Impact of thermal processing methods on the composition and content of 4'-O-methylpyridoxine analogues in Ginkgo biloba seeds

Main Article Content

Hao Gong
Cai-e Wu
Xiao-Hong Kou
Gong-Jian Fan
Ting-Ting Li
Jia-Hong Wang
Tao Wang


Ginkgo biloba seeds, thermal processing methods, thermal processing parameter, 4ʹ-O-methylpyridoxine, vitamin B6.


This study investigated the effect of thermal processing methods, namely, boiling, microwaving, baking, and frying, on the 4'-O-methylpyridoxine (MPN) analogues of Gingko biloba seeds. All thermal processing methods decreased MPN, pyridoxine, and pyridoxal-5'-phosphate, total MPN (TMPN), and total vitamin B6 (VB6) contents but increased MPN-5'-glucoside and pyridoxamine contents. Baking and frying reduced TMPN content by 46.54%–54.67% and 46.54%–54.67%, respectively. Frying was identified as the optimal thermal processing method that maintains the VB6 compound content of G. biloba seeds at high levels (72.92%–84.62%). Principal component analysis revealed the different effects of thermal processing methods on MPN analogues in G. biloba seeds. The results of this study demonstrate that compared with other thermal processing methods, frying can better reduce the toxic compound content (TMPN) of G. biloba seeds and promote VB6 retention.

Abstract 50 | PDF Downloads 11 HTML Downloads 2 XML Downloads 0


Beyza, E. and Akif, O.Z., 2009. The effect of cooking methods on mineral and vitamin contents of African catfish. Food Chemistry 115: 419–422.
Buss, K., Drewke, C., Lohmann, S., Piwonska, A. and Leistner, E., 2001. Properties and interaction of heterologously expressed glutamate decarboxylase isoenzymes GAD(65kDa) and GAD(67kDa) from human brain with ginkgotoxin and its 5’-phosphate. Journal of Medicine Chemistry 44: 3166–3174.
Eliot, A.C. and Kirsch, J.F., 2004. Pyridoxal phosphate enzymes: Mechanistic, structural, and evolutionary considerations. Annual Review of Biochemistry 73: 383–415. https://doi. org/10.1146/annurev.biochem.73.011303.074021
Fudge, J., Mangel, N., Gruissem, W., Vanderschuren, H. and Fitzpatrick, T.B., 2017. Rationalising vitamin B6 biofortification
in crop plants. Current Opinion in Biotechnology 44: 130–137.
Galluzzi, L., Vitale, I., Senovilla, L., Olaussen, K.A., Pinna,  G., Eisenberg, T., Goubar, A., Martins, I., Michels, J. and Kratassiouk, G., 2012. Prognostic impact of vitamin B6 metabolism in lung cancer. Cell Reports 2: 257–269.
Goh, L.M. and Barlow, P.J., 2002. Antioxidant capacity in Ginkgo biloba. Food Research International 35: 815–820.
Gong, H., Wu, C.E., Fan, G.J., Li, T.T., Wang, J.H. and Wang, T., 2018. Determination and comparison of 4’-O-methylpyridoxine analogs in Ginkgo biloba seeds in different growth stages. Journal of Agriculture and Food Chemistry 66: 7916–7922.
Gregory, J.F., Ink, S.L. and Sartain, D.B., 1986. Degradation and binding to food proteins of vitamin B6 compounds during thermal processing. Journal of Food Science 51: 1345–1351. https://
Hellmann, H. and Mooney, S., 2010. Vitamin B6: a molecule for human health? Molecules 15: 442–459. molecules15010442
Huang, W., Deng, Q.C., Xie, B.J., Shi, J., Huang, F.H., Tian, B.Q., Huang,  Q.D. and Xue, S., 2010. Purification and characterization of an antioxidant protein from Ginkgo biloba seeds. Food Research International 43: 86–94.
Kästner, U., Hallmen, C., Wiese, M., Leistner, E. and Drewke, C., 2007. The human pyridoxal kinase, a plausible target for ginkgotoxin from Ginkgo biloba. FEBS Journal 274: 1036–1045. https://
Kobayashi, D., Yoshimura, T., Johno, A., Sasaki, K. and Wada, K., 2011. Toxicity of 4’-O-methylpyridoxine-5’-glucoside in Ginkgo biloba seeds. Food Chemistry 126: 1198–1202. https://doi. org/10.1016/j.foodchem.2010.12.001
Lawrence, G.A. and Scott, P.M., 2005. Improved extraction of ginkgotoxin (4’-O-methylpyridoxine) from Ginkgo biloba products. Journal of AOAC International 88: 26–29. https://doi. org/10.1093/jaoac/88.1.26
Lee, S., Choi, Y., Jeong, H.S., Lee, J. and Sung, J., 2017. Effect of different cooking methods on the content of vitamins and true retention in selected vegetables. Food Science Biotechnology 27: 1–10.
Leistner, E. and Drewke, C., 2010. Ginkgo biloba and ginkgotoxin. Journal of Nature Products 73: 86–93.
Leskova, E., Kubikova, J., Kovacikova, E., Kosicka, M., Porubska, J. and Holcikova, K., 2006. Vitamin losses: Retention during heat treatment and continual changes expressed by mathematical models. Journal of Food Composition and Analysis 19: 252–276.
Lim, H.B. and Kim, D.H., 2018. Effect of heat treatment on 4’-O-methylpyridoxine (MPN) content in Ginkgo biloba seed extract solution. Journal of the Science of Food and Agriculture 98: 5153–5156.
Mesripour, A., Hajhashemi, V. and Kuchak, A., 2017. Effect of concomitant administration of three different antidepressants with vitamin B6 on depression and obsessive compulsive disorder in mice models. Research in Pharmaceutical Sciences 12: 46–52.
Navankasattusas, S. and Lund, D.B., 2010. Thermal destruction of vitamin B6 vitamers in buffer aolution and cauliflower
puree. Journal of food Science 47: 1512–1518. https://doi. org/10.1111/j.1365-2621.1982.tb04972.x
Park, J.E., Kim, K.E., Choi, Y.J., Park, Y.D. and Kwon, H.J., 2016. The stability of water- and fat-soluble vitamin in dentifrices according to pH level and storage type. Biomedical Chromatography 30: 191–199.
Perera, A.D., Leklem, J.E. and Miller, L.T., 1980. Stability of vitamin B6 during bread making and storage of bread and flour. Cereal
Chemistry 56: 577–580.
Purchas, R.W., Wilkinson, B.H.P., Carruthers, F., Jackson, F. and Carruthers, F., 2014. A comparison of the nutrient content of uncooked and cooked lean from New Zealand beef and lamb. Journal of Food Composition and Analysis 35: 75–82.
Salvo, M.L.D., Contestabile, R. and Safo, M.K., 2011. Vitamin B6 salvage enzymes: mechanism, structure and regulation*. Biochimica et Biophysica Acta 1814: 1597–1608. https://doi. org/10.1016/j.bbapap.2010.12.006
Santiago, E.D., Caro, G.P., Rojas, J.M.M., Cid, C. and Paz De Peña, M., 2018. Digestibility of (poly)phenols and antioxidant activity in raw and cooked cactus cladodes (Opuntia ficusindica). Journal of Agriculture and Food Chemistry 66: 5832–5844.
Santiago, E.D., Domínguez-Fernández, M., Cid, C. and Peña, M.P.D., 2017. Impact of cooking process on nutritional composition and antioxidants of cactus cladodes (Opuntia ficus-indica). Food Chemistry 240: 1055-1062.
Schmidt, A. and Mayer, H.K., 2018. Milk process authentication by vitamin B6 as a novel time temperature integrator. Food Control
91: 123–127.
Scott, P.M., Lau, B.P., Lawrence, G.A. and Lewis, D.A., 2000. Analysis of Ginkgo biloba for the presence of ginkgotoxin and ginkgotoxin 5’-glucoside. Journal of AOAC International 83: 1313–1320.
Sierra, I. and Vidalvalverde, C., 2001. Vitamin B1 and B6 retention in milk after continuous-flow microwave and conventional heating at high temperatures. Journal of Food Protection 64: 890–894.
Wada, K., Ishigaki, S., Ueda, K., Take, Y., Sasaki, K., Sakata,  M. and Haga, M., 1988. Studies on the constitution of edible and medicinal plants. I. Isolation and identification of 4-O-methylpyridoxine, toxic principle from the seed of Ginkgo biloba L. Chemical and Pharmaceutical Bulletin 36: 1779–1782.
Yoshimura, T., Udaka, N., Morita, J., Zhang, J.Y., Sasaki, K., Kobayashi, D., Wada, K. and Hori, Y., 2006. High performance liquid chromatographic determination of ginkgo-toxin and ginkgotoxin-5’-glucoside in seeds. Journal of Liquid Chromatography & Related Technologies 29: 605–616. https://