Antifungal strains M1-8 and M6-4 as biocontrol agents against Aspergillus flavus on peanut kernels

Main Article Content

Yanjie Yi
Youtian Shan
Yu Lou
Zhiwen Ning
Qingyao Zhang
Yingao Yang
Yuqian Liang
Jinsheng Shi
Zhipeng Hou


Antifungal strain, Aspergillus flavus, Biocontrol, Identification, Peanut


Aspergillus flavus is the main pathogenic fungi for peanut kernels, and it has highly negative economic and health impacts. To explore the biological control agent against A. flavus, two antagonistic strains were screened from 70 bacteria isolates from moldy stuff and identified as Burkholderia plantarii M1-8 and Burkholderia glumae M6-4. In vitro pathogen inhibition determination indicated culture filtrates of M1-8 and M6-4 had distinct inhibition zones and could decrease the mycelial growth of A. flavus. Furthermore, the biocontrol assay showed moldy rates of peanut seeds treated with culture filtrate were much lower than that of the control group. The biocontrol -efficacy of M1-8 and M6-4 culture filtrate reached 88.6% and 84.2%, respectively, which were higher than that of the sorbic acid treatment group. Moreover, culture filtrate of M1-8 was tolerant to proteinase K, high light, pH and temperature (below 70°C), and had good stability of antifungal activity. The results indicate that these two antifungal strains could be used as biocontrol agents for controlling A. flavus during the peanut supply and -storage period.

Abstract 60 | PDF Downloads 67 HTML Downloads 0 XML Downloads 3


Andrade, J.P., de Souza, H.G., Ferreira, L.C., Cnockaert, M., De Canck, E., Wieme, A.D. et al., 2021. Burkholderia perseverans sp. Nov., a bacterium isolated from the restinga ecosystem, is a producer of volatile and diffusible compounds that inhibit plant pathogens. Brazilian Journal of Microbiology 52: 2145–2152. 10.1007/s42770-021-00560-w

Ben, K.S., Mejdoub-Trabelsi, B. and Tounsi, S., 2021. Biological-potential of Bacillus subtilis V26 for the control of Fusarium wilt and tuber dry rot on potato caused by Fusarium species and the promotion of plant growth. Biological Control 152. 10.1016/j.biocontrol.2020.104444

Cardoso, G.D., Augusto, O.M., Massahiro de Souza, S.I., Macagnan, R., Sartori, D., Helena, P.F.M., Cristina, F.M., and Yurie S.O.E., 2023. Aspergillus ochraceus biocontrol by Hanseniaspora opuntiae in vitro and on coffee fruits. Food research international (Ottawa, Ont.), 173 (Pt 2): 113388. 10.1016/j.foodres.2023.113388

Colombo, E.M., Kunova, A., Pizzatti, C., Saracchi, M., Cortesi, P. and Pasquali, M., 2019. Selection of an endophytic Streptomyces sp. Strain DEF09 from wheat roots as a biocontrol agent against Fusarium graminearum. Frontiers in Microbiology 10: 2356. 10.3389/fmicb.2019.02356

Dikmetas, D.N., Özer, H., and Karbancıoglu-Guler, F., 2023. Biocontrol Potential of Antagonistic Yeasts on In Vitro and In Vivo Aspergillus Growth and Its AFB1 Production. Toxins 15(6): 402. 10.3390/toxins15060402

Elshafie, H.S., Camele, I., Racioppi, R., Scrano, L., Iacobellis, N.S. and Bufo, S.A., 2012. In vitro antifungal activity of Burkholderia gladioli pv. agaricicola against some phytopathogenic fungi. International Journal of Molecular Sciences 13(12): 16291–302. 10.3390/ijms131216291

Elshafie, H.S., and Camele, I., 2021. An Overview of Metabolic Activity, Beneficial and Pathogenic Aspects of Burkholderia Spp. Metabolites 11: 321. 10.3390/metabo11050321

Elshafie, H.S., Sakr, S., Bufo, S.A. and Camele, I., 2017. An Attempt of Biocontrol the Tomato-Wilt Disease Caused by Verticillium dahliae Using Burkholderia gladioli pv. agaricicola and Its Bioactive Secondary Metabolites. International Journal of Plant Biology 8: 7263. 10.4081/pb.2017.7263

Guerrero, R., 2001. Bergey's manuals and the classification of prokaryotes. International Microbiology 4: 103–109. 10.1007/s101230100021

Gu L.S., Zhang K., Zhang N., Li X.Y. and Liu Z.Q. 2020. Control of the rubber anthracnose fungus Colletotrichum gloeosporioides using culture filtratio extract from Streptomyces deccanensis QY-3. Antonie. Van. Leeuwenhoek 113: 1573–1585. 10.1007/s10482-020-01465-8

Hasani Z.P., Moghimi H. and Hamedi J., 2018. Biosurfactant production by Mucor circinelloides: Environmental applications and surface-active properties. Engineering in Life Sciences 18: 317–325. 10.1002/elsc.201700149

Hertwig, A.M.V., Iamanaka, B.T., Amorim Neto, D.P., Rezende, J.B., Martins, L.M., Taniwaki, M.H. and Nascimento, M.S., 2020. Interaction of Aspergillus flavus and A. parasiticus with Salmonella spp. isolated from peanuts. International Journal of Food Microbiology 328: 108666. 10.1016/j.ijfoodmicro.2020.108666

Jamali, H., Sharma A., Roohi and Srivastava A. K., 2020. Biocontrol potential of Bacillus subtilis RH5 against sheath blight of rice caused by Rhizoctonia solani. Journal of Basic Microbiology 60(3): 268–280. 10.1002/jobm.201900347

Jiang B., Wang Z.Y., Xu C.X., Liu W.J. and Jiang D.H., 2019. Screening and identification of Aspergillus activity against Xanthomonas oryzae pv. oryzae and analysis of antifungal components. Journal of Microbiology 57: 597–605. 10.1007/s12275-019-8330-5

Kumar, A., Pathak, H., Bhadauria, S. and Sudan, J., 2021. Sudan Aflatoxin contamination in food crops: causes, detection, and management: a review. Food Production Processing and Nutrition 3: 17. 10.1186/s43014-021-00064-y

Kumar, S., Stecher, G. and Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33: 1870–1874. 10.1093/molbev/msw054

Li, S., Fang, X., Zhang, H., Zeng, Y. and Zhu, T., 2019. Screening of endophytic antagonistic bacterium from phellodendron amurense and their biocontrol effects against Canker Rot. Plant Pathology Journal 35(3): 234–242. 10.5423/PPJ.OA.09.2018.0187

Lyu, A., Yang, L., Wu, M., Zhang, J. and Li, G., 2020. High efficacy of the volatile organic compounds of Streptomyces yanglinensis 3-10 in suppression of Aspergillus contamination on peanut kernels. Frontiers in Microbiology 11: 142. 10.3389/fmicb.2020.00142

Mamo, F.T., Abate, B.A., Tesfaye, K., Nie, C., Wang, G. and Liu, Y., 2020. Mycotoxins in Ethiopia: A review on prevalence, economic and health impacts. Toxins (Basel) 12: 648. 10.3390/toxins12100648

Mohd Azuar Hamizan R., Jinap S., Nik Iskandar Putra S., Khozirah S., Norlia M. and Joshua Mark J., 2022. Antagonism of nonaflatoxigenic Aspergillus flavus isolated from peanuts against aflatoxigenic A. flavus growth and aflatoxin B1 production in vitro. Food Science & Nutrition 7. doi.10.1002/fsn3.2995

Moradi M., Rohani M., Fani S.R., Mosavian M.T.H., Probst C. and Khodaygan P., 2020. Biocontrol potential of native yeast strains against Aspergillus flavus and aflatoxin production in pistachio. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 37: 1963–1973. 10.1080/19440049.2020.1811901

Moon, Y.S., Kim, H.M., Chun, H.S. and Lee, S.E., 2018. Organic acids suppress aflatoxin production via lowering expression of aflatoxin biosynthesis-related genes in Aspergillus flavus. Food Control 88: 207–216. 10.1016/j.foodcont.2018.01.017

Muhialdin, B.J., Algboory, H.L., Kadum, H., Mohammed, N.K., Saari, N., Hassan, Z. and Meor Hussin, A.S., 2020. Antifungal activity determination for the peptides generated by Lactobacillus plantarum TE10 against Aspergillus flavus in maize seeds. Food Control 109: 106898. 10.1016/j.foodcont.2019.106898

Perin, L., Martinez-aguilar, L., Paredes-Valdez, G., Baldani, J.I., Estrada-de los, S., Reis, V.M. and Caballero-Mellado, J., 2006. Burkholderia silvatlantica sp. nov. a diazotrophic bacterium associated with sugar cane and maize. International Journal of Systematic and Evolutionary Microbiology 56: 1931–1937. 10.1099/ijs.0.64362-0

Shabeer, S., Asad, S., Jamal, A. and Ali, A., 2022. Aflatoxin Contamination, Its Impact and Management Strategies: An Updated Review. Toxins 14: 307. 10.3390/toxins14050307

Shi, J.F. and Sun, C.Q., 2017. Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest. Brazilian Journal of Microbiology 48: 706–714. 10.1016/j.bjm.2017.03.002

Sun, D., Mao, J., Wang, Z., Li, H., Zhang, L., Zhang, W., Zhang, Q. and Li, P., 2021. Inhibition of Aspergillus flavus growth and aflatoxins production on peanuts over α-Fe2O3 nanorods under sunlight irradiation. International journal of food microbiology 353: 109296. 10.1016/j.ijfoodmicro.2021.109296

von Hertwig, A.M., Iamanaka, B.T., Amorim Neto, D.P., Rezende, J.B., Martins, L.M., Taniwaki, M.H. and Nascimento, M.S., 2020. Interaction of Aspergillus flavus and A. parasiticus with Salmonella spp. isolated from peanuts. International Journal of Food Microbiology 328: 108666. 10.1016/j.ijfoodmicro.2020.108666

Wang X.Y., Zhou X.N., Cai Z.B., Guo L., Chen X.L., Chen X., Liu J.Y., Feng M.F., Qiu Y.W., Zhang Y. and Wang A., 2020. A biocontrol strain of Pseudomonas aeruginosa CQ-40 promote growth and control Botrytis cinerea in Tomato. Pathogens 10: 22. 10.3390/pathogens10010022

Ma W.B., Johnson E.T., 2021. Natural flavour (E, E)-2,4-heptadienal as a potential fumigant for control of Aspergillus flavus in stored peanut seeds: Finding new antifungal agents based on preservative sorbic acid. Food Control 124: 107938. 10.1016/j.foodcont.2021.107938

WoldemariamYohannes, K., Wan, Z., Yu, Q.L., Li, H.Y., Wei, X.T., Liu, Y.L., Wang, J. and Sun, B.G., 2020. Prebiotic, antagonistic, antimicrobial, and functional food applications of Bacillus amyloliquefaciens. Journal of agricultural and food chemistry 68: 14709–14727. 10.1021/acs.jafc.0c06396

Xu, Y.H., Dong, H.Y., Liu, C.X., Lou, H.W., Zhao, R.Y., 2023. Efficient Aflatoxin B1 degradation by a novel isolate, Pseudomonas aeruginosa M-4, Food Control 149: 109679 10.1016/j.foodcont.2023.109679

Yi, Y., Luan, P., Liu, S., Shan, Y., Hou, Z., Zhao, S., Jia, S. and Li, R., 2022. Efficacy of Bacillus subtilis XZ18-3 as a biocontrol agent against Rhizoctonia cerealis on wheat. Agriculture (Basel) 12: 258. 10.3390/agriculture12020258

Yi, Y., Shan, Y., Liu, S., Yang, Y., Liu, Y., Yin, Y., Hou, Z., Luan, P. and Li, R., 2021. Antagonistic strain Bacillus amyloliquefaciens XZ34-1 for controlling Bipolaris sorokiniana and promoting growth in wheat. Pathogens 10: 1526. 10.3390/pathogens10111526

Zadravec, M., Markov, K., Leši´c, T., Frece, J., Petrovi´c, D. and Pleadin, J., 2022. Biocontrol methods in avoidance and downsizing of mycotoxin contamination of food crops. Processes 10: 655. 10.3390/pr10040655

Zakry, F.A.A.; Shamsuddin, Z.H.; Rahim, K.A.; Zakaria, Z.Z. and Rahim, A.A., 2012. Inoculation of Bacillus sphaericus UPMB-10 to young oil palm and measurement of its uptake of fixed nitrogen using the N-15 isotope dilution technique. Microbes and Environments 27: 257–262. 10.1264/jsme2.ME11309

Zeidan, R., Ul-Hassan, Z., Al-Thani, R., Migheli, Q. and Jaoua, S., 2019. In vitro application of a qatari Burkholderia cepacia strain (QBC03) in the biocontrol of mycotoxigenic fungi and in the reduction of ochratoxin a biosynthesis by Aspergillus carbonarius. Toxins (Basel) 11: 700. 10.3390/toxins11120700

Zhang, X.C., Guo, X.J., Wu, C.H., Li, C.C., Zhang, D.D. and Zhu, B.C., 2020. Isolation, heterologous expression, and purification of a novel antifungal protein from Bacillus subtilis strain Z-14. Microbial Cell Factories 19: 214. 10.1186/s12934-020-01475-1