Enhanced stability of butterfly pea flower extract through colloidal gas aphrons (CGA) separation method using Tween-20 surfactant
Main Article Content
Keywords
anthocyanins; Clitorea ternatea; Colloidal Gas Aphrons; surfactant; microscopy
Abstract
Butterfly pea flower (BPF) is known to contain secondary metabolites, including anthocyanins. However, anthocyanins are unstable and easily degraded due to processing during food production, hence making the applications limited. This study aimed to determine the stability of BPF ethanolic extract with colloidal gas aphrons (CGA) separation, which is a surfactant-based separation method. The result showed that anthocyanins recovered by CGA at a volumetric ratio of 20 (AV20) showed higher stability (half-life = 295 days [d]) than in ethanolic extract (EE) (half-life = 43 d) and their stability increased with the concentration Tween-20 in CGA samples (6.07–8.58 mM). Loss of anthocyanins in the CGA-processed sample (AV20) (18.75%) was lower than in ethanolic extract (74.57%). Loss of anthocyanins during storage fitted to a first-order reaction model and the rate constant ranged from 0.0024 d–1). Higher concentrations of Tween-20 in aphron phases lead to higher encapsulation efficiency and separation factors. Therefore, we conclude that V20 of the CGA-processed sample was more stable than the ratios studied. Although the stabilization effect is not fully understood, these findings contribute to a better understanding of the proposed method. Further research is necessary to explore novel applications of surfactant-based extraction methods.
References
Aksay, S. (, 2004).. Effect of storage temperature on the stability of anthocyanins of a fermented black carrot (Daucus carota var. L.) Bbeverage: Sshalgam. Journal of Agricultural and Food Chemistry, 52(12):, 3807-–3813. https://doi.org/10.1021/jf049863s
Al-Snafi, A.E. (2016). Pharmacological importance of Clitoria ternatea – A review pharmacological importance of Clitoria ternatea – A review Prof Dr Ali Esmail Al-Snafi. IOSR Journal of Pharmacy, 6(3), 68–83.
Ali, A., Chong, C.H., Mah, S.H., Abdullah, L.C., Choong, T.S.Y., & and Chua, B.L. (, 2018).. Impact of storage conditions on the stability of predominant phenolic constituents and antioxidant activity of dried piper betle extracts. Molecules, 23(2),): 484-–498. https://doi.org/10.3390/molecules23020484
Al-Snafi, A.E., 2016. Pharmacological importance of Clitoria ternatea – a review pharmacological importance of Clitoria ternatea – A review Prof Dr Ali Esmail Al-Snafi. IOSR Journal of Pharmacy 6(3): 68–83.
Amendola, D., De Faveri, D.M., & and Spigno, G. (, 2010).. Grape marc phenolics: Eextraction kinetics, quality and stability of extracts. Journal of Food Engineering, 97(3),): 384–392. https://doi.org/10.1016/j.jfoodeng.2009.10.033
Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R., & and Koirala, N. (, 2019).. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4),): 96-–107. https://doi.org/10.3390/plants8040096
Azad, O.K., Lim, Y.S., Park, C.H., & and Kang, W.S. (, 2018).. Evaluation of anthocyanin stability in surfactant formulation from Extrudate purple potato (Solanum tuberosum L.)).. Journal of Food Processing and Technology, 9(9),): 1-–5. https://doi.org/10.4172/2157-7110.1000750
Basheva, E.S., Kralchevsky, P.A., Danov, K.D., Ananthapadmanabhan, K.P., & and Lips, A. (, 2007).. The colloid structural forces as a tool for particle characterization and control of dispersion stability. Physical Chemistry Chemical Physics, 9(38),): 5183-–5198. https://doi.org/10.1039/B705758J
Bulatao, R.M., Samin, J.P.A., Salazar, J.R., & and Monserate, J.J. (, 2017).. Encapsulation of anthocyanins from black rice (Oryza sativa L.) bran extract using chitosan-alginate nanoparticles. Journal of Food Research, 6(3),): 40-–47. https://doi.org/10.5539/jfr.v6n3p40
Çam, M., İçyer, N.C., & and Erdoğan, F. (, 20134).. Pomegranate peel phenolics: Mmicroencapsulation, storage stability and potential ingredient for functional food development. LWT -– Food Science and Technology, 55(1),): 117-–123. https://doi.org/10.1016/j.lwt.2013.09.011
Carolina, M., Jesús, H. De, Ernesto, J., Osorio, C., & and Azucena, M. (, 2019).. Encapsulated betalains (Opuntia ficus-indica) as natural colorants. Case study: Ggummy candies. LWT - – Food Science and Technology, 103:, 222–227. https://doi.org/10.1016/j.lwt.2018.12.074
Charurungsipong, P., Tangduangdee, C., Amornraksa, S., Asavasanti, S., & and Lin, J. (, 2020).. Improvement of anthocyanin stability in butterfly pea flower extract by co-pigmentation with catechin. In E3S Web of Conferences, 141:, 1-–4. https://doi.org/10.1051/e3sconf/202014103008
Dahmoune, F., Madani, K., Jauregib, P., Faveri, D.M.De., & and Spigno, G. (, 2013).. Fractionation of a red grape marc extract by colloidal gas aphrons. Chemical Engineering Transactions, 32:, 1903-–1908. https://doi.org/10.3303/CET1332318
Dai, Y., & and Row, K.H. (, 2019).. Application of natural deep eutectic solvents in the extraction of quercetin from vegetables. Molecules, 24(12),): 2300-–2310. https://doi.org/10.3390/molecules24122300
David, L., Schill, K., & and Nilsson, L. (, 2008).. Flavonoids: precipitation kinetics and interaction with surfactant micelles. Journal of Food Science, 76(3),): 35-–39. https://doi.org/10.1111/j.1750-3841.2011.02103.x
Dermiki, M., Bourquin, A.L., & and Jauregi, P. (, 2010).. Separation of astaxanthin from cells of Phaffia rhodozyma using colloidal gas aphrons in a flotation column. Biotechnology Progress, 26(2),): 477-–487. https://doi.org/10.1002/btpr.340
Ezzudin, M. (, 2018).. Mini review: Aa potential of telang tree (Clitoria ternatea) in human health. Food Research, 2(5),): 415-–420. https://doi.org/10.26656/fr.2017.2(5).073
Free, M.L. (, 2008).. The use of surfactants to enhance particle removal from surfaces. In: Kohli, R. and Mittal, K.L. (eds.) Developments in Surface Contamination and Cleaning. - Vol. 1: Fundamentals and Applied Aspects., Elsevier, Amsterdam, The Netherlands, pp. 727–758. https://doi.org/10.1016/B978-081551555-5.50016-2
Fu, X., Wu, Q., Wang, J., Chen, Y., Zhu, G., & and Zhu, Z. (, 2021).. Spectral characteristic, storage stability and antioxidant properties of anthocyanin extracts from flowers of butterfly pea (Clitoria ternatea L.). Molecules, 26(22),): 7000-–7011. https://doi.org/10.3390/molecules26227000
Fuda, E., Bhatia, D., Pyle, D.L., & and Jauregi, P. (, 2005).. Selective separation of β-lactoglobulin from sweet whey using CGAs generated from the cationic surfactant CTAB. Biotechnology and Bioengineering, 90(5):, 532-–542. https://doi.org/10.1002/bit.20412
Galmarini, M.V., Maury, C., Mehinagic, E., Sanchez, V., Baeza, R.I., Mignot, S., Zamora, M.C. &and Chirife, J. (, 2013 ).. Stability of individual phenolic compounds and antioxidant activity during storage of a red wine powder. Food and bBioprocess tTechnology, 6:, 3585-–3595. https://doi.org/10.1007/s11947-012-1035-y
González-Cruz, E. M., Andrade González, I., Prieto, C., Lagarón, J. M., Calderón Santoyo, M., and Ragazzo Sánchez, J. A. 2022 ).. Nanoencapsulation of polyphenolic-rich extract from biloxi blueberries (Vaccinium Corymbosum L.) by electrospraying using Zein as Eencapsulating Mmaterial. Biointerface Research in Applied Chemistry, 13(1):, 1–14. https://doi.org/10.33263/BRIAC131.078
Gümüş Yılmaz, G., Gómez Pinchetti, J.L., Cifuentes, A., Herrero, M., & and Ibáñez, E. (, 2019).. Comparison of extraction techniques and surfactants for the isolation of total polyphenols and phlorotannins from the brown algae Lobophora variegata. Analytical Letters, 52(17):, 2724-–2740. https://doi.org/10.1080/00032719.2019.1597878
Hamzah, Y., Jumat, N.A., & and Sembok, W.W. (, 2013 ).. Effect of drying on the storage stability of encapsulated anthocyanins powder extract from Butterfly pea flower (Clitoria ternatea). In Proceedings of the 13th ASEAN Food Conference, September 9-11, 2013, Singapore, pp. 1-–10.
Hansen, M. M., Hartel, R. W., & Roos, Y. H., 2021. Encapsulant-bioactives interactions impact on physico-chemical properties of concentrated dispersions. Journal of Food Engineering, 302, 110586.
Hashim, M.A., SenGupta, B., & and Subramaniam, M.B. (, 1995).. Investigations on the flotation of yeast cells by colloidal gas aphron (CGA) dispersions. Bioseparation, 5(3):, 167-–173. https://doi.org/10.1007/BF00913664
Isa, M.H.M., Coraglia, D.E., Frazier, R.A., & and Jauregi, P. (, 2007).. Recovery and purification of surfactin from fermentation broth by a two-step ultrafiltration process. Journal of Membrane Science, 296(1-–2):, 51-–57. https://doi.org/10.1016/j.memsci.2007.03.023
Jaafar, N.F., Ramli, M.E., & and Salleh, R.M. (, 2020).. Optimum extraction condition of Clitorea ternatea flower on antioxidant activities, total phenolic, total flavonoid and total anthocyanin contents. Tropical Life Sciences Research, 31(2),): 1–17. https://doi.org/10.21315/tlsr2020.31.2.1
Jamille, F., Paes, D.F., & and Clemente, H.A. (, 2020).. Stability of encapsulated and non-encapsulated anthocyanin in yogurt produced with natural dye obtained from Solanum melongena L. Bark. Revista Brasileira de Fruticultura, 42(3),): 1-–13. https://doi.org/10.1590/0100-29452020137
Jauregi, P., Gilmour, S., & and Varley, J. (, 1997).. Characterisation of colloidal gas aphrons for subsequent use for protein recovery. Chemical Engineering Journal, 65(1),): 1-–11. https://doi.org/10.1016/S1385-8947(96)03154-3
Jiang, Y. (, 2018).. Effect of surfactant HLB value on settlement stability of magnetorheological fluid. Open Access Library Journal, 5(11),): 1-–6. https://doi.org/10.4236/oalib.1105004
Kafkas, N.E., Kosar, M., Öz, A.T., & and Mitchell, A.E. (, 2018).. Advanced analytical methods for phenolics in fruits. Journal of Food Quality, 2018(1),): 1-–6. https://doi.org/10.1155/2018/3836064
Kallithraka, S., Salacha, M.I., & and Tzourou, I. (, 2009).. Changes in phenolic composition and antioxidant activity of white wine during bottle storage: Aaccelerated browning test versus bottle storage. Food Chemistry, 113(2),): 500–505. https://doi.org/10.1016/j.foodchem.2008.07.083
Kazazic, M., Djapo, M., & and Ademovic, E. (, 2016).. Antioxidant activity of water extracts of some medicinal plants from Herzegovina region. International Journal of Pure & Applied Bioscience, 4(2),): 85–90. http://dx.doi.org/10.18782/2320-7051.2251
Kotsiou, K., & and Tasioula-Margari, M. (, 2016).. Monitoring the phenolic compounds of Greek extra-virgin olive oils during storage. Food Chemistry, 200:, 255–262. https://doi.org/10.1016/j.foodchem.2015.12.090
Labiad, M.H., Harhar, H., Ghanimi, A., & and Tabyaoui, M. (, 2017).. Phytochemical screening and antioxidant activity of Moroccan Thymus satureioïdes extracts. Journal of Materials and Environmental Science, 8(6),): 2132–2139.
Larmignat, S., Vanderpool, D., Lai, H.K., & and Pilon, L. (, 2008).. Rheology of colloidal gas aphrons (microfoams). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 322(1–3),): 199–210. https://doi.org/10.1016/j.colsurfa.2008.03.010
Lee, J., Durst, R.W., & Wrolstad, R.E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. Journal of AOAC International, 88(5), 1269-1278. https://doi.org/10.1093/jaoac/88.5.1269
Lee, P.M., Abdullah, R., & and Hung, L.K. (, 2011 ).. Thermal degradation of blue anthocyanin extract of Clitoria ternatea flower. In Proceeding of the 2nd International Conference on Biotechnology and Food Science IPCBEE vol.7, 2011, Singapore, pp. 49-53.
Lee, J., Durst, R.W. and Wrolstad, R.E., 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC International 88(5): 1269–1278. https://doi.org/10.1093/jaoac/88.5.1269
Lim, T.K. (, 2012 ).. Edible Medicinal and Non-Medicinal Plants,: (Vol. 1, pp. 656-687). Dordrecht, The Netherlands: Springer.In Edible Medicinal and Non-Medicinal Plants: Volume 2, Fruits (Vol. 7).
Looi, S.K., Zainol, M.K., Mohd, Z.Z., Hamzah, Y., & and MohdMaidin, N. (, 2020).. Antioxidant and antibacterial activities in the fruit peel, flesh and seed of Ceri Terengganu (Lepisanthes Alata leenh.). Food Research, 4(5),): 1600–1610. https://doi.org/10.26656/fr.2017.4(5).172
Lu, Q., Li, L., Xue, S., Yang, D., & and Wang, S. (, 2019).. Stability of flavonoid, carotenoid, soluble sugar and vitamin C in ‘Cara Cara’ juice during storage. Foods, 8(9),): 417-–431. https://doi.org/10.3390/foods8090417
Madrona, G.S. (, 2020).. Blackberry pomace microspheres: Aan approach on anthocyanin degradation. Science and Agrotechnology, 44:, e014420. https://doi.org/10.1590/1413-7054202044014420
Marpaung, A.M., Andarwulan, N., & and Prangdimurti, E. (, 2012).. The optimization of anthocyanin pigment extraction from butterfly pea (Clitoria ternatea L.) petal using response surface methodology. In proceeding of the Second Asia Pacific Symposium on Postharvest Research Education and Extension: APS20121011, 2012, Indonesia, pp. 205-–211. https://doi.org/10.17660/ActaHortic.2013.1011.24
Marpaung, A.M, Lee, M., & and Kartawiria, I.S. (, 2020).. The development of butterfly pea (Clitoria ternatea) flower powder drink by co-crystallization. Indonesian Food Science and Technology Journal, 3(2),): 34-–37. https://doi.org/10.22437/ifstj.v3i2.10185
Miyake, M., & and Yamashita, Y. (, 2017).. Molecular structure and phase behavior of surfactants. In: Cosmetic Science and Technology: Theoretical Principles and Applications. Sakamoto. K., Lochhead R.Y., Maibach, H. I., and Yamashita, Y. (Ed.), p.389-414. Elsevier, Amsterdam, The Netherlands Inc.
MohdMMaidin, N., Michael, N., Oruna-Concha, M.J., & and Jauregi, P. (, 2018).. Polyphenols extracted from red grape pomace by a surfactant based method show enhanced collagenase and elastase inhibitory activity. Journal of Chemical Technology and Biotechnology, 93(7),): 1916–1924. https://doi.org/10.1002/jctb.5459
MohdMaidin, N., Oruna-Concha, M.J., & and Jauregi, P. (, 2019).. Surfactant Tween-20 provides stabilisation effect on anthocyanins extracted from red grape pomace. Food Chemistry, 271:, 224–231. https://doi.org/10.1016/j.foodchem.2018.07.083
Muche, B.M., Speers, R.A., & and Rupasinghe, H.P.V. (, 2018).. Storage temperature impacts on anthocyanins degradation, color changes and haze development in juice of “Merlot” and “Ruby” grapes (Vitis vinifera). Frontiers in Nutrition, 5:, 1–9. https://doi.org/10.3389/fnut.2018.00100
Nakama, Y. (, 2017).. Surfactants. In: Cosmetic Science and Technology: Theoretical Principles and Applications. Sakamoto. K., Lochhead R.Y., Maibach, H. I., and Yamashita, Y. (Ed.), p.231-244. Elsevier, Amsterdam, The Netherlands Inc.
Noriega, D., Zuñiga, M.E., Soto, C., MohdMaidin, N., Michael, N., & and Jauregi, P. (, 2018).. Colloidal gas aphrons separation to obtain polyphenol rich fractions from artichoke agro-industrial discards. Food and Bioproducts Processing. 110:, 50-–59. https://doi.org/10.1016/j.fbp.2018.04.007
Oguis, G.K., Gilding, E.K., Jackson, M.A., & and Craik, D.J. (, 2019).. Butterfly pea (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine. Frontiers in Plant Science, 10:, 645-–667. https://doi.org/10.3389/fpls.2019.00645
Parisi, O.I., Puoci, F., Restuccia, D., Iemma, F., & and Picci, N. (, 2014). . Polyphenols and their formulations: Ddifferent strategies to overcome the drawbacks associated with their poor stability and bioavailability. In: Polyphenols in Human Health and Disease. Watson R.R., Preedy V.R., and Zibadi, S. (Ed.), p.29-45. Elsevier Inc, Amsterdam, The Netherlands.
Pham, T.N., Le, X.T., Nguyen, P.T.N., Tran, T.H., Dao, T.P., Nguyen, D.H., Danh, V.T., & and Anh, H.L.T. (, 2020).. Effects of storage conditions on total anthocyanin content of Butterfly pea flower (Clitoria ternatea L.). In IOP Conference Series: Materials Science and Engineering, 736:, 1-–7. https://doi.org/10.1088/1757-899X/736/6/062005
Piyarat, K., Walaisiri, M., & and Pornpen, W. (, 2014 ).. Comparison of stability of red colorants from natural sources, roselle and lac in micelles. International Food Research Journal. 21(1),): 325–330.
Prado, A.S.L., Shen, Y., Ardoin, R., Osorio, L.F., Cardona, J., Xu, Z., & and Prinyawiwatkul, W. (, 2018).. Effects of different solvents on total phenolic and total anthocyanin contents of Clitoria ternatea L. petal and their anti-cholesterol oxidation capabilities. International Journal of Food Science & Technology, 54(2),): 424-–431. https://doi.org/10.1111/ijfs.13953
Pu, L., Yu, H., Du, J., Zhang, Y., & and Chen, S. (, 2020).. Hydrotalcite–PLGA composite nanoparticles for loading and delivery of danshensu. RSC aAdvances, 10(37),): 22010-–22018. https://doi.org/10.1039/D0RA01593H
Raja, B., & and Pugalendi, K.V. (, 2010).. Evaluation of antioxidant activity of Melothria maderaspatana in vitro. Central European Journal of Biology, 5(2),): 224–230. https://doi.org/10.2478/s11535-010-0001-2
Ravindran, P.N. (, 2017).. The Encyclopedia of Herbs and Spices. CABI, Wallingford, UK.
Recamales, Á.F., Sayago, A., González-Miret, M.L., & and Hernanz, D. (, 2006).. The effect of time and storage conditions on the phenolic composition and colour of white wine. Food Research International, 39(2),): 220-–229. https://doi.org/10.1016/j.foodres.2005.07.009
Remini, H., Dahmoune, F., Sahraoui, Y., & and Madani, K. (, 2018).. Recent Aadvances on stability of anthocyanins. RUDN Journal of Agronomy and Animal Industries, 13(4),): 257-–286. https://doi.org/10.22363/2312-797X-2018-13-4-294-302
Rocha-Parra, D., Rocha-Parra, D.F., Cecilia, M., & and Clara, M. (, 2017).. Influence of storage conditions on phenolic compounds stability, antioxidant capacity and colour of freeze-dried encapsulated red wine. LWT - – Food Science and Technology. 70:, 162-–170. https://doi.org/10.1016/j.lwt.2016.02.038
Romoscanu, A.I., Fenollosa, A., Acquistapace, S., Gunes, D., Martins-deuchande, T., Clausen, P., Mezzenga, R., Nyd, M., Zick, K., & and Hughes, E. (, 2010).. Structure, diffusion, and permeability of protein-stabilized monodispersed oil in water emulsions and their gels: Aa self-diffusion NMR study. Langmuir, 26(9),): 6184–6192. https://doi.org/10.1021/la100774q
Rosen, M.J. (, 2004 ).. “Surfactants and interfacial phenomena” 3rd Ed. John Wiley & Sons, Inc., Hoboken, New Jersey.
Schmidts, T., Schlupp, P., Gross, A., Dobler, D., & and Runkel, F. (, 2012).. Required HLB determination of some pharmaceutical oils in submicron emulsions. Journal of dDispersion sScience and tTechnology, 33(6),): 816-–820. https://doi.org/10.1080/01932691.2011.584800
Sharma, S., Kori, S., & and Parmar, A. (, 2015).. Surfactant mediated extraction of total phenolic contents (TPC) and antioxidants from fruits juices. Food Chemistry, 185:, 284–288. https://doi.org/10.1016/j.foodchem.2015.03.106
Singh, S., Vardhan, H., Kotla, N.G., Maddiboyina, B., Sharma, D., & and Webster, T.J. (, 2016 ).. The role of surfactants in the formulation of elastic liposomal gels containing a synthetic opioid analgesic. International jJournal of nNanomedicine Volume 11:, 1475-–1482. https://doi.org/10.2147/IJN.S100253
Siti Azima, A.M., Noriham, A., & and Manshoor, N. (, 2014).. Anthocyanin content in relation to the antioxidant activity and colour properties of Garcinia mangostana peel, Syzigium cumini and Clitoria ternatea extracts. International Food Research Journal, 21(6),): 2369–2375.
Skrypnik, L., & and Novikova, A. (, 2020).. Response surface modelling and optimization of polyphenols extraction from Apple Pomace Bbased on nonionic emulsifiers. Agronomy, 10(1),): 92-–111. https://doi.org/10.3390/agronomy10010092
Spigno, G., & and Jauregi, P. (, 2005).. Recovery of gallic acid with colloidal gas aphrons (CGA). International Journal of Food Engineering, 1(4),): 1-–12. https://doi.org/10.2202/1556-3758.1038
Szoll, R., Szabina, K., Ambrus, R., Bartos, C., & and Balogh, E. (, 2023).. The effect of the particle size reduction on the biorelevant solubility and dissolution of poorly soluble drugs with different acid-base character. Pharmaceutics, 15(1),): 278-–292. https://doi.org/10.3390/pharmaceutics15010278
Tolun, A., Artik, N., & and Altintas, Z. (, 2020).. Effect of different microencapsulating materials and relative humidities on storage stability of microencapsulated grape pomace extract. Food Chemistry, 302:, 1-–10. https://doi.org/10.1016/j.foodchem.2019.125347
Torres, J.A., Chagas, P.M.B., Silva, M.C., Dos Santos, C.D., & and Corrêa, A.D. (, 2016).. Evaluation of the protective effect of chemical additives in the oxidation of phenolic compounds catalysed by peroxidase. Environmental Technology, 37(10),): 1288-–1295. https://doi.org/10.1080/09593330.2015.1112433
Tsai, P., & and Huang, H. (, 2004 ).. Effect of polymerization on the antioxidant capacity of anthocyanins in Roselle. Food Research International 37(4),): 313–318. https://doi.org/10.1016/j.foodres.2003.12.007
Tuan Putra, T.N.M., Zainol, M.K., MohdIsa, N.S., & and MohdMaidin, N. (, 2021).. Chemical characterization of ethanolic extract of Butterfly pea flower (Clitoria ternatea). Food Research 5(4),): 127–134. https://doi.org/10.26656/fr.2017.5(4).744
Wong, S.P., Leong, L.P., & and William Koh, J.H. (, 2006).. Antioxidant activities of aqueous extracts of selected plants. Food Chemistry, 99(4),): 775–783. https://doi.org/10.1016/j.foodchem.2005.07.058
Wu, H.Y., Yang, K.M., & and Chiang, P.Y. (, 2018).. Roselle anthocyanins: Aantioxidant properties and stability to heat and pH. Molecules, 23(6),): 1357-–1370. https://doi.org/10.3390/molecules23061357
Yammine, P., Maarawi, T., Moussa, D., Abdel-Massih, R., & and Kassab, R. (, 2015).. Effects of different surfactants on Iindomethacin microspheres formulations. Journal: Journal of Advances in Chemistry, 11(4),): 3453-–3462.