Optimizing pulsed electric field and high-power ultrasound treatments to preserve anthocyanin stability and physicochemical quality in stored strawberry juice

Main Article Content

Anica Bebek Markovinović
Višnja Stulić
Predrag Putnik
Tibor Janči
Branimir Pavlić
Sanja Milošević
Zoran Herceg
Amin Mousavi Khaneghah
Danijela Bursać Kovačević

Keywords

non-thermal hurdle technologies; pulsed electric field; high-power ultrasound; hydroxymethylfurfural; browning index; conductivity; oxygen content; optimization

Abstract

This study presents a novel approach to preserving the quality of strawberry juice through the innovative combination (hurdle) of pulsed electric field (PEF) and high-power ultrasound (HPU) treatments. The objective was to evaluate the impact of various PEF (30 kV/cm, 100 Hz, 1.5-4.5 min) and HPU (25% amplitude, 50% pulse, 2.5-7.5 min) treatments on anthocyanin stability, color, and physicochemical properties (conductivity, browning index, dissolved oxygen, and hydroxymethylfurfural content) during 7-day storage at 4°C. Our findings reveal that storage significantly influenced anthocyanin content, physicochemical properties, and color. The combined PEF (3 min) and HPU (2.5-7 min) treatments markedly enhanced anthocyanin stability compared to the control samples. Importantly, this combined non-thermal treatment approach significantly affected all studied parameters except for hydroxymethylfurfural content. Optimal anthocyanin content was achieved with a PEF treatment of 2.19 min and an HPU treatment of 7.48 min over 7 days of storage, while minimal color changes were observed with PEF (3.14 min) + HPU (7.50 min). This study demonstrates the potential of combining PEF and HPU as a feasible and effective strategy for processing functional strawberry juices, ensuring anthocyanin stability and desirable physicochemical properties.

Abstract 37 | PDF Downloads 48 XML Downloads 2 HTML Downloads 0

References

Agcam, E., Akyildiz, A., & Akdemir Evrendilek, G. (2016). A comparative assessment of long-term storage stability and quality attributes of orange juice in response to pulsed electric fields and heat treatments. Food and Bioproducts Processing, 99, 90-98. https://doi.org/10.1016/j.fbp.2016.04.006
Akdemir Evrendilek, G., Agcam, E., & Akyildiz, A. (2021). Effects of pulsed electric fields on sour cherry juice properties and formations of furfural and hydroxymethylfurfural. International Journal of Food Engineering, 17(3), 217-226. https://doi.org/10.1515/ijfe-2020-0189
Akdemir Evrendilek, G., Celik, P., Agcam, E., & Akyildiz, A. (2016). Assessing impacts of pulsed electric fields on quality attributes and furfural and hydroxymethylfurfural formations in apple juice. Journal of Food Process Engineering, 40(5). https://doi.org/10.1111/jfpe.12524
Official methods of analysis: Changes in official methods of analysis made at the annual meeting, (1990).
Barba, F., Putnik, P., & Kovačević, D. B. (2020). Agri-food industry strategies for healthy diets and sustainability : New challenges in nutrition and public health. Elsevier, Academic Press.
Bebek Markovinović, A., Brdar, D., Putnik, P., Bosiljkov, T., Durgo, K., Huđek Turković, A., … Bursać Kovačević, D. (2024a). Strawberry tree fruits (Arbutus unedo L.): Bioactive composition, cellular antioxidant activity, and 3D printing of functional foods. Food Chemistry, 433. https://doi.org/10.1016/j.foodchem.2023.137287
Bebek Markovinović, A., Putnik, P., Bičanić, P., Brdar, D., Duralija, B., Pavlić, B., … Bursać Kovačević, D. (2022a). A chemometric investigation on the functional potential in high power ultrasound (HPU) processed strawberry juice made from fruits harvested at two stages of ripeness. Molecules, 28(1). https://doi.org/10.3390/molecules28010138
Bebek Markovinović, A., Putnik, P., Bosiljkov, T., Kostelac, D., Frece, J., Markov, K., … Bursać Kovačević, D. (2023). 3D Printing of Functional Strawberry Snacks: Food Design, Texture, Antioxidant Bioactive Compounds, and Microbial Stability. Antioxidants, 12(2). https://doi.org/10.3390/antiox12020436
Bebek Markovinović, A., Putnik, P., Duralija, B., Krivohlavek, A., Ivešić, M., Mandić Andačić, I., … Bursać Kovačević, D. (2022b). Chemometric Valorization of Strawberry (Fragaria x ananassa Duch.) cv. ‘Albion’ for the Production of Functional Juice: The Impact of Physicochemical, Toxicological, Sensory, and Bioactive Value. Foods, 11(5). https://doi.org/10.3390/foods11050640
Bebek Markovinović, A., Putnik, P., Stulić, V., Batur, L., Duralija, B., Pavlić, B., … Bursać Kovačević, D. (2022c). The application and optimization of HIPEF technology in the processing of juice from strawberries harvested at two stages of ripeness. Foods, 11(14). https://doi.org/10.3390/foods11141997
Bebek Markovinović, A., Stulić, V., Putnik, P., Bekavac, N., Pavlić, B., Milošević, S., … Bursać Kovačević, D. (2024b). High-Power Ultrasound (HPU) and Pulsed Electric Field (PEF) in the Hurdle Concept for the Preservation of Antioxidant Bioactive Compounds in Strawberry Juice—A Chemometric Evaluation—Part II. Foods, 13(4). https://doi.org/10.3390/foods13040537
Bi, X., Hemar, Y., Balaban, M. O., & Liao, X. (2015). The effect of ultrasound on particle size, color, viscosity and polyphenol oxidase activity of diluted avocado puree. Ultrasonics Sonochemistry, 27, 567-575. https://doi.org/10.1016/j.ultsonch.2015.04.011
Bursać Kovačević, D., Putnik, P., Dragović-Uzelac, V., Pedisić, S., Režek Jambrak, A., & Herceg, Z. (2016). Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry, 190, 317-323. https://doi.org/10.1016/j.foodchem.2015.05.099
Buvé, C., Kebede, B. T., De Batselier, C., Carrillo, C., Pham, H. T. T., Hendrickx, M., … Van Loey, A. (2018). Kinetics of colour changes in pasteurised strawberry juice during storage. Journal of Food Engineering, 216, 42-51. https://doi.org/10.1016/j.jfoodeng.2017.08.002
Chen, J.-y., Du, J., Li, M.-l., & Li, C.-m. (2020). Degradation kinetics and pathways of red raspberry anthocyanins in model and juice systems and their correlation with color and antioxidant changes during storage. Lwt, 128. https://doi.org/10.1016/j.lwt.2020.109448
Chen, X. D. (2008). Food drying fundamentals. In X. D. Chen & A. S. Mujumdar (Eds.), Drying Technologies in Food Processing (pp. 1-55). Blackwell Publishing.
Cohen, E., Birk, Y., Mannheim, C. H., & Saguy, I. S. (1998). A rapid method to monitor quality of apple juice during thermal processing. LWT - Food Science and Technology, 31(7-8), 612-616. https://doi.org/10.1006/fstl.1998.0385
Cosme, F., Pinto, T., Aires, A., Morais, M. C., Bacelar, E., Anjos, R., … Gonçalves, B. (2022). Red fruits composition and their health benefits—A review. Foods, 11(5). https://doi.org/10.3390/foods11050644
Crecente-Campo, J., Nunes-Damaceno, M., Romero-Rodríguez, M. A., & Vázquez-Odériz, M. L. (2012). Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria×ananassa Duch, cv Selva). Journal of Food Composition and Analysis, 28(1), 23-30. https://doi.org/10.1016/j.jfca.2012.07.004
Cserhalmi, Z., Sass-Kiss, Á., Tóth-Markus, M., & Lechner, N. (2006). Study of pulsed electric field treated citrus juices. Innovative Food Science & Emerging Technologies, 7(1-2), 49-54. https://doi.org/10.1016/j.ifset.2005.07.001
Dixit, Y., O’Sullivan, C., Cullen, P. J., & Tiwari, B. K. (2018). Hurdle technologies for fruit juices. In Fruit Juices (pp. 539-554). https://doi.org/10.1016/b978-0-12-802230-6.00027-8
Djekić, I., Velebit, B., Pavlić, B., Putnik, P., Šojić Merkulov, D., Bebek Markovinović, A., & Bursać Kovačević, D. (2023). Food Quality 4.0: Sustainable Food Manufacturing for the Twenty-First Century. Food Engineering Reviews, 15(4), 577-608. https://doi.org/10.1007/s12393-023-09354-2
Enaru, B., Drețcanu, G., Pop, T. D., Stǎnilǎ, A., & Diaconeasa, Z. (2021). Anthocyanins: Factors affecting their stability and degradation. Antioxidants, 10(12). https://doi.org/10.3390/antiox10121967
Galanakis, C. M. (2021). Functionality of food components and emerging technologies. Foods, 10(1). https://doi.org/10.3390/foods10010128
Gharibzahedi, S. M. T., Hernández-Ortega, C., Welti-Chanes, J., Putnik, P., Barba, F. J., Mallikarjunan, K., … Roohinejad, S. (2019). High pressure processing of food-grade emulsion systems: Antimicrobial activity, and effect on the physicochemical properties. Food Hydrocolloids, 87, 307-320. https://doi.org/10.1016/j.foodhyd.2018.08.012
Gladikostić, N., Ikonić, B., Teslić, N., Zeković, Z., Božović, D., Putnik, P., … Pavlić, B. (2023). Essential Oils from Apiaceae, Asteraceae, Cupressaceae and Lamiaceae Families Grown in Serbia: Comparative Chemical Profiling with In Vitro Antioxidant Activity. Plants, 12(4). https://doi.org/10.3390/plants12040745
Graybill, P. M., & Davalos, R. V. (2020). Cytoskeletal Disruption after Electroporation and Its Significance to Pulsed Electric Field Therapies. Cancers, 12(5). https://doi.org/10.3390/cancers12051132
Guerrero-Beltrán, J. Á., & Welti-Chanes, J. (2016). Pulsed Electric Fields. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 561-565). Elsevier. https://doi.org/10.1016/b978-0-12-384947-2.00579-1
Holzwarth, M., Korhummel, S., Carle, R., & Kammerer, D. R. (2011). Impact of enzymatic mash maceration and storage on anthocyanin and color retention of pasteurized strawberry purées. European Food Research and Technology, 234(2), 207-222. https://doi.org/10.1007/s00217-011-1601-y
Holzwarth, M., Korhummel, S., Kammerer, D. R., & Carle, R. (2012). Thermal inactivation of strawberry polyphenoloxidase and its impact on anthocyanin and color retention in strawberry (Fragaria x ananassa Duch.) purées. European Food Research and Technology, 235(6), 1171-1180. https://doi.org/10.1007/s00217-012-1852-2
Kammerer, D. R., Schillmöller, S., Maier, O., Schieber, A., & Carle, R. (2006). Colour stability of canned strawberries using black carrot and elderberry juice concentrates as natural colourants. European Food Research and Technology, 224(6), 667-679. https://doi.org/10.1007/s00217-006-0356-3
Khan, S. A., Dar, A. H., Bhat, S. A., Fayaz, J., Makroo, H. A., & Dwivedi, M. (2020). High intensity ultrasound processing in liquid foods. Food Reviews International, 38(6), 1123-1148. https://doi.org/10.1080/87559129.2020.1768404
Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2001). Pulsed electric field breakage of cellular tissues: visualisation of percolative properties. Innovative Food Science & Emerging Technologies, 2(2), 113-125. https://doi.org/10.1016/s1466-8564(01)00024-8
Lebovka, N. I., Bazhal, M. I., & Vorobiev, E. (2002). Estimation of characteristic damage time of food materials in pulsed-electric fields. Journal of Food Engineering, 54(4), 337-346. https://doi.org/10.1016/s0260-8774(01)00220-5
Martins, I. B. A., Oliveira, D., Rosenthal, A., Ares, G., & Deliza, R. (2019). Brazilian consumer's perception of food processing technologies: A case study with fruit juice. Food Research International, 125. https://doi.org/10.1016/j.foodres.2019.108555
Maza, M. A., Pereira, C., Martínez, J. M., Camargo, A., Álvarez, I., & Raso, J. (2020). PEF treatments of high specific energy permit the reduction of maceration time during vinification of Caladoc and Grenache grapes. Innovative Food Science & Emerging Technologies, 63. https://doi.org/10.1016/j.ifset.2020.102375
Odriozola-Serrano, I., Soliva-Fortuny, R., Gimeno-Añó, V., & Martín-Belloso, O. (2008). Kinetic study of anthocyanins, vitamin C, and antioxidant capacity in strawberry juices treated by high-intensity pulsed electric fields. Journal of Agricultural and Food Chemistry, 56(18), 8387-8393. https://doi.org/10.1021/jf801537f
Putnik, P., Pavlić, B., Šojić, B., Zavadlav, S., Žuntar, I., Kao, L., … Kovačević, D. B. (2020). Innovative hurdle technologies for the preservation of functional fruit juices. Foods, 9(6). https://doi.org/10.3390/foods9060699
Sala, F. J., Burgos, J., Condón, S., Lopez, P., & Raso, J. (1995). Effect of heat and ultrasound on microorganisms and enzymes. In New Methods of Food Preservation (pp. 176-204). https://doi.org/10.1007/978-1-4615-2105-1_9
Singh, S. K., & Sharma, M. (2017). Review on biochemical changes associated with storage of fruit juice. International Journal of Current Microbiology and Applied Sciences, 6(8), 236-245. https://doi.org/10.20546/ijcmas.2017.608.032
Solomon, O., Svanberg, U., & Sahlström, A. (1995). Effect of oxygen and fluorescent light on the quality of orange juice during storage at 8°C. Food Chemistry, 53(4), 363-368. https://doi.org/10.1016/0308-8146(95)99828-n
Sulaiman, A., Farid, M., & Silva, F. V. M. (2016). Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing. Food Science and Technology International, 23(3), 265-276. https://doi.org/10.1177/1082013216685484
Tiwari, B. K., O’ Donnell, C. P., Muthukumarappan, K., & Cullen, P. J. (2009). Effect of sonication on orange juice quality parameters during storage. International Journal of Food Science & Technology, 44(3), 586-595. https://doi.org/10.1111/j.1365-2621.2008.01858.x
Tiwari, B. K., O’Donnell, C. P., Patras, A., Brunton, N., & Cullen, P. J. (2008). Stability of anthocyanins and ascorbic acid in sonicated strawberry juice during storage. European Food Research and Technology, 228(5), 717-724. https://doi.org/10.1007/s00217-008-0982-z
Trusinska, M., Drudi, F., Rybak, K., Tylewicz, U., & Nowacka, M. (2023). Effect of the Pulsed Electric Field Treatment on Physical, Chemical and Structural Changes of Vacuum Impregnated Apple Tissue in Aloe Vera Juices. Foods, 12(21). https://doi.org/10.3390/foods12213957
Warner, R., Wu, B.-S., MacPherson, S., & Lefsrud, M. (2021). A Review of strawberry photobiology and fruit flavonoids in controlled environments. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.611893
Yıkmış, S. (2020). Sensory, physicochemical, microbiological and bioactive properties of red watermelon juice and yellow watermelon juice after ultrasound treatment. Journal of Food Measurement and Characterization, 14(3), 1417-1426. https://doi.org/10.1007/s11694-020-00391-7
Yildiz, S., Pokhrel, P. R., Unluturk, S., & Barbosa-Cánovas, G. V. (2021). Shelf life extension of strawberry juice by equivalent ultrasound, high pressure, and pulsed electric fields processes. Food Research International, 140. https://doi.org/10.1016/j.foodres.2020.110040
Zenker, M., Heinz, V., & Knorr, D. (2003). Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods. Journal of Food Protection, 66(9), 1642-1649. https://doi.org/10.4315/0362-028x-66.9.1642
Zhang, M.-Q., Zhang, J., Zhang, Y.-T., Sun, J.-Y., Prieto, M. A., Simal-Gandara, J., … Liu, C. (2023). The link between the phenolic composition and the antioxidant activity in different small berries: A metabolomic approach. Lwt, 182. https://doi.org/10.1016/j.lwt.2023.114853
Zhou, Y., Zhao, X., & Huang, H. (2015). Effects of pulsed electric fields on anthocyanin extraction yield of blueberry processing by-products. Journal of Food Processing and Preservation, 39(6), 1898-1904. https://doi.org/10.1111/jfpp.12427
Zou, Y., & Jiang, A. (2016). Effect of ultrasound treatment on quality and microbial load of carrot juice. Food Science and Technology, 36(1), 111-115. https://doi.org/10.1590/1678-457x.0061