Nanobiotechnology for agricultural sustainability, and food and environmental safety

Main Article Content

Nadun H. Madanayake
Akbar Hossain http://orcid.org/0000-0003-0264-2712
Nadeesh M. Adassooriya

Keywords

Agriculture, input use efficiency, nanotechnology, food, environment

Abstract

Agricultural development has become a requisite to meet the food security of an increasing world population under changing climate for eliminating poverty and hunger. Recently, scientists recognized that human wellness and healthy life are going to face challenges in the near future because of the vulnerability of agriculture and nat-ural resources. It is due to imbalance and unnecessary use of synthetic agricultural inputs in traditional farming systems. Therefore, improved agricultural technology has to ensure, in traditional farming, safe agricultural produce and bringing down of environmental pollution. Recently, nanotechnology (NT) has been recognized as a promising next-generation technology in the field of agriculture. As an environment-friendly and economically viable tool, the potentiality of nanomaterials (NMs), such as nanosensors, nanopesticides, nanofertilizers, nanocarriers, nanochips, and nano-packaging, has shown great prospect in improving safe agricultural productivity and upholding of environmental safety. Because the use of NMs decreases imbalance and unconscious utilization of synthetic fertilizers and pesticides, this minimizes the loss of nutrients and lead to improved agricultural productivity thru the smooth distribution of fertilizers and pesticides, and also improving water and nutrient effi-ciency. The current review concentrates on the utilization of NT for agricultural sustainability and environmental safety.

Abstract 541 | PDF Downloads 190 XML Downloads 0 HTML Downloads 25

References

Abbasifar, A., Shahrabadi, F. and ValizadehKaji, B., 2020. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. Journal of Plant Nutrition 43(8): 1104–1118. https://doi.org/10.1080/01904167.2020.1724305
Abd El-Azeim, M.M., Sherif, M.A., Hussien, M.S., Tantawy, I.A.A. and Bashandy, S.O., 2020. Impacts of nano- and non-nanofertilizers on potato quality and productivity. Acta Ecologica Sinica 40(5): 388–397. https://doi.org/10.1016/j.chnaes.2019.12.007
Adeel, M., Farooq, T., White, J.C., Hao, Y., He, Z. and Rui, Y., 2021. Carbon-based nanomaterials suppress tobacco mosaic virus (TMV) infection and induce resistance in Nicotiana benthamiana. Journal of Hazardous Materials 404(PartA): 124167. https://doi.org/10.1016/j.jhazmat.2020.124167
Adel, M.M., Salem, N.Y., Abdel-Aziz, N.F. and Ibrahim, S.S., 2019. Application of new nano pesticide Geranium oil loaded-solid lipid nanoparticles for control the black cutworm Agrotis ipsilon (Hub.) (Lepi., Noctuidae). Eur Asian Journal of BioSciences 13(2): 1453–1461.
Afify, R.R., El-Nwehy, S.S., Bakry, A.B. and Abd El-Aziz, M.E., 2019. Response of peanut (Arachis hypogaea L.) crop grown on newly reclaimed sandy soil to foliar application of potassium nanofertilizer. Middle East Journal of Applied Sciences 9(1): 78–85.
Agarwal, A., Raheja, A., Natarajan, T.S. and Chandra, T.S., 2014. Effect of electrospun montmorillonite-nylon 6 nanofibrous membrane coated packaging on potato chips and bread. Innovative Food Science & Emerging Technologies 26: 424–430. https://doi.org/10.1016/j.ifset.2014.09.012
Ahmed, K., Mikhail, W.Z., Sobhy, H.M., Radwan, E.M.M., El Din, T.S. and Youssef, A., 2019. Effect of Lambda-Cyahalothrin as nanopesticide on cotton leafworm, Spodoptera littoralis (Boisd.). Egyptian Journal of Chemistry 62(7): 1263–1275.
Ajirloo, A.R., Shaaban, M. and Motlagh, Z.R., 2015. Effect of K nano-fertilizer and N bio-fertilizer on yield and yield components of tomato (Lycopersicon esculentum L.). International Journal of Advanced Biological and Biomedical Research 3(1): 138–143.
Alexandratos, N. and Bruinsma, J., 2012. World agriculture towards 2030/2050: the 2012 revision. ESA working paper No. 12-03, Agricultural Development Economics Division, FAO, Rome, Italy.
Alimohammadi, M., Panahpour, E. and Naseri, A., 2020. Assessing the effects of urea and nano-nitrogen chelate fertilizers on sugarcane yield and dynamic of nitrate in soil. Soil Science and Plant Nutrition 66(2): 352-359. https://doi.org/10.1080/00380768.2020.1727298
Anjali, C.H., Khan, S.S., Margulis-Goshen, K., Magdassi, S., Mukherjee, A. and Chandrasekaran, N., 2010. Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicology and Environmental Safety 73(8): 1932–1936. https://doi.org/10.1016/j.ecoenv.2010.08.039
Ardekani, M.R.S., Abdin, M.Z., Nasrullah, N. and Samim, Mohd, 2014. Calcium phosphate nanoparticles a novel non-viral gene delivery system for genetic transformation of tobacco. International Journal of Pharmacy and Pharmaceutical Sciences 6(6): 605–609.
Ashiq, A., Adassooriya, N.M., Sarkar, B., Rajapaksha, A.U., Ok, Y.S. and Vithanage, M., 2019a. Municipal solid waste biochar-bentonite composite for the removal of antibiotic ciprofloxacin from aqueous media. Journal of Environmental Management 236: 428–435. https://doi.org/10.1016/j.jenvman.2019.02.006
Ashiq, A., Sarkar, B., Adassooriya, N., Walpita, J., Rajapaksha, A.U., Ok, Y.S. and Vithanage, M., 2019b. Sorption process of municipal solid waste biochar-montmorillonite composite for ciprofloxacin removal in aqueous media. Chemosphere 236: 124384.
Baragaño, D., Alonso, J., Gallego, J.R., Lobo, M.C. and Gil-Díaz, M., 2020a. Magnetite nanoparticles for the remediation of soils co-contaminated with As and PAHs. Chemical Engineering Journal 399 (1): 125809. https://doi.org/10.1016/j.cej.2020.125809
Baragaño, D., Forján, R., Welte, L. and Gallego, J.L.R., 2020b. Nanoremediation of as and metals polluted soils by means of graphene oxide nanoparticles. Scientific Reports 10(1): 1–10. https://doi.org/10.1038/s41598-020-58852-4
Becaro, A.A., Puti, F.C., Correa, D.S., Paris, E.C., Marconcini, J.M. and Ferreira, M.D., 2015. Polyethylene films containing silver nanoparticles for applications in food packaging: characterization of physico-chemical and anti-microbial properties. Journal of Nanoscience and Nanotechnology 15(3): 2148–2156. https://doi.org/10.1166/jnn.2015.9721
Bollyn, J., Castelein, L. and Smolders, E., 2019. Fate and bioavailability of phosphorus loaded to iron oxyhydroxide nanoparticles added to weathered soils. Plant and Soil 438(1–2): 297–311. https://doi.org/10.1007/s11104-019-04008-x
Cao, L., Zhang, H., Cao, C., Zhang, J., Li, F. and Huang, Q., 2016. Quaternized chitosan-capped mesoporous silica nanoparticles as nanocarriers for controlled pesticide release. Nanomaterials 6(7): 126. https://doi.org/10.3390/nano6070126
Carbone, M., Donia, D.T., Sabbatella, G. and Antiochia, R., 2016. Silver nanoparticles in polymeric matrices for fresh food packaging. Journal of King Saud University-Science 28(4): 273–279. https://doi.org/10.1016/j.jksus.2016.05.004
Chandrika, K.P., Singh, A., Tumma, M.K. and Yadav, P., 2018. Nanotechnology prospects and constraints in agriculture. In: Environmental nanotechnology, Dasgupta, N., Ranjan, S., and Lichtfouse, E. (Eds.). Springer, Cham, Switzerland, pp. 159–186.
Chang, F.P., Kuang, L.Y., Huang, C.A., Jane, W.N., Hung, Y., Yue-ie, C.H. and Mou, C.Y., 2013. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. Journal of Materials Chemistry B 1(39): 5279–5287. https://doi.org/10.1039/c3tb20529k
Changmei, L., Chaoying, Z., Junqiang, W., Guorong, W. and Mingxuan, T., 2002. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science 21(3): 168–171.
Chhipa, H., 2017. Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters 15(1): 15–22. https://doi.org/10.1007/s10311-016-0600-4
Cota-Ruiz, K., Ye, Y., Valdes, C., Deng, C., Wang, Y., Hernández-Viezcas, J.A., Duarte-Gardea, M. and Gardea-Torresdey, J.L., 2020. Copper nanowires as nanofertilizers for alfalfa plants: understanding nano-bio systems interactions from microbial genomics, plant molecular responses and spectroscopic studies. Science of the Total Environment 742: 140572. https://doi.org/10.1016/j.scitotenv.2020.140572
Davarpanah, S., Tehranifar, A., Davarynejad, G., Abadía, J. and Khorasani, R., 2016. Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Scientia Horticulturae 210: 57–64. https://doi.org/10.1016/j.scienta.2016.07.003
Davis, D., Guo, X., Musavi, L., Lin, C.S., Chen, S.H. and Wu, V.C., 2013. Gold nanoparticle-modified carbon electrode biosensor for the detection of Listeria monocytogenes. Industrial Biotechnology 9(1): 31–36. https://doi.org/10.1089/ind.2012.0033
De, J., Pabst, C.R., Lepper, J., Schneider, R.G. and Schneider, K.R., 2019. Food safety on the farm–an overview of good agricultural practices. EDIS 2019(2): 1-5. https://doi.org/10.32473/edis-fs135-2019
Delfani, M., Baradarn Firouzabadi, M., Farrokhi, N. and Makarian, H., 2014. Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Communications in Soil Science and Plant Analysis 45(4): 530–540. https://doi.org/10.1080/00103624.2013.863911
Demirer, G.S., Zhang, H., Goh, N.S., González-Grandío, E. and Landry, M.P., 2019. Carbon nanotube-mediated DNA delivery without transgene integration in intact plants. Nature Protocols 14(10): 2954–2971. https://doi.org/10.1038/s41596-019-0208-9
Devi, P.V., Duraimurugan, P. and Chandrika, K.S.V.P., 2019. Chapter 10 - Bacillus thuringiensis-based nanopesticides for crop protection. In: Nano-Biopesticides Today and Future Perspectives, Editor(s): Opender Koul. Academic Press, Pages 249-260. https://doi.org/10.1016/B978-0-12-815829-6.00010-3
Dhlamini, B., Paumo, H.K., Katata-Seru, L. and Kutu, F.R., 2020. Sulphate-supplemented NPK nanofertilizer and its effect on maize growth. Materials Research Express 7(9): 095011. https://doi.org/10.1088/2053-1591/abb69d
Ditta, A. and Arshad, M., 2016. Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnology Reviews 5(2): 209–229. https://doi.org/10.1515/ntrev-2015-0060
El Sheikha, A.F., 2016. Mixing manure with chemical fertilizers, why? and what is after. Nutrition and Food Technology 2(1): 1-5. https://doi.org/10.16966/2470-6086.112
El Sheikha, A.F., Levin, R.E. and Xu, J. (eds.), 2018. Molecular techniques in food biology: safety, biotechnology, authenticity and traceability. John Wiley, , Hoboken, NJ.
Elizabath, A., Babychan, M., Mathew, A.M. and Syriac, G.M., 2019. Application of nanotechnology in agriculture. International Journal of Pure and Applied Bioscience 7(2): 131–139. https://doi.org/10.18782/2320-7051.6493
El-Ramady, H., Alshaal, T., Abowaly, M., Abdalla, N., Taha, H.S., Al-Saeedi, A.H., Shalaby, T., Amer, M., Fári, M., Domokos-Szabolcsy, É. and Sztrik, A., 2017. Nanoremediation for sustainable crop production. In: Nanoscience in food and agriculture, Ranjan, S., Dasgupta, N. and Lichtfouse, E. (Eds.), Vol. 5, Springer Nature, Cham, Switzerland, pp. 335–363. https://doi.org/10.1007/978-3-319-58496-6_12
Ensafi, A.A., Abarghoui, M.M. and Rezaei, B., 2014. Electrochemical determination of hydrogen peroxide using copper/porous silicon based non-enzymatic sensor. Sensors and Actuators B: Chemical 196: 398–405. https://doi.org/10.1016/j.snb.2014.02.028
Ernest, V., Shiny, P.J., Mukherjee, A. and Chandrasekaran, N., 2012. Silver nanoparticles: a potential nanocatalyst for the rapid degradation of starch hydrolysis by ?-amylase. Carbohydrate Research 352: 60–64. https://doi.org/10.1016/j.carres.2012.02.009
Fajardo, C., Sánchez-Fortún, S., Costa, G., Nande, M., Botías, P., García-Cantalejo, J., Mengs, G. and Martín, M., 2020. Evaluation of nanoremediation strategy in a Pb, Zn and Cd contaminated soil. Science of the Total Environment 706: 136041. https://doi.org/10.1016/j.scitotenv.2019.136041
Food and Agricultural Organization of United Nations (FAO), 2017. The future of food and agriculture – trends and challenges. FAO, Rome. Available at: http://www.fao.org/3/a-i6583e.pdf. Accessed on 05 January 2021.
Frazier, T.P., Burklew, C.E. and Zhang, B., 2014. Titanium dioxide nanoparticles affect the growth and micro RNA expression of tobacco (Nicotiana tabacum). Functional & Integrative Genomics 14(1): 75–83. https://doi.org/10.1007/s10142-013-0341-4
Fu, X., Fu, X., Wang, Q., Sheng, L., Huang, X., Ma, M. and Cai, Z., 2017. Fluorescence switch biosensor based on quantum dots and gold nanoparticles for discriminative detection of lysozyme. International Journal of Biological Macromolecules 103: 1155–1161. https://doi.org/10.1016/j.ijbiomac.2017.05.144
Gao, F., Hong, F., Liu, C., Zheng, L., Su, M., Wu, X., Yang, F., Wu, C. and Yang, P., 2006. Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biological Trace Element Research 111(1–3): 239–253. https://doi.org/10.1385/BTER:111:1:239
Gharehyakheh, S., Ahmeda, A., Haddadi, A., Jamshidi, M., Nowrozi, M., Zangeneh, M.M. and Zangeneh, A., 2020. Effect of gold nanoparticles synthesized using the aqueous extract of Satureja hortensis leaf on enhancing the shelf life and removing Escherichia coli O157: H7 and Listeria monocytogenes in minced camel’s meat: the role of nanotechnology in the food industry. Applied Organometallic Chemistry 34(4): e5492. https://doi.org/10.1002/aoc.5492
Gil-Díaz, M., Diez-Pascual, S., González, A., Alonso, J., Rodríguez-Valdés, E., Gallego, J.R. and Lobo, M.C., 2016. A nanoremediation strategy for the recovery of an as-polluted soil. Chemosphere 149: 137–145. https://doi.org/10.1016/j.chemosphere.2016.01.106
Gil-Díaz, M., Rodríguez-Valdés, E., Alonso, J., Baragaño, D., Gallego, J.R. and Lobo, M.C., 2019. Nanoremediation and long-term monitoring of brownfield soil highly polluted with As and Hg. Science of the Total Environment 675: 165–175.
Giorgetti, L., 2019. Effects of nanoparticles in plants: phytotoxicity and genotoxicity assessment. In: Nanomaterials in plants, algae and microorganisms, Tripathi, D.K., Ahmad, P., Sharma, S., Chauhan, D.K. and Dubey, N.K. (eds.), Academic Press, Cambridge, MA, pp. 65–87.
Goodrich-Schneider, R.M., Schneider, K.R. and Archer, D.L., 2006. Food safety on the farm – an overview of good agricultural practices. EDIS Publication #FSHN06-01, 2006(34). Available at: https://journals.flvc.org/edis/article/view/116316/114479. Accessed on 05 January 2021.
Gouda, S., Kerry, R.G., Das, G., Paramithiotis, S., Shin, H.S. and Patra, J.K., 2018. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research 206: 131–140. https://doi.org/10.1016/j.micres.2017.08.016
Guo, S. and Wang, E., 2007. Synthesis and electrochemical applications of gold nanoparticles. Analytica Chimica Acta 598(2): 181–192. https://doi.org/10.1016/j.aca.2007.07.054
Ha, N.M.C., Nguyen, T.H., Wang, S.L. and Nguyen, A.D., 2019. Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Research on Chemical Intermediates 45(1): 51–63. https://doi.org/10.1007/s11164-018-3630-7
Hao, Y., Xu, B., Ma, C., Shang, J., Gu, W., Li, W., Hou, T., Xiang, Y., Cao, W., Xing, B. and Rui, Y., 2019. Synthesis of novel mesoporous carbon nanoparticles and their phytotoxicity to rice (Oryza sativa L.). Journal of Saudi Chemical Society 23(1): 75–82. https://doi.org/10.1016/j.jscs.2018.05.003
He, M., Shi, H., Zhao, X., Yu, Y. and Qu, B., 2013. Immobilization of Pb and Cd in contaminated soil using nano-crystallite hydroxyapatite. Procedia Environmental Sciences 18: 657–665. https://doi.org/10.1016/j.proenv.2013.04.090
Ingle, A.P., Seabra, A.B., Duran, N. and Rai, M., 2014. Nanoremediation: a new and emerging technology for the removal of toxic contaminant from environment. In: Microbial biodegradation and bioremediation, Das, S. (ed.), Elsevier, Cambridge, MA, pp. 233–250.
Islam, S.M.F. and Karim, Z., 2019. World’s demand for food and water: the consequences of climate change. In: Desalination – challenges and opportunities, Farahani, M.H.D.A., Vatanpour, V. and Taheri, A.H. (eds.), IntechOpen. https://doi.org/10.5772/intechopen.85919
Jat, S.K., Bhattacharya, J. and Sharma, M.K., 2020. Nanomaterial based gene delivery: a promising method for plant genome engineering. Journal of Materials Chemistry B 8(19): 4165–4175. https://doi.org/10.1039/D0TB00217H
Jo, Y.K., Kim, B.H. and Jung, G., 2009. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease 93(10): 1037–1043. https://doi.org/10.1094/PDIS-93-10-1037
Kalia, A. and Kaur, H., 2019. Nano-biofertilizers: harnessing dual benefits of nano-nutrient and bio-fertilizers for enhanced nutrient use efficiency and sustainable productivity. In: Nanoscience for sustainable agriculture, Ranjan, S., Dasgupta, N. and Lichtfouse, E. (eds.),Springer Nature, Cham, Switzerland, pp. 51–73.
Khodaveisi, J., Banejad, H., Afkhami, A., Olyaie, E., Lashgari, S. and Dashti, R., 2011. Synthesis of calcium peroxide nanoparticles as an innovative reagent for in situ chemical oxidation. Journal of Hazardous Materials 192(3): 1437–1440. https://doi.org/10.1016/j.jhazmat.2011.06.060
Kottegoda, N., Madusanka, N. and Sandaruwan, C., 2016. Two new plant nutrient nanocomposites based on urea-coated hydroxyapatite: efficacy and plant uptake. Indian Journal of Agricultural Science 86: 494–499.
Kottegoda, N., Munaweera, I., Madusanka, N. and Karunaratne, V., 2011. A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Current Science 101(1): 73–78.
Kottegoda, N., Sandaruwan, C., Perera, P., Madusanka, N. and Karunaratne, V., 2014. Modified layered nanohybrid structures for the slow release of urea. Nanoscience & Nanotechnology – Asia 4(2): 94–102. https://doi.org/10.2174/221068120402150521124729
Kumar, R., Ashfaq, M. and Verma, N., 2018a. Synthesis of novel PVA–starch formulation-supported Cu–Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: controlled release of micronutrients. Journal of Materials Science 53(10): 7150–7164. https://doi.org/10.1007/s10853-018-2107-9
Kumar, S., Shukla, A., Baul, P.P., Mitra, A. and Halder, D., 2018b. Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packaging and Shelf Life 16: 178–184. https://doi.org/10.1016/j.fpsl.2018.03.008
Kwak, S.Y., Lew, T.T.S., Sweeney, C.J., Koman, V.B., Wong, M.H., Bohmert-Tatarev, K., Snell, K.D., Seo, J.S., Chua, N.H. and Strano, M.S., 2019. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nature Nanotechnology 14(5): 447–455. https://doi.org/10.1038/s41565-019-0375-4
León-Silva, S., Arrieta-Cortes, R., Fernández-Luqueño, F. and López-Valdez, F., 2018. Design and production of nanofertilizers. In: Agricultural nanobiotechnology, López-Valdez F. and Fernández-Luqueño F. (eds), Springer, Cham, Switzerland, pp. 17–31.
Liang, J., Wei, M., Wang, Q., Zhao, Z., Liu, A., Yu, Z. and Tian, Y., 2018. Sensitive electrochemical determination of hydrogen peroxide using copper nanoparticles in a polyaniline film on a glassy carbon electrode. Analytical Letters 51(4): 512–522. https://doi.org/10.1080/00032719.2017.1343832
Liu, F., Wen, L.X., Li, Z.Z., Yu, W., Sun, H.Y. and Chen, J.F., 2006. Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Materials Research Bulletin 41(12): 2268–2275. https://doi.org/10.1016/j.materresbull.2006.04.014
Liu, R. and Lal, R., 2014. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific Reports 4: 5686. https://doi.org/10.1038/srep05686
Liu, R., Zhang, H. and Lal, R., 2016. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water, Air, & Soil Pollution 227(1): 42. https://doi.org/10.1007/s11270-015-2738-2
Lomate, G.B., Dandi, B. and Mishra, S., 2018. Development of antimicrobial LDPE/Cu nanocomposite food packaging film for extended shelf life of peda. Food Packaging and Shelf Life 16: 211–219. https://doi.org/10.1016/j.fpsl.2018.04.001
Madanayake, N.H., Adassooriya, N.M. and Salim, N., 2021. The effect of hydroxyapatite nanoparticles on Raphanus sativus with respect to seedling growth and two plant metabolites. Environmental Nanotechnology, Monitoring & Management 15 (2021): 100404. https://doi.org/10.1016/j.enmm.2020.100404
Madusanka, N., de Silva, K.N. and Amaratunga, G., 2015. A curcumin activated carboxymethyl cellulose–montmorillonite clay nanocomposite having enhanced curcumin release in aqueous media. Carbohydrate Polymers 134: 695–699. https://doi.org/10.1016/j.carbpol.2015.08.030
Madusanka, N., Sandaruwan, C., Kottegoda, N., Sirisena, D., Munaweera, I., De Alwis, A., Karunaratne, V. and Amaratunga, G.A., 2017. Urea–hydroxyapatite-montmorillonite nanohybrid composites as slow-release nitrogen compositions. Applied Clay Science 150: 303–308. https://doi.org/10.1016/j.carbpol.2015.08.030
Mallampati, S.R., Mitoma, Y., Okuda, T., Sakita, S. and Kakeda, M., 2012. High immobilization of soil cesium using ball milling with nano-metallic Ca/CaO/NaH2 PO4: implications for the remediation of radioactive soils. Environmental Chemistry Letters 10(2): 201–207. https://doi.org/10.1007/s10311-012-0357-3
Mann, W., Lipper, L., Tennigkeit, T., McCarthy, N., Branca, G. and Paustian, K., 2009. Food security and agricultural mitigation in developing countries: options for capturing synergies. FAO, Rome. Available at: http://www.fao.org/3/i1318e/i1318e00.pdf. Accessed on 05 January 2021.
Mardalipour, M., Zahedi, H. and Sharghi, Y., 2014. Evaluation of nano biofertilizer efficiency on agronomic traits of spring wheat at different sowing date. Biological forum – An International Journal 6(2): 349–356.
Martin, N.H., Friedlander, A., Mok, A., Kent, D., Wiedmann, M. and Boor, K.J., 2014. Peroxide test strips detect added hydrogen peroxide in raw milk at levels affecting bacterial load. Journal of Food Protection 77(10): 1809–1813. https://doi.org/10.4315/0362-028X.JFP-14-074
Martirosyan, A. and Schneider, Y.J., 2014. Engineered nanomaterials in food: implications for food safety and consumer health. International Journal of Environmental Research and Public Health 11(6): 5720–5750. https://doi.org/10.3390/ijerph110605720
Millán, G., Agosto, F. and Vázquez, M., 2008. Use of clinoptilolite as a carrier for nitrogen fertilizers in soils of the Pampean regions of Argentina. International Journal of Agriculture and Natural Resources 35(3): 293–302.
Moaveni, P., Kiapour, H., Sani, B., Rajabzadeh, F. and Mozafari, H., 2020. Changes in some physiological traits and mucilage yield of sour tea (Hibiscus Sabdariffa L.)? under foliar application of magnesium and iron oxide nanoparticles. Iranian Journal of Plant Physiology 10(4): 3333–3341.
Mohamed, M.A. and Abd-Elsalam, K.A., 2019. Magnetic nanoparticles: aunique gene delivery system in plant science. In: Magnetic nanostructures, Abd-Elsalam, K., Mohamed, M.A., Prasad, R. (Eds.), Springer, Cham, Switzerland, pp. 95–108.
Mohanta, Y.K., Nayak, D., Biswas, K., Singdevsachan, S.K., Abd_Allah, E.F., Hashem, A., Alqarawi, A.A., Yadav, D. and Mohanta, T.K., 2018. Silver nanoparticles synthesized using wild mushroom show potential antimicrobial activities against food borne pathogens. Molecules 23(3): 655. https://doi.org/10.3390/molecules23030655
Mueller, N.C. and Nowack, B., 2010. Nanoparticles for remediation: solving big problems with little particles. Elements 6(6): 395–400. https://doi.org/10.2113/gselements.6.6.395
Palchoudhury, S., Jungjohann, K.L., Weerasena, L., Arabshahi, A., Gharge, U., Albattah, A., Miller, J., Patel, K. and Holler, R.A., 2018. Enhanced legume root growth with pre-soaking in ?-Fe2O3 nanoparticle fertilizer. RSC Advances 8(43): 24075–24083. https://doi.org/10.1039/C8RA04680H
Pandey, K., Anas, M., Hicks, V.K., Green, M.J. and Khodakovskaya, M.V., 2019. Improvement of commercially valuable traits of industrial crops by application of carbon-based nanomaterials. Scientific Reports 9(1): 1–14. https://doi.org/10.1038/s41598-019-55903-3
Pandey, K., Lahiani, M.H., Hicks, V.K., Hudson, M.K., Green, M.J. and Khodakovskaya, M., 2018. Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS One 13(8): e0202274. https://doi.org/10.1371/journal.pone.0202274
Panpatte, D.G., Jhala, Y.K., Shelat, H.N. and Vyas, R.V., 2016. Nanoparticles: the next generation technology for sustainable agriculture. In: Microbial inoculants in sustainable agricultural productivity, Singh, D.P., Singh, H.B. and Prabha, R. eds., Springer, New Delhi, India, pp. 289–300. https://doi.org/10.1007/978-81-322-2644-4_18
Parmar, P., Dave, B., Sudhir, A., Panchal, K. and Subramanian, R.B., 2013. Physiological, biochemical and molecular response of plants against heavy metals stress. International Journal of Current Research 5(1): 80–89.
Pascoli, M., Jacques, M.T., Agarrayua, D.A., Avila, D.S., Lima, R. and Fraceto, L.F., 2019. Neem oil-based nanopesticide as an environment-friendly formulation for applications in sustainable agriculture: an eco-toxicological perspective. Science of the Total Environment 677: 57–67. https://doi.org/10.1016/j.scitotenv.2019.04.345
Paulraj, M.G., Ignacimuthu, S., Gandhi, M.R., Shajahan, A., Ganesan, P., Packiam, S.M. and Al-Dhabi, N.A., 2017. Comparative studies of tripolyphosphate and glutaraldehyde cross-linked chitosan-botanical pesticide nanoparticles and their agricultural applications. International Journal of Biological Macromolecules 104: 1813–1819. https://doi.org/10.1016/j.ijbiomac.2017.06.043
Qin, Y., Liu, Y., Yuan, L., Yong, H. and Liu, J., 2019. Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocolloids 96: 102–111. https://doi.org/10.1016/j.foodhyd.2019.05.017
Raliya, R., Nair, R., Chavalmane, S., Wang, W.N. and Biswas, P., 2015. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7(12): 1584–1594. https://doi.org/10.1039/C5MT00168D
Ramírez-Rodríguez, G.B., Dal Sasso, G., Carmona, F.J., Miguel-Rojas, C., Pérez-de-Luque, A., Masciocchi, N., Guagliardi, A. and Delgado-López, J.M., 2020a. Engineering biomimetic calcium phosphate nanoparticles: a green synthesis of slow-release multinutrient (NPK) nanofertilizers. ACS Applied Bio Materials 3(3): 1344–1353. https://doi.org/10.1021/acsabm.9b00937
Ramírez-Rodríguez, G.B., Miguel-Rojas, C., Montanha, G.S., Carmona, F.J., Sasso, G.D., Sillero, J.C., Pedersen, J.S., Masciocchi, N., Guagliardi, A., Pérez-de-Luque, A. and Delgado-López, J.M., 2020b. Reducing nitrogen dosage in Triticum durumplants with urea-doped nanofertilizers. Nanomaterials 10(6): 1043. https://doi.org/10.3390/nano10061043
Ricci, F., Volpe, G., Micheli, L. and Palleschi, G., 2007. A review on novel developments and applications of immunosensors in food analysis. Analytica Chimica Acta 605(2): 111–129. https://doi.org/10.1016/j.aca.2007.10.046
Rizwan, M., Singh, M., Mitra, C.K. and Morve, R.K., 2014. Ecofriendly application of nanomaterials: nanobioremediation. Journal of Nanoparticles. Article ID 431787: 7. https://doi.org/10.1155/2014/43178
Rodino, S., Butu, M. and Butu, A., 2019. Application of biogenic silver nanoparticles for berries preservation. Digest Journal of Nanomaterials and Biostructures14: 601–606.
Roseline, T.A., Murugan, M., Sudhakar, M.P. and Arunkumar, K., 2019. Nanopesticidal potential of silver nanocomposites synthesized from the aqueous extracts of red seaweeds. Environmental Technology & Innovation 13: 82–93. https://doi.org/10.1016/j.eti.2018.10.005
Sanivada, S.K., Pandurangi, V.S. and Challa, M.M., 2017. Nanofertilizers for sustainable soil management. In: Nanoscience in food and agriculture 5. Sustainable Agriculture Reviews, Vol 26. Springer, Cham, Switzerland, pp. 267–307. http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-319-58496-6_10
Santos, C.A., Ingle, A.P. and Rai, M., 2020. The emerging role of metallic nanoparticles in food. Applied Microbiology and Biotechnology 104(6): 2373–2383. https://doi.org/10.1007/s00253-020-10372-x
Saravanakumar, K., Sathiyaseelan, A., Mariadoss, A.V.A., Xiaowen, H. and Wang, M.H., 2020. Physical and bioactivities of biopolymeric films incorporated with cellulose, sodium alginate and copper oxide nanoparticles for food packaging application. International Journal of Biological Macromolecules 153: 207–214. https://doi.org/10.1016/j.ijbiomac.2020.02.250
Sarkar, A., Sengupta, S. and Sen, S., 2019. Nanoparticles for soil remediation. In: Nanoscience and biotechnology for environmental applications, Gothandam, K.M., Ranjan, S., Dasgupta, N. and Lichtfouse, E. (eds.), Springer, Cham, Switzerland, pp. 249–262.
Sarlak, N., Taherifar, A. and Salehi, F., 2014. Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. Journal of Agricultural and Food Chemistry 62(21): 4833–4838. https://doi.org/10.1021/jf404720d
Sekhon, B.S., 2010. Food nanotechnology – an overview. Nanotechnology, Science and Applications 3: 1. https://doi.org/10.2147/NSA.S8677
Selyutina, O.Y., Khalikov, S.S. and Polyakov, N.E., 2020. Arabinogalactan- and glycyrrhizin-based nanopesticides as novel delivery systems for plant protection. Environmental Science and Pollution Research 27(6): 5864–5872. https://doi.org/10.1007/s11356-019-07397-9
Shaker, A.M., Zaki, A.H., Abdel-Rahim, E.F.M. and Khedr, M.H., 2017. TiO2 nanoparticles as an effective nanopesticide for cotton leaf worm. Agricultural Engineering International: CIGR Journal (Special Issue). pp. 61–68.
Shams, A.S., 2019. Foliar applications of nano chitosan–urea and inoculation with mycorrhiza on kohlrabi (Brassica oleracea Var. Gongylodes, L.). Journal of Plant Production 10(10): 799–805. https://doi.org/10.21608/jpp.2019.59469
Shebl, A., Hassan, A., Salama, D., Abd El-Aziz, M.E. and Abd Elwahed, M., 2019. Green synthesis of manganese zinc ferrite nanoparticles and their application as nanofertilizers for Cucurbita pepo L. Beilstein Archives 2019(1): 45. https://doi.org/10.3762/bxiv.2019.45.v1
Singh, R. and Singh, G.S., 2017. Traditional agriculture: a climate-smart approach for sustainable food production. Energy, Ecology and Environment 2: 296–316. https://doi.org/10.1007/s40974-017-0074-7
Singh, S., Singh, B.K., Yadav, S.M. and Gupta, A.K., 2015. Applications of nanotechnology in agricultural and their role in disease management. Research Journal of Nanoscience and Nanotechnology 5: 1–5. https://doi.org/10.3923/rjnn.2015.1.5
Slomberg, D.L. and Schoenfisch, M.H., 2012. Silica nanoparticle phytotoxicity to arabidopsis thaliana. Environmental Science & Technology 46(18): 10247–10254. https://doi.org/10.1021/es300949f
Solanki, P., Bhargava, A., Chhipa, H., Jain, N. and Panwar, J., 2015. Nano-fertilizers and their smart delivery system. In: Nanotechnologies in food and agriculture, Rai, M., Ribeiro, C., Mattoso, L. and Duran, N. (eds.), Springer, Cham, Switzerland, pp. 81–101.
Tamayo, L., Azócar, M., Kogan, M., Riveros, A. and Páez, M., 2016. Copper-polymer nanocomposites: an excellent and cost-effective biocide for use on antibacterial surfaces. Materials Science and Engineering: C 69: 1391–1409. https://doi.org/10.1016/j.msec.2016.08.041
Tarafdar, J.C., Raliya, R., Mahawar, H. and Rathore, I., 2014. Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricultural Research 3(3): 257–262. https://doi.org/10.1007/s40003-014-0113-y
United Nations, 2017. World population prospects: the 2017 revision: world population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. Department of Economic and Social Affairs, United Nations. Available at: https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html. Acceseed on 26 December 2020.
Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S.A., ur Rehman, H., Ashraf, I. and Sanaullah, M., 2020. Nanotechnology in agriculture: current status, challenges and future opportunities. Science of the Total Environment 721(2020): 137778. https://doi.org/10.1016/j.scitotenv.2020.137778
Vasconcelos, H., de Almeida, J.M., Saraiva, C., Jorge, P.A. and Coelho, L., 2019. Preliminary study for detection of hydrogen peroxide using a hydroxyethyl cellulose membrane. Proceedings of 7th International Symposium on Sensor Science, Napoli, Italy, 9–11 May 2019. Proceedings 15(1): 7. https://doi.org/10.3390/proceedings2019015007
Verma, M.S., Rogowski, J.L., Jones, L. and Gu, F.X., 2015. Colorimetric biosensing of pathogens using gold nanoparticles. Biotechnology Advances 33(6): 666–680. https://doi.org/10.1016/j.biotechadv.2015.03.003
Wuana, R.A. and Okieimen, F.E., 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Network ISRN Ecology. Article ID 402647 (2011): 1-20. https://doi.org/10.5402/2011/402647
Yoon, H.Y., Lee, J.G., Esposti, L.D., Iafisco, M., Kim, P.J., Shin, S.G., Jeon, J.R. and Adamiano, A., 2020 (Mar 31). Synergistic release of crop nutrients and stimulants from hydroxyapatite nanoparticles functionalized with humic substances: toward a multifunctional nanofertilizer. ACS Omega 5(12): 6598–6610. https://doi.org/10.1021/acsomega.9b04354
Yousaf, M., Li, J., Lu, J., Ren, T., Cong, R., Fahad, S. and Li, X., 2017. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Scientific Reports 7(1): 1–9. https://doi.org/10.1038/s41598-017-01412-0
Zhang, R., Meng, Z., Abid, M.A. and Zhao, X., 2019. Novel pollen magnetofection system for transformation of cotton plant with magnetic nanoparticles as gene carriers. In: Transgenic cotton, Zhang, B. (ed.), Humana Press, New York, NY, pp. 47–54.
Zhao, L., Hu, Q., Huang, Y., Fulton, A.N., Hannah-Bick, C., Adeleye, A.S. and Keller, A.A., 2017. Activation of antioxidant and detoxification gene expression in cucumber plants exposed to a Cu(OH)2 nanopesticide. Environmental Science: Nano 4(8): 1750–1760. https://doi.org/10.1039/C7EN00358G
Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N.A. and Munné-Bosch, S., 2019. Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Science 289: 110270. https://doi.org/10.1016/j.plantsci.2019.110270