Hydrophobic carbon dots: An overview of the synthesis, purification, cytotoxicity, and potential applications in food safety and analytical chemistry

Main Article Content

Rahim Molaei
Roghayieh Razavi
Abdullah Khalid Omer
Anita Lotfi Javid
Parya Ezati
Negar Nikfarjam
Loong-Tak Lim
Mehran Moradi

Keywords

Hydrophobic carbon dots; synthesis methods; purification techniques; Cytotoxicity; Sensors; Bio-imaging

Abstract

Hydrophobic carbon dots (HCDs) represent a burgeoning class of nanomaterials distinguished by their unique physicochemical, antimicrobial, and optical properties. These attributes have propelled HCDs to the forefront of research, particularly in the fields such as composite film production, biological imaging, and antibacterial coatings, with broad implications for industries, such as food safety, medicine, catalysis, and sensor technology. This comprehensive review delves into the diverse synthesis methodologies of HCDs, such as chemical oxidation, hydrothermal/solvothermal techniques, pyrolysis, and microwave irradiation. The comparative benefits and challenges of these methods were analyzed critically. This manuscript presents an in-depth exploration of purification methods, hydrophobicity indices, and cytotoxicity by a thorough examination of current literature. In addition, it highlights the innovative applications of HCDs, from advanced chemosensors, the development of stationary phases for chromatography to bioimaging and diagnostics, and the construction of optoelectric devices for food applications.

Abstract 132 | PDF Downloads 74 XML Downloads 0 HTML Downloads 0

References

Ali, H., Bhunia, S.K., Dalal, C. and Jana, N.R., 2016. Red fluorescent carbon nanoparticle-based cell imaging probe. ACS Applied Materials & Interfaces 8: 9305–9313. https://doi.org/10.1021/acsami.5b11318
Amézqueta, S., Subirats, X., Fuguet, E., Rosés, M. and Ràfols, C., 2020. Octanol-water partition constant. In: Poole, C.F (eds.). Liquid-phase extraction. Elsevier, Amsterdam, the Netherlands, pp. 183–208. https://doi.org/10.1016/B978-0-12-816911-7.00006-2
Arshad, F. and Sk, M.P., 2019. Aggregation-induced red shift in N,S-doped chiral carbon dot emissions for moisture sensing. New Journal of Chemistry 43: 13240–13248. https://doi.org/10.1039/C9NJ03009C
Bandi, R., Kannikanti, H. Gavash, Dadigala, R., Gangapuram, B. Reddy, Rao Vaidya, J., Guttena, V., 2020. One step synthesis of hydrophobic carbon dots powder with solid state emission and application in rapid visualization of latent fingerprints. Optical Materials (Amsterdam). 109: 110349. https://doi.org/10.1016/j.optmat.2020.110349
Barnoud, J., Rossi, G., Marrink, S.J. and Monticelli, L., 2014. Hydrophobic compounds reshape membrane domains. PLoS Computational Biology 10: e1003873.
Bartolomei, B., Dosso, J. and Prato, M., 2021. New trends in nonconventional carbon dot synthesis. Trends in Chemistry 3: 943–953. https://doi.org/10.1016/j.trechm.2021.09.003
Bhunia, S.K., Saha, A., Maity, A.R., Ray, S.C. and Jana, N.R., 2013. Carbon nanoparticle-based fluorescent bioimaging probes. Scientific Reports 3: 1–7. https://doi.org/10.1038/srep01473
Boakye-Yiadom, K.O., Kesse, S., Opoku-Damoah, Y., Filli, M.S., Aquib, M., Joelle, M.M.B., Farooq, M.A., Mavlyanova, R., Raza, F., Bavi, R. and Wang, B., 2019. Carbon dots: applications in bioimaging and theranostics. International Journal of Pharmaceutics 564: 308–317. https://doi.org/10.1016/j.ijpharm.2019.04.055
Bodik, M., Siffalovic, P., Nadazdy, P., Benkovicova, M., Markovic, Z., Chlpik, J., Cirak, J., Kotlar, M., Micusik, M. and Jergel, M., 2018. On the formation of hydrophobic carbon quantum dots Langmuir films and their transfer onto solid substrates. Diamond and Related Materials 83: 170–176. https://doi.org/10.1016/j.diamond.2018.02.011
Bourlinos, A.B., Karakassides, M.A., Kouloumpis, A., Gournis, D., Bakandritsos, A., Papagiannouli, I., Aloukos, P., Couris, S., Hola, K., Zboril, R., Krysmann, M. and Giannelis, E.P., 2013. Synthesis, characterization and nonlinear optical response of organophilic carbon dots. Carbon (N.Y.) 61: 640–643. https://doi.org/10.1016/j.carbon.2013.05.017
Bourlinos, A.B., Stassinopoulos, A., Anglos, D., Zboril, R., Karakassides, M. and Giannelis, E.P., 2008. Surface functionalized carbogenic quantum dots. Small 4: 455–458. https://doi.org/10.1002/smll.200700578
Budimir, M., Marković, Z., Vajdak, J., Jovanović, S., Kubat, P., Humpoliček, P., Mičušik, M., Danko, M., Barras, A., Milivojević, D., Špitalsky, Z., Boukherroub, R. and Marković, B.T., 2021. Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment. Radiation Physics and Chemistry 185: 109499. https://doi.org/10.1016/j.radphyschem.2021.109499
Çalhan, S.D., Alaş, M.Ö., Aşık, M., Kaya, F.N.D. and Genç, R., 2018. One-pot synthesis of hydrophilic and hydrophobic fluorescent carbon dots using deep eutectic solvents as designer reaction media. Journal of Materials Science 53: 15362–15375. https://doi.org/10.1007/s10853-018-2723-4
Chatterjee, A., Ruturaj, Chakraborty, M.P., Nandi, S. and Purkayastha, P., 2022. Biocompatible and optically stable hydrophobic fluorescent carbon dots for isolation and imaging of lipid rafts in model membrane. Analytical and Bioanalytical Chemistry 414: 6055–6067. https://doi.org/10.1007/s00216-022-04165-6
Chen, J., Gong, Z., Tang, W., Row, K.H. and Qiu, H., 2021a. Carbon dots in sample preparation and chromatographic separation: recent advances and future prospects. Trends in Analytical Chemistry (TrAC) 134: 116135. https://doi.org/10.1016/j.trac.2020.116135
Chen, J., Yuan, N., Jiang, D., Lei, Q., Liu, B., Tang, W., Row, K.H. and Qiu, H., 2021b. Octadecylamine and glucose-coderived hydrophobic carbon dots-modified porous silica for chromatographic separation. Chinese Chemical Letters 32: 3398–3401. https://doi.org/10.1016/j.cclet.2021.04.052
Chen, T., Zhang, Q., Xie, Z., Tan, C., Chen, P., Zeng, Y., Wang, F., Liu, H., Liu, Y., Liu, G. and Lv, W., 2018. Carbon nitride modified hexagonal boron nitride interface as highly efficient blue LED light-driven photocatalyst. Applied Catalysis B: Environment and Energy 238: 410–421. https://doi.org/10.1016/j.apcatb.2018.07.053
Chen, X., Zhang, Z. and Zhao, J., 2015. Purification, organophilicity and transparent fluorescent bulk material fabrication derived from hydrophilic carbon dots. RSC Advances 5: 14492–14496. https://doi.org/10.1039/c4ra15684f
Cheng, F., An, X., Zheng, C. and Cao, S., 2015. Green synthesis of fluorescent hydrophobic carbon quantum dots and their use for 2, 4, 6-trinitrophenol detection. RSC Advances 5: 93360–93363. https://doi.org/10.1039/C5RA19029K
Chisari, M., Eisenman, L.N., Krishnan, K., Bandyopadhyaya, A.K., Wang, C., Taylor, A., Benz, A., Covey, D.F., Zorumski, C.F. and Mennerick, S., 2009. The influence of neuroactive steroid lipophilicity on GABAA receptor modulation: evidence for a low-affinity interaction. Journal of Neurophysiology 102: 1254–1264.
Choi, C.A., Mazrad, Z.A.I., Ryu, J.H., In, I., Lee, K.D. and Park, S.Y., 2018. Membrane and nucleus targeting for highly sensitive cancer cell detection using pyrophosphate and alkaline phosphatase activity-mediated fluorescence switching of functionalized carbon dots. Journal of Materials Chemistry B 6: 5992–6001.
Chu, K.-W., Lee, S.L., Chang, C.-J. and Liu, L., 2019. Recent progress of carbon dot precursors and photocatalysis applications. Polymers (Basel) 11, 689. https://doi.org/10.3390/polym11040689
Chu, X., Wang, M., Shi, S., Sun, B., Song, Q., Xu, W., Shen, J. and Zhou, N., 2022. A review on properties and antibacterial applications of polymer-functionalized carbon dots. Journal of Materials Science 57: 12752–12781. https://doi.org/10.1007/s10853-022-07394-3
Cook, E., Labiento, G. and Chauhan, B.P.S., 2021. Fundamental methods for the phase transfer of nanoparticles. Molecules 26(20): 6170. https://doi.org/10.3390/molecules26206170
Coşkun, Y., Ünlü, F.Y., Yılmaz, T., Türker, Y., Aydogan, A., Kuş, M. and Ünlü, C., 2022. Development of highly luminescent water-insoluble carbon dots by using Calix[4]pyrrole as the carbon precursor and their potential application in organic solar cells. ACS Omega 7: 18840–18851. https://doi.org/10.1021/acsomega.2c01795
Das, R., Bandyopadhyay, R. and Pramanik, P., 2018. Carbon quantum dots from natural resource : a review. Materials Today Chemistry 8: 96–109. https://doi.org/10.1016/j.mtchem.2018.03.003
De, S.K., Maity, A., Bagchi, D. and Chakraborty, A., 2021. Lipid phase dependent distinct emission behaviour of hydrophobic carbon dots: C-dot based membrane probes. Chemical Communications 57: 9080–9083. https://doi.org/10.1039/D1CC01941D
de Andrés, F. and Ríos, Á., 2021. Carbon dots – separative techniques: tools-objective towards green analytical nanometrology focused on bioanalysis. Microchemical Journal 161: 105773. https://doi.org/10.1016/j.microc.2020.105773
Dutta, G.K. and Karak, N., 2022. Overview of carbon dot synthesis. In: Khan, R., Murali, s., Gogoi, S (eds.). Carbon dots in agricultural systems. Elsevier, Amsterdam, the Netherlands, pp. 39–68. https://doi.org/10.1016/B978-0-323-90260-1.00010-3
Ezati, P., Rhim, J.-W., Molaei, R., Priyadarshi, R., Roy, S., Min, S., Kim, Y.H., Lee, S.-G. and Han, S., 2022. Preparation and characterization of B, S, and N-doped glucose carbon dots: antibacterial, antifungal, and antioxidant activity. Sustainable Materials and Technologies 32: e00397. https://doi.org/10.1016/j.susmat.2022.e00397
Fahmi, M.Z., Wibowo, D.L.N., Sakti, S.C.W. and Lee, H.V., 2020. Human serum albumin capsulated hydrophobic carbon nanodots as staining agent on HeLa tumor cell. Materials Chemistry and Physics 239: 122266. https://doi.org/10.1016/j.matchemphys.2019.122266
Fan, Y., Yang, X., Yin, C., Ma, C. and Zhou, X., 2019. Blue- and green-emitting hydrophobic carbon dots: preparation, optical transition, and carbon dot-loading. Nanotechnology 30: 265704. https://doi.org/10.1088/1361-6528/ab0b14
Feng, J., Chen, S., Yu, Y. and Wang, J., 2020. Red-emission hydrophobic porphyrin structure carbon dots linked with transferrin for cell imaging. Talanta 217: 121014. https://doi.org/10.1016/j.talanta.2020.121014
Fu, G., Chen, J. and Qiu, H., 2022a. Deep eutectic solvents-derivated carbon dots-decorated silica stationary phase with enhanced separation selectivity in reversed-phase liquid chromatography. Journal of Chromatography A 1681: 463425. https://doi.org/10.1016/j.chroma.2022.463425
Fu, G., Gao, C., Quan, K., Li, H., Qiu, H. and Chen, J., 2022b. Phosphorus-doped deep eutectic solvent-derived carbon dots-modified silica as a mixed-mode stationary phase for reversed-phase and hydrophilic interaction chromatography. Analytical and Bioanalytical Chemistry 6: 1342. https://doi.org/10.1007/s00216-022-04405-9
Galyean, A.A., Behr, M.R. and Cash, K.J., 2018. Ionophore-based optical nanosensors incorporating hydrophobic carbon dots and a pH-sensitive quencher dye for sodium detection. Analyst 143: 458–465. https://doi.org/10.1039/C7AN01382E
Ganiga, M., Mani, N.P. and Cyriac, J., 2018. Synthesis of organophilic carbon dots, selective screening of trinitrophenol and a comprehensive understanding of luminescence quenching mechanism. Chemistry Select 3: 4663–4668. https://doi.org/10.1002/slct.201702646
Gao, W., Zhou, Y., Xu, C., Guo, M., Qi, Z., Peng, X. and Gao, B., 2019. Bright hydrophilic and organophilic fluorescence carbon dots: one-pot fabrication and multi-functional applications at visualized Au3+ detection in cell and white light-emitting devices. Sensors & Actuators, B: Chemical 281: 905–911. https://doi.org/10.1016/j.snb.2018.11.024
Garg, A.K., Dalal, C., Kaushik, J., Anand, S.R. and Sonkar, S.K., 2022. Selective sensing of explosive nitrophenol compounds by using hydrophobic carbon nanoparticles. Materials Today Sustainability 20: 100202. https://doi.org/10.1016/j.mtsust.2022.100202
Ghosal, K., Kováčová, M., Humpolíček, P., Vajďák, J., Bodík, M. and Špitalský, Z., 2021. Antibacterial photodynamic activity of hydrophobic carbon quantum dots and polycaprolactone based nanocomposite processed via both electrospinning and solvent casting method. Photodiagnosis and Photodynamic Therapy 35: 102455. https://doi.org/10.1016/j.pdpdt.2021.102455
González-González, R.B., González, L.T., Madou, M., Leyva-Porras, C., Martinez-Chapa, S.O. and Mendoza, A., 2022. Synthesis, purification, and characterization of carbon dots from nonactivated and activated pyrolytic carbon black. Nanomaterials 12: 298. https://doi.org/10.3390/nano12030298
Gude, V., 2014. Synthesis of hydrophobic photoluminescent carbon nanodots by using L-tyrosine and citric acid through a thermal oxidation route. Beilstein Journal of Nanotechnology 5: 1513–1522.
Guha, A. and Ghosh, D., 2022. A toxicologic review of quantum dots: recent insights and future directions. In: Barik, P. and Mondal, S. (eds.). Application of quantum dots in biology and medicine: recent advances Springer Nature, Singapore, pp. 67–90. https://doi.org/10.1007/978-981-19-3144-4_4
Guo, T., Wang, X., Hong, X., Xu, W., Shu, Y. and Wang, J., 2022. Modulation of the binding ability to biomacromolecule, cytotoxicity and cellular imaging property for ionic liquid mediated carbon dots. Colloids Surfaces B Biointerfaces 216: 112552. https://doi.org/10.1016/j.colsurfb.2022.112552
Guo, T., Wang, X., Zhao, C., Shu, Y. and Wang, J., 2021. Precise regulation of the properties of hydrophobic carbon dots by manipulating the structural features of precursor ionic liquids. Biomaterials Science 9: 3127–3135. https://doi.org/10.1039/D1BM00090J
Han, S., Zhang, H., Zhang, J., Xie, Y., Liu, L., Wang, H., Li, X., Liu, W. and Tang, Y., 2014. Fabrication, gradient extraction and surface polarity-dependent photoluminescence of cow milk-derived carbon dots. RSC Advances 4: 58084–58089. https://doi.org/10.1039/C4RA09520K
Hardman, R., 2006. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environmental Health Perspectives 114(2): 165–172. https://doi.org/10.1289/ehp.8284
He, M., Jiang, X., Wang, X., Xiang, G. and He, L., 2024. Solvent-free synthesis of recyclable hydrophobic carbon dots for highly selective detecting curcumin in food samples. Microchemical Journal 199: 109898. https://doi.org/10.1016/j.microc.2024.109898
Jana, D., Wang, D., Rajendran, P., Bindra, A.K., Guo, Y., Liu, J., Pramanik, M. and Zhao, Y., 2021. Hybrid carbon dot assembly as a reactive oxygen species nanogenerator for ultrasound-assisted tumor ablation. Journal of the American Chemical Society 1: 2328–2338. https://doi.org/10.1021/jacsau.1c00422
Jian, H.-J., Yu, J., Li, Y.-J., Unnikrishnan, B., Huang, Y.-F., Luo, L.-J., Hui-Kang Ma, D., Harroun, S.G., Chang, H.-T., Lin, H.-J., Lai, J.-Y. and Huang, C.-C., 2020. Highly adhesive carbon quantum dots from biogenic amines for prevention of biofilm formation. Chemical Engineering Journal 386: 123913. https://doi.org/10.1016/j.cej.2019.123913
Jiang, D., Chen, J., Guan, M. and Qiu, H., 2021. Octadecylimidazolium ionic liquids-functionalized carbon dots and their precursor co-immobilized silica as hydrophobic chromatographic stationary phase with enhanced shape selectivity. Talanta 233: 122513. https://doi.org/10.1016/j.talanta.2021.122513
Khairol Anuar, N.K., Tan, H.L., Lim, Y.P., So’aib, M.S. and Abu Bakar, N.F., 2021. A review on multifunctional carbon-dots synthesized from biomass waste: design/ fabrication, characterization and applications. Frontiers in Energy Research 9: 67. https://doi.org/10.3389/fenrg.2021.626549
Khan, W.U., Wang, D. and Wang, Y., 2018. Highly green emissive nitrogen-doped carbon dots with excellent thermal stability for bioimaging and solid-state LED. Inorganic Chemistry 57(24): 15229–15239. https://doi.org/10.1021/acs.inorgchem.8b02524
Kong, D., Yan, F., Luo, Y., Ye, Q., Zhou, S. and Chen, L., 2017. Amphiphilic carbon dots for sensitive detection, intracellular imaging of Al3+. Analytica Chimica Acta 953: 63–70. https://doi.org/10.1016/j.aca.2016.11.049
Koutsioukis, A., Akouros, A., Zboril, R., Georgakilas, V., 2018. Solid phase extraction for the purification of violet, blue, green and yellow emitting carbon dots. Nanoscale 10: 11293–11296. https://doi.org/10.1039/C8NR03668C
Kováčová, M., Kleinová, A., Vajďák, J., Humpolíček, P., Kubát, P., Bodík, M., Marković, Z. and Špitálský, Z., 2020. Photodynamic-active smart biocompatible material for an antibacterial surface coating. Journal of Photochemistry and Photobiology B: Biology 211: 112012. https://doi.org/10.1016/j.jphotobiol.2020.112012
Kováčová, M., Marković, Z.M., Humpolicek, P., Micusik, M., Svajdlenkova, H., Kleinova, A., Danko, M., Kubat, P., Vajdak, J. and Capakova, Z., 2018. Carbon quantum dots modified polyurethane nanocomposite as effective photocatalytic and antibacterial agents. ACS Biomaterials Science & Engineering 4: 3983–3993. https://doi.org/10.1021/acsbiomaterials.8b00582
Kumar, R., Kumar, V.B. and Gedanken, A., 2020. Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. Ultrason. Sonochem 64: 105009. https://doi.org/10.1016/j.ultsonch.2020.105009
Li, S., Li, L., Tu, H., Zhang, H., Silvester, D.S., C, C.E.B., Hou, H., Zou, G. and Ji, X., 2021a. The development of carbon dots: from the perspective of materials chemistry. Materials Today 51: 188–207. https://doi.org/10.1016/j.mattod.2021.07.028
Li, T., Li, Z., Huang, T. and Tian, L., 2021b. Carbon quantum dot-based sensors for food safety. Sensors and Actuators A: Physical 331: 113003. https://doi.org/10.1016/j.sna.2021.113003
Lin, Y.-S., Yang, Z.-Y., Anand, A., Huang, C.-C. and Chang, H.-T., 2022. Carbon dots with polarity-tunable characteristics for the selective detection of sodium copper chlorophyllin and copper ions. Analytica Chimica Acta 1191: 339311. https://doi.org/10.1016/j.aca.2021.339311
Liu, N. and Tang, M., 2020. Toxicity of different types of quantum dots to mammalian cells in vitro: an update review. Journal of Hazardous Materials 399: 122606. https://doi.org/10.1016/j.jhazmat.2020.122606
Lu, L., Feng, C., Xu, J., Wang, F., Yu, H., Xu, Z. and Zhang, W., 2017. Hydrophobic-carbon-dot-based dual-emission micelle for ratiometric fluorescence biosensing and imaging of Cu2+ in liver cells. Biosensors and Bioelectronics 92: 101–108. https://doi.org/10.1016/j.bios.2017.01.066
Mao, Q.-X., Shuang, E, Xia, J.-M., Song, R.-S., Shu, Y., Chen, X.-W. and Wang, J.-H., 2016. Hydrophobic carbon nanodots with rapid cell penetrability and tunable photoluminescence behavior for in vitro and in vivo imaging. Langmuir 32(46): 12221–12229. https://doi.org/10.1021/acs.langmuir.6b03331
Mao, Q.-X., Wang, W.-J., Hai, X., Shu, Y., Chen, X.-W. and Wang, J.-H., 2015. The regulation of hydrophilicity and hydrophobicity of carbon dots via a one-pot approach. Journal of Materials Chemistry B 3: 6013–6018. https://doi.org/10.1039/C5TB00963D
Marković, Z.M., Kováčová, M., Humpolíček, P., Budimir, M.D., Vajďák, J., Kubát, P., Mičušík, M., Švajdlenková, H., Danko, M., Capáková, Z., Lehocký, M., Todorović Marković, B.M. and Špitalský, Z., 2019. Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. Photodiagnosis and Photodynamic Therapy 26: 342–349. https://doi.org/10.1016/j.pdpdt.2019.04.019
Marković, Z.M., Kováčová, M., Jeremić, S.R., Nagy, Š., Milivojević, D.D., Kubat, P., Kleinová, A., Budimir, M.D., Mojsin, M.M., Stevanović, M.J., Annušová, A., Špitalský, Z. and Todorović Marković, B.M., 2022. Highly efficient antibacterial polymer composites based on hydrophobic riboflavin carbon polymerized dots. Nanomaterials 12: 432. https://doi.org/10.3390/nano12224070
Mauro, N., Utzeri, M.A., Drago, S.E., Nicosia, A., Costa, S., Cavallaro, G. and Giammona, G., 2021. Hyaluronic acid dressing of hydrophobic carbon nanodots: a self-assembling strategy of hybrid nanocomposites with theranostic potential. Carbohydrate Polymers 267: 118213. https://doi.org/10.1016/j.carbpol.2021.118213
Mitra, S., Chandra, S., Kundu, T., Banerjee, R., Pramanik, P. and Goswami, A., 2012. Rapid microwave synthesis of fluorescent hydrophobic carbon dots. RSC Advances 2: 12129–12131. https://doi.org/10.1039/c2ra21048g
Moldoveanu, S. and David, V., 2021. Phase transfer in sample preparation. In: Moldoveanu, S., David, V. (eds.). Modern sample preparation for chromatography. Elsevier, Amsterdam, the Netherlands, pp. 105–130. https://doi.org/10.1016/B978-0-12-821405-3.00011-3
Mondal, T.K., Kapuria, A., Miah, M. and Saha, S.K., 2023. Solubility tuning of alkyl amine functionalized carbon quantum dots for selective detection of nitroexplosive. Carbon (N.Y.) 209: 117972. https://doi.org/10.1016/j.carbon.2023.03.047
Moradi, M., Molaei, R., Kousheh, S.A., T. Guimarães, J. and McClements, D.J., 2023. Carbon dots synthesized from microorganisms and food by-products: active and smart food packaging applications. Critical Reviews in Food Science and Nutrition 63: 1943–1959. https://doi.org/10.1080/10408398.2021.2015283
Mousavi Khaneghah, A., Hashemi, S.M.B. and Limbo, S., 2018. Antimicrobial agents and packaging systems in antimicrobial active food packaging: an overview of approaches and interactions. Food and Bioproducts Processing 111: 1–19. https://doi.org/10.1016/j.fbp.2018.05.001
Ndlwana, L., Raleie, N., Dimpe, K.M., Ogutu, H.F., Oseghe, E.O., Motsa, M.M., Msagati, T.A.M. and Mamba, B.B., 2021. Sustainable hydrothermal and solvothermal synthesis of advanced carbon materials in multidimensional applications: a review. Materials (Basel). 14(17): 5094. https://doi.org/10.3390/ma14175094
Pagidi, S., Sadhanala, H.K., Sharma, K. and Gedanken, A., 2022. One-pot synthesis of deep blue hydrophobic carbon dots with room temperature phosphorescence, white light emission, and explosive sensor. Advanced Electronic Materials 8: 2100969. https://doi.org/10.1002/aelm.202100969
Paul, S., Bhattacharya, A., Hazra, N., Gayen, K., Sen, P. and Banerjee, A., 2022. Yellow-emitting carbon dots for selective fluorescence imaging of lipid droplets in living cells. Langmuir 38: 8829–8836. https://doi.org/10.1021/acs.langmuir.2c00919
Prikhozhdenko, E.S., Bratashov, D.N., Mitrofanova, A.N., Sapelkin, A. V., Yashchenok, A.M., Sukhorukov, G.B. and Goryacheva, I.Y., 2018. Solvothermal synthesis of hydrophobic carbon dots in reversed micelles. Journal of Nanoparticle Research 20: 1–11. https://doi.org/10.1007/s11051-018-4336-x
Puckowski, A., Mioduszewska, K., Łukaszewicz, P., Borecka, M., Caban, M., Maszkowska, J. and Stepnowski, P., 2016. Bioaccumulation and analytics of pharmaceutical residues in the environment: a review. Journal of Pharmaceutical and Biomedical Analysis 127: 232–255. https://doi.org/10.1016/j.jpba.2016.02.049
Qu, S., Zhou, D., Li, D., Ji, W., Jing, P., Han, D., Liu, L., Zeng, H. and Shen, D., 2016. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Advanced Materials 28: 3516–3521. https://doi.org/10.1002/adma.201504891
Raveendran, V. and Kizhakayil, R.N., 2021. Fluorescent carbon dots as biosensor, green reductant, and biomarker. ACS Omega 6: 23475–23484. https://doi.org/10.1021/acsomega.1c03481
Razavi, R., Tajik, H., Molaei, R., McClements, D.J. and Moradi, M., 2024. Janus nanoparticles synthesized from hydrophobic carbon dots and carboxymethyl cellulose: novel antimicrobial additives for fresh food applications. Food Bioscience 62: 105171. https://doi.org/10.1016/j.fbio.2024.105171
Shang, W., Ye, M., Cai, T., Zhao, L., Zhang, Y., Liu, D. and Liu, S., 2018. Tuning of the hydrophilicity and hydrophobicity of nitrogen doped carbon dots: a facile approach towards high efficient lubricant nanoadditives. Journal of Molecular Liquids 266: 65–74. https://doi.org/10.1016/j.molliq.2018.06.042
Shebeeb, C.M., Joseph, A., Farzeena, C., Dinesh, R. and Sajith, V., 2022. Fluorescent carbon dot embedded polystyrene particle: an alternative to fluorescently tagged polystyrene for fate of microplastic studies: a preliminary investigation. Applied Nanoscience 12: 2725–2731. https://doi.org/10.1007/s13204-022-02566-8
Shi, X., Wang, X., Zhang, S., Zhang, Z., Meng, X., Liu, H., Qian, Y., Lin, Y., Yu, Y., Lin, W. and Wang, H., 2023. Hydrophobic carbon dots derived from organic pollutants and applications in NIR anticounterfeiting and bioimaging. Langmuir 39: 5056–5064. https://doi.org/10.1021/acs.langmuir.3c00075
Shi, X., Wei, W., Fu, Z., Gao, W., Zhang, C., Zhao, Q., Deng, F. and Lu, X., 2019. Review on carbon dots in food safety applications. Talanta 194: 809–821. https://doi.org/10.1016/j.talanta.2018.11.005
Shinde, V.R., Khatun, S., Thanekar, A.M., Hak, A. and Rengan, A.K., 2023. Lipid-coated red fluorescent carbon dots for imaging and synergistic phototherapy in breast cancer. Photodiagnosis and Photodynamic Therapy 41: 103314. https://doi.org/10.1016/j.pdpdt.2023.103314
Shu, Y., Lu, J., Mao, Q.-X., Song, R.-S., Wang, X.-Y., Chen, X.-W. and Wang, J.-H., 2017. Ionic liquid-mediated organophilic carbon dots for drug delivery and bioimaging. Carbon (N.Y.). 114: 324–333. https://doi.org/10.1016/j.carbon.2016.12.038
Stanković, N.K., Bodik, M., Šiffalovič, P., Kotlar, M. and Mičušik, M., 2018. Antibacterial and antibiofouling properties of light triggered fluorescent hydrophobic carbon quantum dots Langmuir–Blodgett thin films. ACS Sustainable Chemistry & Engineering 6(3): 4154–4163. https://doi.org/10.1021/acssuschemeng.7b04566
Sun, Y., Zhang, M., Bhandari, B. and Yang, C., 2022. Recent development of carbon quantum dots: biological toxicity, antibacterial properties and application in foods. Food Reviews International 38: 1513–1532. https://doi.org/10.1080/87559129.2020.1818255
Tajik, S., Dourandish, Z., Zhang, K., Beitollahi, H., Quyet, B., Le, V., Ho, E., Jang, W. and Shokouhimehr, M., 2020. Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Advances 10(26):15406–15429. https://doi.org/10.1039/d0ra00799d
Talib, A., Pandey, S., Thakur, M. and Wu, H.-F., 2015. Synthesis of highly fluorescent hydrophobic carbon dots by hot injection method using Paraplast as precursor. Materials Science and Engineering: C 48: 700–703. https://doi.org/10.1016/j.msec.2014.11.058
Taylor, N., Ma, W., Kristopeit, A., Wang, S. and Zydney, A.L., 2022. Evaluating nanoparticle hydrophobicity using analytical membrane hydrophobic interaction chromatography. Analytical Chemistry 94: 8668–8673. https://doi.org/10.1021/acs.analchem.2c00710
Varisco, M., Zufferey, D., Ruggi, A., Zhang, Y., Erni, R. and Mamula, O., 2017. Synthesis of hydrophilic and hydrophobic carbon quantum dots from waste of wine fermentation. Royal Society Open Science 4: 170900. https://doi.org/10.1098/rsos.170900
Wang, Z., Liu, Y., Liang, M., Chen, Y., Dong, W., Hu, Q., Song, S., Shuang, S., Dong, C. and Gong, X., 2024. Hydrophobic carbon quantum dots with red fluorescence: an optical dual-mode and smartphone imaging sensor for identifying Chinese Baijiu quality. Talanta 275: 126064. https://doi.org/10.1016/j.talanta.2024.126064
Wang, J.-L., Teng, J.-Y., Jia, T. and Shu, Y., 2018. Detection of yeast Saccharomyces cerevisiae with ionic liquid mediated carbon dots. Talanta 178: 818–824. https://doi.org/10.1016/j.talanta.2017.10.029
Wen, Y., Jia, Q., Nan, F., Zheng, X., Liu, W., Wu, J., Ren, H., Ge, J. and Wang, P., 2019. Pheophytin derived near‐infrared‐light responsive carbon dot assembly as a new phototheranotic agent for bioimaging and photodynamic therapy. Chemistry: An Asian Journal 14: 2162–2168. https://doi.org/10.1002/asia.201900416
Wu, M., Zhan, J., Geng, B., He, P., Wu, K., Wang, L., Xu, G., Li, Z., Yin, L. and Pan, D., 2017. Scalable synthesis of organic-soluble carbon quantum dots: superior optical properties in solvents, solids, and LEDs. Nanoscale 9: 13195–13202. https://doi.org/10.1039/C7NR04718E
Xu, J., Zhang, Y., Guo, X., Zhang, H., Deng, Y. and Zhao, X., 2023. Aggregation-induced emission solid-state multicolor fluorescent carbon dots for LEDs and fingerprints applications. Journal of Luminescence 256: 119625. https://doi.org/10.1016/j.jlumin.2022.119625
Yang, J.-C., Gao, S., Zhang, J.-H., Lv, H.-T. and Wu, Q., 2022. Ionic liquid and octadecylamine co-derived carbon dots for multi-mode high performance liquid chromatography. Microchemical Journal 182: 107932. https://doi.org/10.1016/j.microc.2022.107932
Yang, H., Liu, Y., Guo, Z., Lei, B., Zhuang, J., Zhang, X., Liu, Z. and Hu, C., 2019. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nature Communications 10: 1789. https://doi.org/10.1038/s41467-019-09830-6
Yang, J., Zhang, X., Ma, Y.-H., Gao, G., Chen, X., Jia, H.-R., Li, Y.-H., Chen, Z. and Wu, F.-G., 2016. Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Applied Materials & Interfaces 8: 32170–32181. https://doi.org/10.1021/acsami.6b10398
Yao, B., Huang, H., Liu, Y. and Kang, Z., 2019. Carbon dots: a small conundrum. Trends in Chemistry 1: 235–246. https://doi.org/10.1016/j.trechm.2019.02.003
Yen, Y.-T., Lin, Y.-S., Chen, T.-H., Chyueh, S.-C. and Chang, H.-T., 2020. A carbon-dot sensing probe for screening of date rape drugs: nitro-containing benzodiazepines. Sensors and Actuators, B: Chemical 305: 127441. https://doi.org/10.1016/j.snb.2019.127441
Yin, K., Lu, D., Wang, L., Zhang, Q., Hao, J., Li, G. and Li, H., 2019. Hydrophobic carbon dots from aliphatic compounds with one terminal functional group. Journal of Physical Chemistry C 123: 22447–22456. https://doi.org/10.1021/acs.jpcc.9b04479
Zhan, J., Geng, B., Wu, K., Xu, G., Wang, L., Guo, R., Lei, B., Zheng, F., Pan, D. and Wu, M., 2018. A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with multicolor bandgap fluorescence. Carbon (N.Y.) 130: 153–163. https://doi.org/10.1016/j.carbon.2017.12.075
Zhang, Z., Hu, J., Liu, S., Hao, X., Li, L., Zou, G., Hou, H. and Ji, X., 2021. Channel regulation of TFC membrane with hydrophobic carbon dots in forward osmosis. Chinese Chemical Letters 32: 2882–2886. https://doi.org/10.1016/j.cclet.2021.03.028
Zhang, S., Li, B., Zhou, J., Shi, J., He, Z., Zhao, Y., Li, Y., Shen, Y., Zhang, Y. and Wu, S., 2023a. Kill three birds with one stone: mitochondria-localized tea saponin derived carbon dots with AIE properties for stable detection of HSA and extremely acidic pH. Food Chemistry 405: 134865. https://doi.org/10.1016/j.foodchem.2022.134865
Zhang, J., Liu, X., Wang, X., Mu, L., Yuan, M., Liu, B. and Shi, H., 2018. Carbon dots-decorated Na2W4O13 composite with WO3 for highly efficient photocatalytic antibacterial activity. Journal of Hazardous Materials 359: 1–8. https://doi.org/10.1016/j.jhazmat.2018.06.072
Zhang, W., Sigdel, G., Mintz, K.J., Seven, E.S., Zhou, Y., Wang, C. and Leblanc, R.M., 2021. Carbon dots: a future blood–brain barrier penetrating nanomedicine and drug nanocarrier. International Journal of Nanomedicine 16: 5003–5016. https://doi.org/10.2147/IJN.S318732
Zhang, W., Sun, D.-W., Ma, J., Qin, A. and Tang, B.Z., 2023b. A ratiometric fluorescent tag based on dual-emissive hydrophobic carbon dots for in situ monitoring of seafood freshness. Analytica Chimica Acta 1250: 340931. https://doi.org/10.1016/j.aca.2023.340931
Zhang, C., Ying, Z., Jiang, Y., Wang, H., Zhou, X., Xuan, W. and Zheng, P., 2024. Solvent-controlled synthesis of hydrophilic and hydrophobic carbon dots. Physical Chemistry Chemical Physics 26: 314–322. https://doi.org/10.1039/D3CP04273A
Zhao, D., Zhang, Z., Li, C., Xiao, X., Li, J., Liu, X. and Cheng, H., 2020. Yellow-emitting hydrophobic carbon dots via solid-phase synthesis and their applications. ACS Omega 5: 22587–22595. https://doi.org/10.1021/acsomega.0c03239
Zheng, B., Liu, X., Hu, J., Wang, F., Hu, X., Zhu, Y., Lv, X., Du, J. and Xiao, D., 2019. Construction of hydrophobic interface on natural biomaterials for higher efficient and reversible radioactive iodine adsorption in water. Journal of Hazardous Materials 368: 81–89. https://doi.org/10.1016/j.jhazmat.2019.01.037
Zheng, B., Liu, T., Paau, M.C., Wang, M., Liu, Y., Liu, L., Wu, C., Du, J., Xiao, D. and Choi M.M.F., 2015. One pot selective synthesis of water and organic soluble carbon dots with green fluorescence emission. RSC Advances 5: 11667–11675. https://doi.org/10.1039/C4RA16529B
Zhou, Y., Liyanage, P.Y., Devadoss, D., Guevara, L.R.R., Cheng, L., Graham, R.M., Chand, H.S., Al-Youbi, A.O., Bashammakh, A.S. and El-Shahawi, M.S., 2019. Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the blood–brain barrier and inhibitors of β-amyloid. Nanoscale 11: 22387–22397. https://doi.org/10.1039/c9nr08194a