food control 75: 134-144. https://doi.org/10.1016/j.foodcont.2016.11.038.
Hassanpour, H., Yousef, H., Jafar, H. and Mohammad, A.,2011. Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran. Scientia Horticulturae 129:459–463.
Horasan, Sağbasan, B., 2015. Investigating the bioaccesibility of antioxidants in red fruits commonly consumed in Turkey. Master's thesis. ITU Institude of Natural and Applied Sciences. Department of Food Engineering, pp. 105.
Hosseinpour-Jaghdani, F., Shomali, T., Gholipour-Shahraki, S., Rahimi-Madiseh, M., and Rafieian-Kopaei, M., 2017. Cornus mas: a review on traditional uses and pharmacological properties. Journal of Complementary and Integrative Medicine 14(3). https://doi.org /10.1515/jcim-2016-0137.
Howard, L.R., Castrodale, C., Brownmiller, C., and Mauromoustakos, A. 2010. Jam Processing and Storage Effects on Blueberry Polyphenolics and Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 58:4022-4029. https://doi.org /10,1021 / jf902850h.
Jayaprakasam, B., Vareed, S.K., Olson, L.K., and Nair, M.G., 2005. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. Journal of Agricultural and Food Chemistry 53: 28–31.http://dx.doi.org/10.1155/2015/939402.
Kalyoncu, İ.H., Ersoy, N., and Yılmaz, M., 2009. Physico-chemical and Nutritional Properties of Cornelian Cherry Fruits (Cornus mas L.) Grown in Turkey. Asian Journal of Chemistry, 21 (8) : 6555-6561.
Kamiloglu, S., Pasli, A.A., Ozcelik, B., Camp, J.V., and Capanoglu, E., 2 0 1 5 a. Colour retention, anthocyanin stability and antioxidant capacity in black carrot (Daucus carota) jams and marmalades: Effect of processing, storage conditions and in vitro gastrointestinal digestion. Journal of Functional Foods, 13: 1–10. http://dx.doi.org/10.1016/j.jff.2014.12.021.
Kamiloglu, S., Pasli, A.A., Ozcelik, B., Van Camp, J., and Capanoglu, E. 2015b. Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades. Food Chemistry, 186:74-82, http://dx.doi.org/10.1016/ j.foodchem.2014.12.046.
Karaaslan, M.G., Karaaslan, N.M., and Ates, B., 2018. Investigation of Mineral Components and Antioxidant Properties of a Healthy Red Fruit: Cornelian Cherry (Cornus mas L.). Journal of the Turkish Chemical Society Section A: Chemistry, 5(3):1319–1326. https://doi.org/10.18596/jotcsa.449593.
Kazimierski, M., Regula, J., Molska, M., 2019. Cornelian cherry (Cornus mas L.) – characteristics, nutritional and pro-health properties. Acta Scientiarum Polonorum Technologia Alimentaria 18(1): 5–12. http://dx.doi.org/10.17306/J.AFS.2019.0628.
Kubola, J., Siriamornpun, S., Meeso, N., 2011. Phytochemicals, vitamin C and sugar content of Thai wild fruits. Food Chemistry. 126: 972-981. http://dx.doi.org/10.1016 / j.foodchem.2010.11.104.
Kucharska, A.Z., Sokół-Łetowska, A. and Piórecki, N., 2011. Morphological, physical & chemical, and antioxidant profiles of polish cultivars of cornelian cherry fruit (Cornus mas L.).˙Zywno´s´c. Nauka. Tech. Jako´s´c. 3: 78–89.
Kucharska, A.Z., 2012. Active compounds of cornelian cherry fruit (Cornus mas L.). Wydawnictwo Uniwersytetu Przyrodniczego, Wrocław.
Levaj, B., Kovačević, D. B., Bituh, M., and Dragović-Uzelac, V., 2012. Influence of jam processing upon the contents of phenolics and antioxidant capacity in strawberry fruit (Fragaria ananassa × Duch.). Croatian Journal of Food Technology Biotechnology and Nutrition, 7, 18–22. https://hrcak.srce.hr/82765.
Milenkovic-Andelkovic, A.S., Andelkovic, M.Z., Radovanovic, A.N., Radovanovic, B.C., and Nikolic, V. 2015. Phenol composition, DPPH radical scavenging and antimicrobial activity of Cornelian cherry (Cornus mas) fruit and leaf extracts. Hemijska Industrija, 69(4):331-337. http://dx.doi.org/10,2298 / HEMIND140216046M.
Miller, N. J., and Rice-Evans, C. A. 1997. Factors influencing the antioxidant activity determined by the ABTS•+ radical cation assay. Free radical research, 26(3), 195-199. https://doi.org/10.3109/10715769709097799.
Mohebbi, S. Mostof, Y., Zamani, Z., and Najafi, F., 2015. Influence of Modified Atmosphere Packaging on Storability and Postharvest Quality of Cornelian Cherry (Cornus mas L.) Fruits. Notulae Scientia Biologicae, 7(1):116-122. https://doi.org/10.15835/nsb.7.1.9397.
Moldovan, B., and David, L., 2014. Influence of temperature and preserving agents on the stability of cornelian cherries anthocyanins. Molecules, 19, 8177-8188, https://doi.org/ 10.3390/molecules19068177.
Moldovan, B., David, L., Achim, M., Clichici, S., and Filip, G.A., 2016a. A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigraL. fruits extract and their antioxidant activity Journal of Molecular Liquids, 221: 271-278.
Moldovan, B., Filip, A., Clichici, S., Suharoschi, R., Bolfa, P., and David, L., 2 0 1 6b. Antioxidant activity of Cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects. Journal of Functional Foods 26 77–87. https://doi.org/ 10.1016 / j.jff.2016.07.004.
Moldovan, B., David, L. and Man, S.C. 2017. Impact of thermal treatment on the antioxidant activity of cornelian cheries extract. Studia Ubb Chemia, LXII, 2: 311-317. https://doi.org/ 10.24193/subbchem.2017.2.24
Mustafa, B., Hajdari, A., Krasniqi, F., Hoxha, E., Ademi, H., Quave, C.L., and Pieroni, A., 2012. Medical ethnobotany of the Albanian Alps in Kosovo. Journal of Ethnobiology and Ethnomedicine, 8: 6. https://doi.org/10.1186/1746-4269-8-6
Ozgen, F., 2015. Experimental investigation of drying characteristics of cornelian cherry fruits (Cornus mas L.). Heat and Mass Transfer 51:343–352 https://doi.org/ 10.1007/s00231-014-1397-y.
Pawlowska, A.M., Camangi, F. and Braca, A. 2010. Quali-quantitative analysis of flavonoids of Cornus mas L. (Cornaceae) fruits. Food Chemistry 119: 1257–1261. https://doi.org/ :10.1016/j.foodchem.2009.07.063.
Polat, R., Cakilcioglu, U., Satil, F. 2013. Traditional uses of medicinal plants in Solhan (Bingol-Turkey). Journal of Ethnopharmacology. 148, 951–963. https://doi.org/ 10.1016 / j.jep.2013.05.050.
Petridis, A., M. Koukourikou, T. Sotiropoulos, and Stylianidis., D., 2010. Antioxidant activity of fruits produced in northern Greece. HortScience 45(9):1341–1344. https://doi.org/10.21273/HORTSCI.45.9.1341.
Popovi´c, B.M., Štajner, D., Slavko, K. and Sandra, B., 2012. Antioxidant capacity of cornelian cherry (Cornus mas L.) - Comparison between permanganate reducing antioxidant capacity and other antioxidant methods. Food Chemistry 134(2):734-741. https://doi.org/10.1016/ j.foodchem.2012.02.170.
Pyrkosz-Biardzka, K, Kucharska, AZ, Sokol-Letowska, A, Strugala, P, Gabrielska, J., 2014. A comprehensive study on antioxidant properties of crude extracts from fruits of Berberis vulgaris L. Cornus mas L. and Mahonia aquifolium Nutt. Polish Journal of Food and Nutrition Sciences 64(2):91-99. https://doi.org/10.2478/v10222-012-0097-x.
Rababah, T. M., Al-Mahasneh, M. A., Kilani, I., Yang, W., Alhamad, M. N., Ereifej, K., and Al-U’datt, M. 2011. Effect of jam processing and storage on total phenolics, antioxidant activity, and anthocyanins of different fruits. Journal of the Science of Food and Agriculture, 91:1096–1102. https://doi.org/10.1002 / jsfa.4289.
Rababah, T. M., Al-u'datt, M., Almajwal, A., Brewer, S., Feng, H., Al-Mahasneh, M., Ereifej, K., Yang, W., 2012. Evaluation of the nutraceutical, physiochemical and sensory properties of raisin jam. Journal of Food Science 77: 609–613. https://doi.org/10.1111 / j.1750-3841.2012.02708.x
Rangkadilok, N., Sitthimonchai, S., Worasuttayangkurn, L., Mahidol, C., Ruchirawat, M., and Satayavivad, J., 2007. Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food and Chemical Toxicology. 45: 328-336. https://doi.org/ 10.1016 / j.fct.2006.08.022.
Rosa, A., Atzeri, A., Deiana, M., Scano, P., Incani, A., Piras, C., and Marincola, F.C., 2015. Comparative antioxidant activity and 1H NMR profiling of Mediterranean fruit products.Food Research International.69:322-330. https://doi.org/10.1016/j.foodres.2015.01.001.
Rudrapaul, P., Kyriakopoulos, A.M., De U.C., Zoumpourlis, V., and Dinda B. 2015. New flavonoids from the fruits of Cornus mas, Cornaceae. Phytochemistry Letters 11:292-295. https://doi.org/10.1016 / j.phytol.2015.01.011.
Seeram, N.P., Schutzki, R., Chandra, A. and Nair, M.G., 2002. Characterization, quantification, and bioactivities of anthocyanins in Cornus species. Journal of Agricultural and Food Chemistry 50: 2519–2523. . https://doi.org/10,1021 / jf0115903.
Serteser, A., Kargıoğlu, M., Gök, V., Bağcı, Y., Özcan, M. and Arslan, D., 2009. Antioxidant properties of some plants growing wild in Turkey. Grasas Aceites 60: 147–154. https://doi.org/10.3989/gya.086208.
Spanos, G. A., and Wrolstad, R.E., 1990. Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. Journal of Agricultural and Food Chemistry, 38(7), 1565-1571. https://doi.org/10.1021/jf00097a030.
Stankovic, M.S., Zia-Ul-Haq, M., Bojovic, B.M. and Topuzovic, M.D., 2014.Total phenolics, flavonoid content and antioxidant power of leaf, flower and fruits from cornelian cherry (Cornus mas L.). Bulgarian Journal of Agricultural Science, 20 (2): 358-363.
Szumny, D., Sozanski, T., Kucharska A.Z.,3 Dziewiszek W., Piórecki N., Magdalan J., Ewa Chlebda-Sieragowska E., Kupczynski R., Szeldg A.,and Szumny A., 2015. Application of Cornelian Cherry Iridoid-Polyphenolic Fraction and Loganic Acid to Reduce Intraocular Pressure. Evidence-Based Complementary and Alternative Medicine, Article ID 939402, pp 8. http://dx.doi.org/10.1155/2015/939402.
Şengül, M., Topdaş, E.F., Doğan, H., and Serencam, H., 2018. Some Physical and Chemical Properties, Antioxidant Activities and Phenolic Profiles of Different Marmalades Traditionally Produced in Artvin, Turkey. Akademik Gıda 16(1) : 51-59, http://dx.doi.org/10.24323/akademik-gida.415888.
Şengün, İ.Y. and Yücel, E., 2015. Antimicrobial properties of wild fruits. Biological Diversity and Conservation. 8/1 : 69-77. http://dx.doi.org/10.24323/akademik-gida.544831.
Shahidi, F. and Naczk, M. 1995 Food Phenolics: Sources, Chemistry, Effects and Applications. Technomic Publishing Co., Lancaster.
Tontul, I.,Eroğlu, E., Topuz, A. 2018. Convective and refractance window drying of cornelian cherry pulp: Effect on physicochemical properties. Journal of Food Process Engineering. https://doi.org/10.1111/jfpe.12917.
Topdaş, E.F., Çakmakçı, S., Çakıroğlu, K., 2017. The Antioxidant Activity, Vitamin C Contents, Physical, Chemical and Sensory Properties of Ice Cream Supplemented with Cornelian Cherry (Cornus mas L.) Paste. Kafkas Universitesi Veteriner Fakültesi Dergisi, 23 (5): 691-697. https://doi.org/10.9775/kvfd.2016.17298.
Tural, S. and Koca, I., 2008. Physico-chemical and antioxidant properties of cornelian cherry fruits (Cornus mas L.) grown in Turkey, Scientia Horticulturae. 116:362–366. https://doi.org/10.1016 / j.scienta.2008.02.003.
Turkish Statistical Institute (TUIK), 2018. Plant production statistics. Ankara, Available at: https://ec.europa.eu › eurostat › documents › Turkey.
Vareed, S.K., Reddy, M.K., Schutzki, R.E. and Nair, M.G., 2006. Anthocyanins in Cornus alternifolia, Cornus controversa, Cornus kousa and Cornus florida fruits with health benefits, Life Sciences, 78:777–784. https://doi.org/10.1016 / j.lfs.2005.05.094.
Vardin, A.M., Khordadmehr, M., Heidari, R., Hedaiat-o-llah, N.H., Amirkhiz, M.B., and Abbasi,M.M., 2018. The Effects of Cornus mas Hydro-Methanolic Extract on Cisplatin Induced Nephrotoxicity in Rats. Pharmaceutical Sciences, 24, 97-103. https://doi.org/ 10.15171/PS.2018.15.
West, B. J., Deng, S., Jensen, C. J., Palu, A. K., and Berrio, L. F., 2012. Antioxidant, toxicity, and iridoid tests of processed Cornelian cherry fruits. International Journal of Food Science and Technology 47(7): 1392-1397. https://doi.org/10.1111/j.1365-2621.2012.02985.x.
Wu, V. C. H., Qiu, X., Bushway, A., and Harper, L., 2008. Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens. LWT - Food Science and Technology. 41: 1834-1841. . https://doi.org/10.1016/j.lwt.2008.01.001.
Xi, Y, Yu, M, Godoy, R, Hatch, G, Poitras, L, and Ekker, M., 2011. Transgenic zebrafish expressing green fluorescent protein in dopaminergic neurons of the ventral diencephalon. 240(11):2539-2547. https://doi.org/ 10.1002/dvdy.22742.
Yılmaz, K.U., Ercisli, S., Zengin, Y., Sengul, M. and Kafkas, E.Y., 2009. Preliminary characterization of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chemistry, 114: 408–412. https://doi.org/10.1016 / j.foodchem.2008.09.055.
Yigit, D. 2018. Antimicrobial and Antioxidant Evaluation of Fruit Extract from Cornus mas L. Aksaray University Journal of Science and Engineering, 2(1): 41-51. https://doi.org/10.29002/asujse. 329856.
Yildiz, O., and Alpaslan, M., 2012. Properties of Rose Hip Marmalades. Food Technology and Biotechnology, 50, 98–106.
Zargari, A., 1996. Medicinal Plants (in Persian) 6th ed. 3. Tehran University Publication, Tehran, pp. 538.
Zargari, A., 1997. Medicinal Plants, Part B. Tehran University Press, Tehran, pp. 643–645.