Ultra-weak photon emission: a nondestructive detection tool for food quality and safety assessment

Main Article Content

Mohammad Amin Nematollahi
Zahra Alinasab
Seyed Mehdi Nassiri
Amin Mousavi Khaneghah

Keywords

Ultra-weak photon emission; Reactive oxygen species; Oxidative stress; Defense mechanisms; food products

Abstract

A new aspect covering interactions between cells and their surroundings via electromagnetic waves was introduced by applying ultra-weak photon emission (UPE). The UPE originates from the relaxation of electronically excited species resulting from oxidative metabolic processes and oxidative stress associated with reactive oxygen species (ROS). The ROS plays a critical role in the quality of foods, and their determination is of extreme importance. The ROS and the intensity of the UPE have significantly correlated. The UPE can be effectively monitored by specific instruments such as photomultiplier tube and charged-coupled devices. The current review is devoted to providing an overview of the quality of food products by the aid of UPE via evaluating the correlations between UPE and food quality indices. In this regard, the UPE can be utilized in food quality as a real-time, noninvasive, and nondestructive technique without complex instruments. However, the implementation of the UPE method for evaluation of food quality needs further investigations.

Abstract 627 | PDF Downloads 96 XML Downloads 10 HTML Downloads 35

References

Abouzari, A. and Fakheri, B.A., 2015. Reactive oxygen species: generation, oxidative damage, and signal transduction. International Journal of Life Sciences 9(5): 3–17. https://doi.org/10.3126/ijls. v9i5.12699
Adam, W., Kazakov, D.V. and Kazakov, V.P., 2005. Singlet-oxygen chemiluminescence in peroxide reactions. Chemical Reviews 105(9): 3371–3387. https://doi.org/10.1021/cr0300035
Ahammed, G.J., Xu, W., Liu, A. and Chen, S., 2019, Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L. Environmental and Experimental Botany 161: 303–311. https://doi.org/10.1016/j. envexpbot.2018.06.006
Ahmad, P. (Ed.), 2013. Oxidative damage to plants—antioxidant networks and signaling. Elsevier, San Diego, CA.
Bailey-Serres, J. and Mittler, R., 2006. The roles of reactive oxygen species in plant cells. Plant Physiology 141: 311. https://doi. org/10.1104/pp.104.900191
Battin, E.E. and Brumaghim, J.L., 2009. Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochemistry and Biophysics 55(1): 1–23. https:// doi.org/10.1007/s12013-009-9054-7
Bennett, M., Mehta, M. and Grant, M., 2005. Biophoton imaging: a nondestructive method for assaying R gene responses. Molecular Plant-Microbe Interactions 18(2): 95–102. https:// doi.org/10.1094/MPMI-18-0095
Bischof, M., 2003. Introduction to integrative biophysics. In: Integrative biophysics. Springer, Dordrecht, Netherlands, pp. 1–115.
Bischof, M., 2005. Biophotons—the light in our cells. Journal of Optometric Phototherapy, pp. 1–5.
Burgos, R.C.R., Schoeman, J.C., van Winden, L.J., ?ervinková, K., Ramautar, R., Van Wijk, E.P., Cifra, M., Berger, R., Hankemeier, T. and van der Greef, J., 2017. Ultra-weak photon emission as a dynamic tool for monitoring oxidative stress metabolism. Scientific Reports 7(1):1–9. https://doi.org/10.1038/s41598-017-01229-x
Caverzan, A., Piasecki, C., Chavarria, G., Stewart, C.N. and Vargas, L., 2019. Defenses against ROS in crops and weeds: the effects of interference and herbicides. International Journal of Molecular Sciences 20(5): 1086. https://doi.org/10.3390/ijms20051086
Cheeseman, J., 2016. Food security in the face of salinity, drought, climate change, and population growth. In: Halophytes for food security in dry lands. Academic Press, San Diego, USA, pp. 111–123.
Chen, S., Guo, B., Zhang, G., Yan, Z., Luo, G., Sun, S., Wu, H., Huang, L., Pang, X. and Chen, J., 2012. Advances of studies on new technology and method for identifying traditional Chinese medicinal materials. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China Journal of Chinese Materia Medica 37(8): 1043–1055. https://doi.org/10.4268/CJCMM20120801
Chen, W., Xing, D., Wang, J. and He, Y., 2003. Rapid determination of rice seed vigour by spontaneous chemiluminescence and singlet oxygen generation during early imbibition. Luminescence: The Journal of Biological and Chemical Luminescence 18(1): 19–24. https://doi.org/10.1002/bio.695
Cifra, M., Fields, J.Z. and Farhadi, A., 2011. Electromagnetic cellular interactions. Progress in Biophysics and Molecular Biology 105(3): 223–246. https://doi.org/10.1016/j.pbiomolbio.2010.07.003
Cifra, M. and Pospíšil, P., 2014. Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. Journal of Photochemistry and Photobiology B: Biology 139: 2–10. https://doi.org/10.1016/j. jphotobiol.2014.02.009
Cordeiro, A., Fabris, J., Couto, G., Kalinowski, H. and Bertogna, E., 2017. Water assessment using ultra-weak bioluminescence. Journal of Photochemistry and Photobiology B: Biology 177: 39–43. https://doi.org/10.1016/j.jphotobiol.2017.10.014
de Mello Gallep, C. and Robert, D., 2020. Time-resolved ultra-weak photon emission as germination performance indicator in single seedlings. Journal of photochemistry and photobiology 1: 100001. https://doi.org/10.1016/j.jpap.2020.100001
Egawa, M., Kohno, Y. and Kumano, Y., 1999. Oxidative effects of cigarette smoke on the human skin. International Journal of Cosmetic Science 21(2): 83–98. https://doi. org/10.1046/j.1467-2494.1999.181656.x
El-Mesery, H.S., Mao, H. and Abomohra, A.E.-F., 2019. Applications of nondestructive technologies for agricultural and food products quality inspection. Sensors 19(4): 846. https://doi. org/10.3390/s19040846
Esmaeilpour, T., Fereydouni, E., Dehghani, F., Bókkon, I., Panjehshahin, M.-R., Császár-Nagy, N., Ranjbar, M. and Salari, V., 2020. An experimental investigation of ultraweak photon emission from adult murine neural stem cells. Scientific Reports 10: 1–13. https://doi.org/10.1038/s41598-019-57352-4
Evelson, P., Ordóñez, C.P., Llesuy, S. and Boveris, A., 1997. Oxidative stress and in vivo chemiluminescence in mouse skin exposed to UVA radiation. Journal of Photochemistry and Photobiology B: Biology 38(2–3): 215–219. https://doi. org/10.1016/S1011-1344(96)07437-4
Fedorova, G.F., Trofimov, A.V., Vasil’ev, R.F. and Veprintsev, T.L., 2007. Peroxyradical-mediated chemiluminescence: mechanistic diversity and fundamentals for antioxidant assay. Arkivoc 8, 163–215. https://doi.org/10.3998/ark.5550190.0008.815
Ga??zka-Czarnecka, I., Korzeniewska, E., Czarnecki, A., Sójka, M., Kie?basa, P. and Dró?d?, T., 2019. Evaluation of quality of eggs from hens kept in caged and free-range systems using traditional methods and ultra-weak luminescence. Applied Sciences 9(12): 2430. https://doi.org/10.3390/app9122430
Gallep, C., Conforti, E., Braghini, M., Maluf, M., Yan, Y. and Popp, F., 2004. Ultra-weak delayed luminescence in coffee seeds (Coffea arabica and C. canephora) and their germination poten-tial: some indications for a photonic approach in seed viability. Proceedings of 11th Brazilian Symposium of Microwave and Optoeletronics, São Paulo, Brazil, section p1–12.
Gallep, C. and Dos Santos, S., 2007. Photon-counts during germination of wheat (Triticum aestivum) in wastewater sediment solutions correlated with seedling growth. Seed Science and Technology 35(3): 607–614. https://doi.org/10.15258/ sst.2007.35.3.08
Gill, S.S. and Tuteja, N., 2010. Reactive oxygen species and anti-oxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48(12): 909–930. https://doi. org/10.1016/j.plaphy.2010.08.016
Giovenzana, V., Beghi, R., Civelli, R., Trapani, S., Migliorini, M., Cini, E., Zanoni, B. and Guidetti, R., 2017. Rapid determination of crucial parameters for the optimization of milling pro-cess by using visible/near infrared spectroscopy on intact olives and olive paste. Italian Journal of Food Science 29(2): 357–369. https://doi.org/10.14674/1120-1770/ijfs.v560
Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M. and Toulmin, C., 2010. Food security: the challenge of feed-ing 9 billion people. Science 327(5967): 812–818. https://doi. org/10.1126/science.1185383
Grashorn, M.A. and Egerer, U., 2007. Integrated assessment of qual-ity of chicken organic eggs by measurement of dark luminescence. Polish Journal of Food and Nutrition Sciences 57(4 [A]): 191–194.
Grasso, R., Gulino, M., Giuffrida, F., Agnello, M., Musumeci, F. and Scordino, A., 2018. Nondestructive evaluation of watermelon seeds germination by using delayed luminescence. Journal of Photochemistry and Photobiology B: Biology 187: 126–130. https://doi.org/10.1016/j.jphotobiol.2018.08.012
Gu, Q., 1999. On coherence theory of biophoton emission. Journal of the GCPD eV 5(17): 17–20.
Guo, J., Zhu, G., Li, L., Liu, H. and Liang, S., 2017. Ultraweak photon emission in strawberry fruit during ripening and aging is related to energy level. Open Life Sciences 12(1): 393–398. https://doi. org/10.1515/biol-2017-0046
Guo, Y. and Tan, J., 2013. A biophotonic sensing method for plant drought stress. Sensors and Actuators B: Chemical 188: 519– 524. https://doi.org/10.1016/j.snb.2013.07.020
Gupta, D.K., Palma, J.M. and Corpas, F.J., 2015. Reactive oxygen species and oxidative damage in plants under stress. Springer. Cham, Switzerland.
Hossu, M., Ma, L. and Chen, W., 2010. Nonlinear enhancement of spontaneous biophoton emission of sweet potato by silver nanoparticles. Journal of Photochemistry and Photobiology B: Biology 99: 44–48. https://doi.org/10.1016/j. jphotobiol.2010.02.002
Inagaki, H., Imaizumi, T., Wang, G.-X., Tominaga, T., Kato, K., Iyozumi, H. and Nukui, H., 2007. Spontaneous ultraweak photon emission from rice (Oryza sativa L.) and paddy weeds treated with a sulfonylurea herbicide. Pesticide Biochemistry and Physiology 89(2): 158–162. https://doi.org/10.1016/j. pestbp.2007.05.005
Inagaki, H., Imaizumi, T., Wang, G.-X., Tominaga, T., Kato, K., Iyozumi, H. and Nukui, H., 2009. Sulfonyl urea-resistant bio-types of Monochoria vaginalis generate higher ultraweak photon emissions than the susceptible ones. Pesticide Biochemistry and Physiology 95(3): 117–120. https://doi.org/10.1016/j. pestbp.2009.08.002
Inagaki, H., Ishida, Y., Uchino, A., Kato, K., Kageyama, C., Iyozumi, H. and Nukui, H., 2008. Difference in ultraweak photon emissions between sulfonylurea-resistant and sulfonylurea-sus-ceptible biotypes of Scirpus juncoides following the application of a sulfonylurea herbicide. Weed Biology and Management 8(2): 78–84. https://doi.org/10.1111/j.1445-6664.2008.00278.x
Iyozumi, H., Kato, K. and Makino, T., 2002. Spectral shift of ultraweak photon emission from sweet potato during a defense response. Photochemistry and Photobiology 75(3): 322–325. https://doi.org /10.1562/0031-8655(2002)075%3C0322:SSOUPE%3E2.0.CO;2
Jank?, M., Luhová, L. and Pet?ivalský, M., 2019. On the origin and fate of reactive oxygen species in plant cell compartments. Antioxidants 8(4): 105. https://doi.org/10.3390/antiox8040105
Jia, Y., Sun, M., Shi, Y., Zhu, Z., van Wijk, E., van Wijk, R., van Andel, T. and Wang, M., 2020. A comparative study of aged and contemporary Chinese herbal materials by using delayed luminescence technique. Chinese medicine 15: 6. https://doi. org/10.1186/s13020-020-0287-0
Kageyama, C., Kato, K., Iyozumi, H., Inagaki, H., Yamaguchi, A., Furuse, K. and Baba, K., 2006. Photon emissions from rice cells elicited by N-acetylchitooligosaccharide are generated through phospholipid signaling in close association with the production of reactive oxygen species. Plant Physiology and Biochemistry 44(11–12): 901–909. https://doi.org/10.1016/j. plaphy.2006.09.010
Kamal, A.H.M. and Komatsu, S., 2016. Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions. Molecular Biology Reports 43(2): 73–89. https://doi.org/10.1007/s11033-015-3940-4
Karuppanapandian, T., Moon, J.-C., Kim, C., Manoharan, K. and Kim, W., 2011. Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science 5(6): 709.
Kato, K., Iyozumi, H., Kageyama, C., Inagaki, H., Yamaguchi, A. and Nukui, H., 2014. Application of ultra-weak photon emission measurements in agriculture. Journal of Photochemistry and Photobiology B: Biology 139: 54–62. https://doi.org/10.1016/j. jphotobiol.2014.06.010
Kausar, R., Hossain, Z., Makino, T. and Komatsu, S., 2012. Characterization of ascorbate peroxidase in soybean under flooding and drought stresses. Molecular Biology Reports 39(12): 10573–10579. https://doi.org/10.1007/s11033-012-1945-9
Kehrer, J.P., 2000. The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 149(1): 43–50. https://doi.org/10.1016/ S0300-483X(00)00231-6
Khatoon, A., Rehman, S., Hiraga, S., Makino, T. and Komatsu, S., 2012. Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress. Journal of Proteomics 75(18): 5706–5723. https://doi. org/10.1016/j.jprot.2012.07.031
Kheiralipour, K., Ahmadi, H., Rajabipour, A., Rafiee, S., Javan-Nikkhah, M., Jayas, D. and Siliveru, K., 2016. Detection of fun-gal infection in pistachio kernel by long-wave near-infrared hyperspectral imaging technique. Quality Assurance and Safety of Crops and Foods 8(1): 129–135. https://doi.org/10.3920/ QAS2015.0606
Kobayashi, M., Sasaki, K., Enomoto, M. and Ehara, Y., 2006. Highly sensitive determination of transient generation of biophotons during hypersensitive response to cucumber mosaic virus in cowpea. Journal of Experimental Botany 58(3): 465–472. https:// doi.org/10.1093/jxb/erl215
Komatsu, S., Kamal, A.H.M., Makino, T. and Hossain, Z., 2014. Ultraweak photon emission and proteomics analyses in soybean under abiotic stress. Biochimica et Biophysica Acta (BBA)— Proteins and Proteomics 1844(7): 1208–1218.
Krieger-Liszkay, A., 2005. Singlet oxygen production in photosynthesis. Journal of Experimental Botany 56(411): 337–346.
Lambing, K., 1992. Biophoton measurement as a supplement to the conventional consideration of food quality. In: Popp, F. A., Li, K. H. and Gu, Q. (eds) Recent advances in biophoton research and its applications. World Scientific, Singapore, Singapore, pp. 393–413.
Liang, X., Wang, Z., Gao, M., Wu, S., Zhang, J., Liu, Q., Yu, Y., Wang, J. and Liu, W., 2019. Cyclic stretch-induced oxidative stress by mitochondrial and NADPH oxidase in retinal pigment epithelial cells. BMC Ophthalmology 19(1): 79. https://doi. org/10.1186/s12886-019-1087-0
Madl, P., 2014. Detection and measurement of biogenic ultra-weak photon emission. In: Fels, D., Cifra, M. and Scholkmann, F. (eds.) Field of the cells. Research Signpost, Trivandrum, Kerala, India. pp. 55–70.
Magwaza, L.S., Ford, H.D., Cronje, P.J., Opara, U.L., Landahl, S., Tatam, R.P. and Terry, L.A., 2013. Application of optical coherence tomography to non-destructively characterise rind break-down disorder of ‘Nules Clementine’ mandarins. Postharvest Biology and Technology 84: 16–21. https://doi.org/10.1016/j. postharvbio.2013.03.019
Makino, T., Kato, K., Lyozumi, H., Honzawa, H., Tachiiri, Y. and Hiramatsu, M., 1996. Ultraweak luminescence generated by sweet potato and Fusarium oxysporum interactions associated with a defense response. Photochemistry and Photobiology 64(6): 953–956. https://doi.org/10.1111/j.1751-1097.1996.tb01860.x
Mansfield, J.W., 2005. Biophoton distress flares signal the onset of the hypersensitive reaction. Trends in Plant Science 10(7): 307– 309. https://doi.org/10.1016/j.tplants.2005.05.007
Mayorga Burrezo, P., Jiménez, V.G., Blasi, D., Ratera, I., Campaña, A.G. and Veciana, J., 2019. Organic free radicals as circularly polarized luminescence emitters. Angewandte Chemie (International Edition) 58(45): 16282–16288. https:// doi.org/10.1002/anie.201909398
McCaig, C.D., Rajnicek, A.M., Song, B. and Zhao, M., 2005. Controlling cell behavior electrically: current views and future potential. Physiological Reviews 85(3): 943–978. https://doi. org/10.1152/physrev.00020.2004
McCarthy, U., Uysal, I., Melis, R.B., Mercier, S., Donnell, C.O. and Ktenioudaki, A., 2018. Global food security—issues, challenges and technological solutions. Trends in Food Science and Technology 77: 11–20. https://doi.org/10.1016/j.tifs.2018.05.002
Montillet, J.-L., Chamnongpol, S., Rustérucci, C., Dat, J., Van De Cotte, B., Agnel, J.-P., Battesti, C., Inzé, D., Van Breusegem, F. and Triantaphylides, C., 2005. Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco
leaves. Plant Physiology 138(3): 1516–1526. https://doi. org/10.1104/pp.105.059907
Moraes, T.A., Barlow, P.W., Klingelé, E. and Gallep, C.M., 2012. Spontaneous ultra-weak light emissions from wheat seedlings are rhythmic and synchronized with the time profile of the local gravimetric tide. Naturwissenschaften 99(6): 465–472. https:// doi.org/10.1007/s00114-012-0921-5
Mousavi Khaneghah, A., 2016. An overview on some of important sources of natural antioxidants. International Food Research Journal 23(3): 928–933.
Münzel, T., Sørensen, M., Schmidt, F., Schmidt, E., Steven, S., Kröller-Schön, S. and Daiber, A., 2018. The adverse effects of environmental noise exposure on oxidative stress and cardio-vascular risk. Antioxidants and Redox Signaling 28(9): 873–908. https://doi.org/10.1089/ars.2017.7118
Nakashima, Y., Ohta, S. and Wolf, A.M., 2017. Blue light-induced oxidative stress in live skin. Free Radical Biology and Medicine 108: 300–310. https://doi.org/10.1016/j. freeradbiomed.2017.03.010
Nawara, P., Gliniak, M., Popardowski, E., Szczuka, M. and Trzyniec, K., 2018. Control system of a prototype measurement system for the identification of ultra-low photonic emission of organic materials. Progress in Applied Electrical Engineering (PAEE), June 18–22, 2018. Koscielisko, Poland, pp. 35–37.
Nukui, H., Inagaki, H., Iyozumi, H. and Kato, K., 2013. Biophoton emissions in sulfonylureaherbicide-resistant weeds. In: Herbicides—advances in research, InTech Open Science, Rijeka, Croatia, pp. 219–235. http://dx.doi.org/10.5772/55846
Ohya, T., Kurashige, H., Okabe, H. and Kai, S., 2000. Early detection of salt stress damage by biophotons in red bean seedling. Japanese Journal of Applied Physics 39(6R): 3696. https://doi. org/10.1143/JJAP.39.3696
Ohya, T., Yoshida, S., Kawabata, R., Okabe, H. and Kai, S., 2002. Biophoton emission due to drought injury in red beans: possibility of early detection of drought injury. Japanese Journal of Applied Physics 41(7R): 4766. https://doi.org/10.1143/JJAP.41.4766
Omar, A. and MatJafri, M., 2013. Principles, methodologies and technologies of fresh fruit quality assurance. Quality Assurance and Safety of Crops and Foods 5(3): 257–271. https://doi. org/10.3920/QAS2012.0175
Ortega-Ojeda, F., Calcerrada, M., Ferrero, A., Campos, J. and Garcia-Ruiz, C., 2018. Measuring the human ultra-weak photon emission distribution using an electron-multiplying, charge-coupled device as a sensor. Sensors 18(4): 1152. https:// doi.org/10.3390/s18041152
Pitzschke, A., Forzani, C. and Hirt, H., 2006. Reactive oxygen species signaling in plants. Antioxidants and Redox Signaling 8(9– 10): 1757–1764. https://doi.org/10.1089/ars.2006.8.1757
Pospíšil, P., Prasad, A. and Rác, M., 2014. Role of reactive oxygen species in ultra-weak photon emission in biological systems. Journal of Photochemistry and Photobiology B: Biology 139: 11–23. https://doi.org/10.1016/j.jphotobiol.2014.02.008
Pospíšil, P., Prasad, A. and Rác, M., 2019. Mechanism of the forma-tion of electronically excited species by oxidative metabolic processes: role of reactive oxygen species. Biomolecules 9(7): 258. https://doi.org/10.3390/biom9070258
Prasad, A., Gouripeddi, P., Devireddy, H.R.N., Ovsii, A., Rachakonda, D.P., Wijk, R.V. and Pospíšil, P., 2020. Spectral Distribution of Ultra-Weak Photon Emission as a Response to Wounding in Plants: An In Vivo Study. Biology 9: 139. https:// doi.org/10.3390/biology9060139
Prasad, A. and Pospíšil, P., 2011. Linoleic acid-induced ultra-weak photon emission from Chlamydomonas reinhardtii as a tool for monitoring of lipid peroxidation in the cell membranes. PLoS One 6(7): 1–10. https://doi.org/10.1371/journal.pone.0022345
Prasad, A., Rossi, C., Lamponi, S., Pospíšil, P. and Foletti, A., 2014. New perspective in cell communication: Potential role of ultra-weak photon emission. Journal of Photochemistry and Photobiology B: Biology 139: 47–53. https://doi.org/10.1016/j. jphotobiol.2014.03.004
Prosekov, A.Y. and Ivanova, S.A., 2018. Food security: the challenge of the present. Geoforum 91: 73–77. https://doi.org/10.1016/j. geoforum.2018.02.030
Racchi, M.L., 2013. Antioxidant defenses in plants with attention to Prunus and Citrus spp. Antioxidants 2(4): 340–369. https://doi. org/10.3390/antiox2040340
Rafii-Tabar, H. and Rafieiolhosseini, N., 2015. Different aspects of ultra-weak photon emissions: a review article. Iranian Journal of Medical Physics 12(3): 137–144.
Rahnama, M., Tuszynski, J.A., Bokkon, I., Cifra, M., Sardar, P. and Salari, V., 2011. Emission of mitochondrial biophotons and their effect on electrical activity of membrane via microtubules. Journal of Integrative Neuroscience 10(1): 65–88. https://doi. org/10.1142/S0219635211002622
Rastogi, A. and Pospíšil, P., 2010. Effect of exogenous hydrogen per-oxide on biophoton emission from radish root cells. Plant phys-iology and biochemistry 48: 117–123. https://doi.org/10.1016/j. plaphy.2009.12.01
Rastogi, A. and Pospísil, P., 2011. Spontaneous ultraweak photon emission imaging of oxidative metabolic processes in human skin: effect of molecular oxygen and antioxidant defense system. Journal of Biomedical Optics 16(9): 096005. https://doi. org/10.1117/1.3616135
Rastogi, A. and Pospíšil, P., 2012. Production of hydrogen peroxide and hydroxyl radical in potato tuber during the necrotrophic phase of hemibiotrophic pathogen Phytophthora infestans infection. Journal of Photochemistry and Photobiology B: Biology 117: 202–206. https://doi.org/10.1016/j.jphotobiol.2013.03.012
Saeidfirozeh, H., Shafiekhani, A., Cifra, M. and Masoudi, A.A., 2018. Endogenous chemiluminescence from germinating arabidopsis thaliana seeds. Scientific Reports 8(1): 1–10. https://doi. org/10.1038/s41598-018-34485-6
Saikolappan, S., Kumar, B., Shishodia, G., Koul, S. and Koul, H.K., 2019. Reactive oxygen species and cancer: a complex interaction. Cancer Letters 452: 132–143. https://doi.org/10.1016/j. canlet.2019.03.020
Salari, V., Tuszynski, J., Bokkon, I., Rahnama, M. and Cifra, M., 2011. On the photonic cellular interaction and the electric activity of neurons in the human brain. Journal of Physics: Conference Series 329:1–9. https://doi.org/10.1088/1742-6596/329/1/012006
Salari, V., Valian, H., Bassereh, H., Bókkon, I. and Barkhordari, A., 2015. Ultraweak photon emission in the brain. Journal of Integrative Neuroscience 14(3): 419–429. https://doi. org/10.1142/S0219635215300012
Sauermann, G., Mei, W.P., Hoppe, U. and Stäb, F., 1999. Ultraweak photon emission of human skin in vivo: influence of topically applied antioxidants on human skin. In: Packer, L. (ed.) Methods in enzymology, Vol. 300. Elsevier, Amsterdam, the Netherlands, pp. 419–428.
Schinabeck, T.-M., Weigler, F., Flöter, E. and Mellmann, J., 2018. Variability in determination of the single kernel moisture con-tent of grain by means of TD-NMR spectroscopy. Quality Assurance and Safety of Crops and Foods 10(1): 75–82. https:// doi.org/10.3920/QAS2017.1149
Scholkmann, F., Fels, D. and Cifra, M., 2013. Non-chemical and non-contact cell-to-cell communication: a short review. American Journal of Translational Research 5(6): 586.
Shanei, A., Alinasab, Z., Kiani, A. and Nematollahi, M., 2017. Detection of ultraweak photon emission (UPE) from cells as a tool for pathological studies. Journal of Biomedical Physics and Engineering 7(4): 389.
Sies, H., Berndt, C. and Jones, D.P., 2017. Oxidative stress. Annual Review of Biochemistry 86: 715–748. https://doi.org/10.1146/ annurev-biochem-061516-045037
Singh, A., Yashavarddhan, M., Kalita, B., Ranjan, R., Bajaj, S., Prakash, H. and Gupta, M.L., 2017. Podophyllotoxin and rutin modulates ionizing radiation-induced oxidative stress and apop-totic cell death in mice bone marrow and spleen. Frontiers in Immunology 8: 183. https://doi.org/10.3389/fimmu.2017.00183
Slawinska, D. and Slawinski, J., 1997. Chemiluminescence of cereal products I. Kinetics, activation energy and effect of solvents. Journal of Bioluminescence and Chemiluminescence 12(5): 249–259. https://doi.org/10.1002/(SICI)1099-1271(199709/10) 12:5%3C249::AID-BIO453%3E3.0.CO;2-X
Slawinska, D. and S?awinski, J., 1998. Chemiluminescence of cereal products III. Two-dimensional photocount imaging of chemiluminescence. Journal of Bioluminescence and Chemiluminescence 13(1): 21–24. https://doi.org/10.1002/ (SICI)1099-1271(199801/02)13:1%3C21::AID-IO462%3E3.0. CO;2-H
Sun, M., Wang, S., Jing, Y., Li, L., He, M., Jia, Y., van Wijk, E., Wang, Y., Wang, Z. and Wang, M., 2019. Application of delayed luminescence measurements for the identification of herbal materials: a step toward rapid quality control. Chinese Medicine 14(1): 1–13. https://doi.org/10.1186/s13020-019-0269-2
Thannickal, V.J. and Fanburg, B.L., 2000. Reactive oxygen species in cell signaling. American Journal of Physiology—Lung Cellular and Molecular Physiology 279(6): L1005–L1028. https://doi. org/10.1152/ajplung.2000.279.6.L1005
Triglia, A., La Malfa, G., Musumeci, F., Leonardi, C. and Scordino, A., 1998. Delayed luminescence as an indicator of tomato fruit quality. Journal of Food Science 63(3): 512–515. https://doi.org/10.1111/j.1365-2621.1998.tb15775.x
Tripathy, B.C. and Oelmüller, R., 2012. Reactive oxygen species generation and signaling in plants. Plant Signaling and Behavior 7(12): 1621–1633. https://doi.org/10.4161/psb.22455
Tsuchida, K., Iwasa, T. and Kobayashi, M., 2019. Imaging of ultraweak photon emission for evaluating the oxidative stress of human skin. Journal of Photochemistry and Photobiology B: Biology 198: 111562. https://doi.org/10.1016/j. jphotobiol.2019.111562
Tsugane, K., Kobayashi, K., Niwa, Y., Ohba, Y., Wada, K. and Kobayashi, H., 1999. A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. The Plant Cell 11(7): 1195–1206. https:// doi.org/10.1105/tpc.11.7.1195
Van Wijk, R., 2001. Bio-photons and bio-communication. Journal of Scientific Exploration 15(2): 183–197.
Van Wijk, E.P., Van Wijk, R. and Bosman, S., 2010. Using ultra-weak photon emission to determine the effect of oligomeric proanthocyanidins on oxidative stress of human skin. Journal of Photochemistry and Photobiology B: Biology 98(3): 199–206. https://doi.org/10.1016/j.jphotobiol.2010.01.003
Velimirov, A., 2005. The consistently superior quality of carrots from one organic farm in Austria compared with conventional farms. Proccedings of the 15th IFOAM Organic World Congress “Researching and Shaping Sustainable Systems”, September 21–23, 2005, Adelaide, pp. 1–4.
Wang, J. and Yu, Y., 2009. Relationship between ultra-weak bioluminescence and vigour or irradiation dose of irradiated wheat. Luminescence: The Journal of Biological and Chemical Luminescence 24(4): 209–212. https://doi.org/10.1002/bio.1096
Xu, Y., Song, W., Zhou, P., Li, P. and Li, H., 2015. Morphological and microscopic characterization of five commonly used testacean traditional Chinese medicines. Acta Pharmaceutica Sinica B 5(4): 358–366. https://doi.org/10.1016/j.apsb.2015.03.014
Yang, M., Ding, W., Liu, Y., Fan, H., Bajpai, R.P., Fu, J., Pang, J., Zhao, X. and Han, J., 2017. Ultra-weak photon emission in healthy subjects and patients with type 2 diabetes: evidence for a non-invasive diagnostic tool. Photochemical and Photobiological Sciences 16(5): 736–743. https://doi.org/10.1039/C6PP00431H
Yang, M., Pang, J., Liu, J., Liu, Y., Fan, H. and Han, J., 2015. Spectral discrimination between healthy people and cold patients using spontaneous photon emission. Biomedical Optics Express 6(4): 1331–1339. https://doi.org/10.1364/BOE.6.001331
Yoshinaga, N., Kato, K., Kageyama, C., Fujisaki, K., Nishida, R. and Mori, N., 2006. Ultraweak photon emission from herbivory-injured maize plants. Naturwissenschaften 93(1): 38–41. https:// doi.org/10.1007/s00114-005-0059-9
Zhong, J. and Wang, X., 2019. An introduction to evaluation technologies for food quality. In: Evaluation technologies for food quality. Woodhead Publishing, Duxford, UK, pp. 1–3.