Quality assessment of black ginseng materials utilizing chemometrics and modeling inflammation in Zebrafish
Main Article Content
Keywords
black ginseng, ginsenoside, immune response, inflammatory models, quality assessment
Abstract
Black ginseng is a novel variant of processed ginseng that is produced by subjecting ginseng to a series of nine steaming and drying cycles. However, the precise connection between the processing cycle and the quality of black ginseng remains uncertain, and further investigation is required to establish the association between quality markers and biological activity. In this research, high-performance liquid chromatography was employed to analyze the composition of 17 ginsenosides present in samples of black ginseng. The anti-inflammatory properties of black ginseng saponin extract were tested utilizing a zebrafish tail fin amputation model. The findings indicate that the concentrations of Rg3, Rg5, and Rk1 in black ginseng samples exhibited their highest levels following the seventh processing cycle, hence demonstrating the most effective regulatory impact on neutrophils and macrophages. This study posits that the correlation between these three ginsenoside and biological activities could potentially serve as a crucial factor in ensuring the quality control of black ginseng, thereby contributing to the advancement of quality control measures for health foods and dietary supplements that utilize black ginseng as their primary constituent.
References
Choi, P., Park, J.Y., Kim, T., Park, S.-H., Kim, H.-k., Kang, K.S., et al. 2015. Improved anticancer effect of ginseng extract by microwave-assisted processing through the generation of ginsenosides Rg3, Rg5 and Rk1. Journal of Functional Foods 14: 613–622. 10.1016/j.jff.2015.02.038
Commission, C.P. 2020. Pharmacopoeia of the People’s Republic of China. Beijing: China Medical Science Press.
Commission, E.P. 2016. European Pharmacopoeia. Strasbourg: European Directorate for the Quality of Medicines & HealthCare.
Committee, J.P.E. 2011. Japanese Pharmacopoeia. Tokyo: Ministry of Health and Welfare Press, Japan.
Committee, K.P. 2013. Korean Pharmacopoeia. Seoul: Korea Food and Drug Administration.
Convention, U.S.P. 2000. United States Pharmacopeia & National Formulary. Rockville: The United States Pharmacopeial Convention.
Elshafay, A., Tinh, N.X., Salman, S., Shaheen, Y.S., Othman, E.B., Elhady, M.T., et al.. 2017. Ginsenoside Rk1 bioactivity: A systematic review. Peer J 5. 10.7717/peerj.3993
He, M., Halima, M., Xie, Y., Schaaf, M.J.M., Meijer, A.H. and Wang, M. 2020. Ginsenoside Rg1 acts as a selective glucocorticoid receptor agonist with anti-inflammatory action without affecting tissue regeneration in zebrafish larvae. Cells 9(5). 10.3390/cells9051107
He, M., Huang, X., Liu, S., Guo, C., Xie, Y., Meijer, A.H., et al. 2018. The difference between white and red ginseng: Variations in ginsenosides and immunomodulation. Planta Medica 84(12/13): 845–854. 10.1055/a-0641-6240
Heo, H., Kim, Y., Cha, B., Brito, S., Kim, H., Kim, H., et al. 2023. A systematic exploration of ginsenoside Rg5 reveals anti--inflammatory functions in airway mucosa cells. Journal of Ginseng Research 47(1): 97–105. 10.1016/j.jgr.2022.06.001
Hu, J.-N., Xu, X.-Y., Li, W., Wang, Y.-M., Liu, Y., Wang, Z., et al. 2019. Ginsenoside Rk1 ameliorates paracetamol-induced hepatotoxicity in mice through inhibition of inflammation, oxidative stress, nitrative stress and apoptosis. Journal of Ginseng Research 43(1): 10–19. 10.1016/j.jgr.2017.07.003
Huang, L., Li, H.-J. and Wu, Y.-C. 2023. Processing technologies, phytochemistry, bioactivities and applications of black ginseng-a novel manufactured ginseng product: A comprehensive review. Food Chemistry 407. 10.1016/j.foodchem.2022.134714
In, G., Ahn, N.-G., Bae, B.-S., Lee, M.-W., Park, H.-W., Jang, K.H., et al. 2017. In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng. Journal of Ginseng Research 41(3): 361–369. 10.1016/j.jgr.2016.07.004
Jin, Y., Kim, J.H., Hong, H.-D., Kwon, J., Lee, E.J., Jang, M., et al. 2018. Ginsenosides Rg5 and Rk1, the skin-whitening agents in black ginseng. Journal of Functional Foods 45: 67–74. 10.1016/j.jff.2018.03.036
Jin, Y., Kim, Y.J., Jeon, J.N., Wang, C., Min, J.W., Noh, H.Y., et al. 2015. Effect of white, red and black ginseng on physicochemical properties and ginsenosides. Plant Foods for Human Nutrition70(2): 141–145. 10.1007/s11130-015-0470-0
Jo, E.-J., Kang, S.-J. and Kim, A.-J. 2009. Effects of steam-and dry-processing temperatures on the benzo (a) pyrene content of black and red ginseng. The Korean Journal of Food and Nutrition 22(2): 199–204.
Jo, S.K., Kim, I.S., Yoon, K.S., Yoon, H.H. and Yoo, H.H. 2014. Preparation of ginsenosides Rg3, Rk1, and Rg5-selectively enriched ginsengs by a simple steaming process. European Food Research and Technology 240(1): 251–256. 10.1007/s00217-014-2370-1
Kang, S., Park, S.-J., Lee, A.-Y., Huang, J., Chung, H.-Y. and Im, D.-S. 2018. Ginsenoside Rg3 promotes inflammation resolution through M2 macrophage polarization. Journal of Ginseng Research 42(1): 68–74. 10.1016/j.jgr.2016.12.012
Kang, T., Dou, D. and Xu, L. 2019. Establishment of a quality marker (Q-marker) system for Chinese herbal medicines using burdock as an example. Phytomedicine 54: 339–346. 10.1016/j.phymed.2018.04.005
Kim, D.-K., Baik, M.-Y., Kim, H.-K., Hahm, Y.-T. and Kim, B.-Y. 2013. Standardization of ginseng processing for maximizing the phytonutrients of ginseng. Food Science and Biotechnology 22(S1): 221–226. 10.1007/s10068-013-0070-4
Kim, H., Choi, P., Kim, T., Kim, Y., Song, B.G., Park, Y.T., et al. 2021. Ginsenosides Rk1 and Rg5 inhibit transforming growth factor--beta1-induced epithelial-mesenchymal transition and suppress migration, invasion, anoikis resistance, and development of stem-like features in lung cancer. Journal of Ginseng Research 45(1): 134–148. 10.1016/j.jgr.2020.02.005
Kim, H.-J., Jeong, D.-S. and Ju, H.-G. 1985. The effect of honey concentration on the quality of honeyed ginseng in the process of manufacturing honeyed ginseng. Journal of Ginseng Research 9(1): 128–134.
Kim, H.J., Lee, J.Y., You, B.R., Kim, H.R., Choi, J.-E., Nam, K.-Y., et al. 2011. Antioxidant activities of ethanol extracts from black ginseng prepared by steaming-drying cycles. Journal of the Korean Society of Food Science and Nutrition 40(2): 156–162. 10.3746/jkfn.2011.40.2.156
Kim, T.-W., Joh, E.-H., Kim, B. and Kim, D.-H. 2012. Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. International Immunopharmacology 12(1): 110–116. 10.1016/j.intimp.2011.10.023
Lee, B., Sur, B., Park, J., Kim, S.-H., Kwon, S., Yeom, M., et al. 2013a. Ginsenoside rg3 alleviates lipopolysaccharide-induced learning and memory impairments by anti-inflammatory activity in rats. Biomolecules & Therapeutics 21(5): 381–390. 10.4062/biomolther.2013.053
Lee, B.M. and Shim, G.A. 2007. Dietary exposure estimation of benzo[a]pyrene and cancer risk assessment. Journal of Toxicology and Environmental Health, Part A 70(15–16): 1391–1394. 10.1080/15287390701434182
Lee, S.M., Bae, B.S., Park, H.W., Ahn, N.G., Cho, B.G., Cho, Y.L., et al. 2015. Characterization of Korean Red Ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition. Journal of Ginseng Research 39(4): 384–391. 10.1016/j.jgr.2015.04.009
Lee, Y., Park, J.-S., Jung, J.-S., Kim, D.-H. and Kim, H.-S. 2013b. Anti-inflammatory effect of ginsenoside Rg5 in lipopolysaccharide-stimulated BV2 microglial cells. International Journal of Molecular Sciences 14(5): 9820–9833. 10.3390/ijms14059820
Lee, Y.S., Kim, K.W., Yoon, D., Kim, G.S., Kwon, D.Y., Kang, O.H., et al. 2021. Comparison of antivirulence activities of black ginseng against methicillin-resistant Staphylococcus aureus according to the number of repeated steaming and drying cycles. Antibiotics (Basel) 10(6). 10.3390/antibiotics10060617
Li, W., Yan, M.-H., Liu, Y., Liu, Z., Wang, Z., Chen, C., et al. 2016. Ginsenoside Rg5 ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of inflammation, oxidative stress, and apoptosis. Nutrients 8(9): 566. 10.3390/nu8090566
Likas, A., Vlassis, N. and Verbeek, J.J. 2003. The global k-means-clustering algorithm. Pattern Recognition 36(2): 451–461. 10.1016/S0031-3203(02)00060-2
Lim, S.-I., Cho, C.-W., Choi, U.-K. and Kim, Y.-C. 2010. Antioxidant activity and ginsenoside pattern of fermented white ginseng. Journal of Ginseng Research 34(3): 168–174. 10.5142/jgr.2010.34.3.168
Metwaly, A.M., Lianlian, Z., Luqi, H. and Deqiang, D. 2019. Black ginseng and its saponins: Preparation, phytochemistry and pharmacological effects. Molecules 24(10). 10.3390/molecules24101856
Nam, K.-Y., Lee, N.-R., Moon, B.-D., Song, G.-Y., Shin, H.-S. and Choi, J.-E. 2012. Changes of ginsenosides and color from black ginsengs prepared by steaming-drying cycles. Korean Journal of Medicinal Crop Science 20(1): 27–35. 10.7783/kjmcs.2012.20.1.027
Oh, H.B., Lee, J.W., Lee, D.E., Na, S.C., Jeong, D.E., Hwang, D.I., et al. 2021. Characteristics of black ginseng (Panax ginseng CA Mayer) production using ginseng stored at low temperature after harvest. Metabolites 11(2): 98. 10.3390/metabo11020098
Paek, J.-K., Kim, J.-H. and Yoon, S.-J. 2006. Quality characteristics of ginseng Jung Kwa after different soaking times in sugar syrup. Korean Journal of Food and Cookery Science. 22(6): 792–798.
Pang, Z., Zhou, G., Ewald, J., Chang, L., Hacariz, O., Basu, N., et al. 2022. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nature Protocols 17(8): 1735–1761. 10.1038/s41596-022-00710-w
Park, E.H., Kim, Y.J., Yamabe, N., Park, S.H., Kim, H.K., Jang, H.J., et al. 2014. Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell. Journal of Ginseng Research 38(1): 22–27. 10.1016/j.jgr.2013.11.007
Park, J.S., Kim, S.H., Han, K.M., Kim, Y.S., Kwon, E., Paek, S.H., et al., 2022. Efficacy and safety evaluation of black ginseng (Panax ginseng C.A. Mey.) extract (CJ EnerG): broad spectrum cytotoxic activity in human cancer cell lines and 28-day repeated oral toxicity study in Sprague-Dawley rats. BMC Complementary Medicine and Therapies. 22(1): 44. 10.1186/s12906-022-03522-3.
Park, J.Y., Choi, P., Kim, T., Ko, H., Kim, H.K., Kang, K.S., et al. 2015. Protective effects of processed ginseng and its active ginsenosides on cisplatin-induced nephrotoxicity: In vitro and in vivo studies. Journal of Agricultural and Food Chemistry 63(25): 5964–5969. 10.1021/acs.jafc.5b00782
Piao, X.M., Huo, Y., Kang, J.P., Mathiyalagan, R., Zhang, H., Yang, D.U., et al. 2020. Diversity of ginsenoside profiles produced by various processing technologies. Molecules 25(19). 10.3390/molecules25194390
Ratan, Z.A., Haidere, M.F., Hong, Y.H., Park, S.H., Lee, J.-O., Lee, J., et al. 2021. Pharmacological potential of ginseng and its major component ginsenosides. Journal of Ginseng Research 45(2): 199–210. 10.1016/j.jgr.2020.02.004
Riaz, M., Rahman, N.U., Zia-Ul-Haq, M., Jaffar, H.Z.E. and Manea, R. 2019. Ginseng: A dietary supplement as immune-modulator in various diseases. Trends in Food Science & Technology 83: 12–30. 10.1016/j.tifs.2018.11.008
Ryoo, N., Rahman, M.A., Hwang, H., Ko, S.K., Nah, S.Y., Kim, H.C., et al. 2020. Ginsenoside Rk1 is a novel inhibitor of NMDA receptors in cultured rat hippocampal neurons. Journal of Ginseng Research 44(3): 490–495. 10.1016/j.jgr.2019.04.002
Shen, W., Wei, Y., Tang, D., Jia, X. and Chen, B. 2017. Metabolite profiles of ginsenosides Rk1 and Rg5 in zebrafish using ultraperformance liquid chromatography/quadrupole–time-of-flight MS. Journal of Ginseng Research 41(1): 78–84. 10.1016/j.jgr.2015.12.010
Sun, B.-S., Gu, L.-J., Fang, Z.-M., Wang, C.-y., Wang, Z., Lee, M.-R., et al. 2009. Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC–ELSD. Journal of Pharmaceutical and Biomedical Analysis 50(1): 15–22. 10.1016/j.jpba.2009.03.025
Sun, M., Chang, W.-T., Van Wijk, E., He, M., Van Wijk, R. and Wang, M. 2018. Application of delayed luminescence method on measuring of the processing of Chinese herbal materials. Chinese Medicine 13(1). 10.1186/s13020-018-0202-0
Sun, M., He, M., Korthout, H., Halima, M., Kim, H.K., Yan, Y., et al. 2020. Characterization of ginsenoside extracts by delayed luminescence, high-performance liquid chromatography, and bioactivity tests. Photochemical & Photobiological Sciences 18(5): 1138–1146. 10.1039/c8pp00533h
Wang, G., Dong, C., Shang, Y., Sun, Y.-a., Fu, D. and Zhao, J. 2009. Characterization of radix rehmanniae processing procedure using FT-IR spectroscopy through nonnegative independent component analysis. Analytical and Bioanalytical Chemistry 394(3): 827–833. 10.1007/s00216-009-2759-z
Wei, Y., Yang, H., Zhu, C., Deng, J. and Fan, D. 2020. Ginsenoside Rg5 relieves type 2 diabetes by improving hepatic insulin resistance in db/db mice. Journal of Functional Foods 71. 10.1016/j.jff.2020.104014
Xie, Y., Meijer, A.H. and Schaaf, M.J.M. 2021. Modeling inflammation in zebrafish for the development of anti-inflammatory drugs. Frontiers in Cell and Developmental Biology 8. 10.3389/fcell.2020.620984
Xiong, Y., Halima, M., Che, X., Zhang, Y., Schaaf, M.J.M., Li, M., et al. 2022. Steamed Panax notoginseng and its saponins inhibit the migration and induce the apoptosis of neutrophils in a zebrafish tail-fin amputation model. Frontiers in Pharmacology 13: 946900. 10.3389/fphar.2022.946900
Yennurajalingam, S., Reddy, A., Tannir, N.M., Chisholm, G.B., Lee, R.T., Lopez, G., et al. 2015. High-dose Asian ginseng (Panax Ginseng) for cancer-related fatigue: A preliminary report. Integrative Cancer Therapies 14(5): 419–427. 10.1177/1534735415580676
Yoo, S., Park, B.I., Kim, D.H., Lee, S., Lee, S.H., Shim, W.S., et al. 2021. Ginsenoside absorption rate and extent enhancement of black ginseng (CJ EnerG) over red ginseng in healthy adults. Pharmaceutics 13(4). 10.3390/pharmaceutics13040487
Yu, Q., Zeng, K.-W., Ma, X.-L., Jiang, Y., Tu, P.-F. and Wang, X.-M. 2017. Ginsenoside Rk1 suppresses pro-inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells by inhibiting the Jak2/Stat3 pathway. Chinese Journal of Natural Medicines 15(10): 751–757. 10.1016/s1875-5364(17)30106-1
Zhang, X.C. and Xu, B.J. 2018. Phytochemical profiles and antioxidant capacities of white and red ginseng as affected by marinating media (vinegar, yellow wine, and Chinese liquor). Journal of Food Processing and Preservation 42(1). 10.1111/jfpp.13331